首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
N-WASP is a member of the WASP family of proteins that regulate actin cytoskeleton remodeling. FAK is a cytoplasmic tyrosine kinase implicated in integrin signaling during cell migration. Here we identify a direct interaction between N-WASP and FAK and show that N-WASP is phosphorylated by FAK at a conserved tyrosine residue, Tyr(256). We found that phosphorylation of Tyr(256) affected N-WASP nuclear localization, suggesting that phosphorylation of N-WASP by FAK may regulate its activity in vivo by altering its subcellular localization. We also showed that the nuclear localization of N-WASP is dependent on its being in the open conformation either after its activation by Cdc42 or the truncation of the C-terminal VCA domain. Phosphorylation of Tyr(256) of N-WASP could reduce its interaction with nuclear importin NPI-1, which might be responsible for its decreased nuclear localization. Lastly, we show that phosphorylation of Tyr(256) plays an important role in promoting cell migration. Together, these results suggest a novel regulatory mechanism of N-WASP by tyrosine phosphorylation and subcellular localization and its potential role in the regulation of cell migration.  相似文献   

2.
Shigella , the causative agent of bacillary dysentery, is capable of directing its movement within host cells by forming an actin comet tail. The VirG (IcsA) pro-tein expressed at one pole of the bacterium recruits neural Wiskott–Aldrich syndrome protein (N-WASP), a member of the WASP family, which in turn stimulates actin-related protein (Arp) 2/3 complex-mediated actin polymerization. As all the WASP family proteins induce actin polymerization by recruiting Arp2/3 complex, we investigated their involvement in Shigella motility. Here, we show that VirG binds to N-WASP but not to the other WASP family proteins. Using a series of chimeras obtained by swapping N-WASP and WASP domains, we demonstrated that the specificity of VirG to interact with N-WASP lies in the N-terminal region containing the pleckstrin homology (PH) domain and calmodulin-binding IQ motif of N-WASP. A conformational change in N-WASP was important for the VirG–N-WASP interaction, as elimination of the C-terminal acidic region, which is responsible for the intramolecular interaction with the central basic region of N-WASP, affected the specific binding to VirG. We observed that, in haematopoietic cells such as macrophages, polymorphonuclear leucocytes (PMNs) and platelets, WASP was predominantly expressed, whereas the expression of N-WASP was greatly suppressed. Indeed, unlike Listeria , Shigella was unable to move in macrophages at all, although the movement was restored as N-WASP was expressed ectopically. Thus, our findings demonstrate that N-WASP is a specific ligand of VirG, which determines the host cell type allowing actin-based spreading of Shigella .  相似文献   

3.
Sorting nexin 9 (SNX9) is a member of the sorting nexin family of proteins, each of which contains a characteristic Phox homology domain. SNX9 is widely expressed and plays a role in clathrin-mediated endocytosis, but it is not known if it is present in neuronal cells. We report that SNX9 is expressed in the presynaptic compartment of cultured hippocampal neurons, where it binds to dynamin-1 and N-WASP. Overexpression of full-length SNX9 or a C-terminal truncated version caused severe defects in synaptic vesicle endocytosis during, as well as after, stimulation. Knockdown of SNX9 with short interfering RNA also reduced synaptic vesicle endocytosis, and the W39A mutation of SNX9 abolished the inhibitory effect of SNX9 on endocytosis. Rescue experiments showed that most of the effect of SNX9 on endocytosis results from its interaction with dynamin 1, although its interaction with N-WASP contributes in some degree. We further showed that SNX9 dimerizes through its C-terminal domain, suggesting that it may interact simultaneously with dynamin 1 and N-WASP. We propose that SNX9 interacts with dynamin-1 and N-WASP in presynaptic terminals, where it links actin dynamics and synaptic vesicle endocytosis.  相似文献   

4.
SET and hnRNPK are proteins involved in gene expression and regulation of cellular signaling. We previously demonstrated that SET accumulates in head and neck squamous cell carcinoma (HNSCC); hnRNPK is a prognostic marker in cancer. Here, we postulate that SET and hnRNPK proteins interact to promote tumorigenesis. We performed studies in HEK293 and HNSCC (HN6, HN12, and HN13) cell lines with SET/hnRNPK overexpression and knockdown, respectively. We found that SET and/or hnRNPK protein accumulation increased cellular proliferation. SET accumulation up-regulated hnRNPK mRNA and total/phosphorylated protein, promoted hnRNPK nuclear location, and reduced Bcl-x mRNA levels. SET protein directly interacted with hnRNPK, increasing both its binding to nucleic acids and Bcl-xS repression. We propose that hnRNPK should be a new target of SET and that SET–hnRNPK interaction, in turn, has potential implications in cell survival and malignant transformation.  相似文献   

5.
The ability of Shigella to mediate actin-based motility within the host cell is a prominent pathogenic feature of bacillary dysentery. The ability is dependent on the interaction of VirG with neural Wiskott-Aldrich syndrome protein (N-WASP), which in turn mediates recruitment of Arp2/3 complex and several actin-related proteins. In the present study, we show that profilin I is essential to the rapid movement of Shigella in epithelial cells, for which the capacity of profilin to interact with G-actin and N-WASP is critical. In COS-7 cells overexpressing either mutated profilin H119E, which failed to bind G-actin, or H133S, which is unable to interact with poly-l-proline, Shigella motility was significantly inhibited. Similarly, depletion of profilin from Xenopus egg extracts resulted in a decrease in bacterial motility that was completely rescued by adding back profilin I but not H119E or H133S. In COS-7 cells overexpressing a N-WASP mutant lacking the proline-rich domain (Deltap) unable to interact with profilin, the actin tail formation of intracellular Shigella was inhibited. In N-WASP-depleted extracts, addition of Deltap but not full-length N-WASP was unable to restore the bacterial motility. Furthermore, in a plaque formation assay with Madin-Darby canine kidney cell monolayers infected by Shigella, Madin-Darby canine kidney cells stably expressing H119E, H133S, or Deltap reduced the bacterial cell-to-cell spreading. These results indicate that profilin I associated with N-WASP is an essential host factor for sustaining efficient intra- and intercellular spreading of Shigella.  相似文献   

6.

Background

Abelson-interacting protein 1 (Abi-1) plays an important role for dendritic branching and synapse formation in the central nervous system. It is localized at the postsynaptic density (PSD) and rapidly translocates to the nucleus upon synaptic stimulation. At PSDs Abi-1 is in a complex with several other proteins including WASP/WAVE or cortactin thereby regulating the actin cytoskeleton via the Arp 2/3 complex.

Principal Findings

We identified heterogeneous nuclear ribonucleoprotein K (hnRNPK), a 65 kDa ssDNA/RNA-binding-protein that is involved in multiple intracellular signaling cascades, as a binding partner of Abi-1 at postsynaptic sites. The interaction with the Abi-1 SH3 domain is mediated by the hnRNPK-interaction (KI) domain. We further show that during brain development, hnRNPK expression becomes more and more restricted to granule cells of the cerebellum and hippocampal neurons where it localizes in the cell nucleus as well as in the spine/dendritic compartment. The downregulation of hnRNPK in cultured hippocampal neurons by RNAi results in an enlarged dendritic tree and a significant increase in filopodia formation. This is accompanied by a decrease in the number of mature synapses. Both effects therefore mimic the neuronal morphology after downregulation of Abi-1 mRNA in neurons.

Conclusions

Our findings demonstrate a novel interplay between hnRNPK and Abi-1 in the nucleus and at synaptic sites and show obvious similarities regarding both protein knockdown phenotypes. This indicates that hnRNPK and Abi-1 act synergistic in a multiprotein complex that regulates the crucial balance between filopodia formation and synaptic maturation in neurons.  相似文献   

7.
Scapinin, also named phactr3, is an actin and protein phosphatase 1 (PP1) binding protein, which is expressed in the adult brain and some tumor cells. At present, the role(s) of scapinin in the brain and tumors are poorly understood. We show that the RPEL-repeat domain of scapinin, which is responsible for its direct interaction with actin, inhibits actin polymerization in vitro. Next, we established a Hela cell line, where scapinin expression was induced by tetracycline. In these cells, expression of scapinin stimulated cell spreading and motility. Scapinin was colocalized with actin at the edge of spreading cells. To explore the roles of the RPEL-repeat and PP1-binding domains, we expressed wild-type and mutant scapinins as fusion proteins with green fluorescence protein (GFP) in Cos7 cells. Expression of GFP-scapinin (wild type) also stimulated cell spreading, but mutation in the RPEL-repeat domain abolished both the actin binding and the cell spreading activity. PP1-binding deficient mutants strongly induced cell retraction. Long and branched cytoplasmic processes were developed during the cell retraction. These results suggest that scapinin enhances cell spreading and motility through direct interaction with actin and that PP1 plays a regulatory role in scapinin-induced morphological changes.  相似文献   

8.
Kessels MM  Qualmann B 《The EMBO journal》2002,21(22):6083-6094
Syndapins are potential links between the cortical actin cytoskeleton and endocytosis because this family of dynamin-associated proteins can also interact with the Arp2/3 complex activator N-WASP. Here we provide evidence for involvement of N-WASP interactions in receptor-mediated endocytosis. We reveal that the observed dominant-negative effects of N-WASP are dependent exclusively on the proline-rich domain, the binding interface of syndapins. Our results therefore suggest that syndapins integrate N-WASP functions in endocytosis. Both proteins co-localize in neuronal cells. Consistent with a crucial role for syndapins in endocytic uptake, co-overexpression of syndapins rescued the endocytosis block caused by N-WASP. An in vivo reconstitution of the syndapin-N-WASP interaction at cellular membranes triggered local actin polymerization. Depletion of endogenous N-WASP by sequestering it to mitochondria or by introducing anti-N-WASP antibodies impaired endocytosis. Our data suggest that syndapins may act as important coordinators of N-WASP and dynamin functions during the different steps of receptor-mediated endocytosis and that local actin polymerization induced by syndapin-N-WASP interactions may be a mechanism supporting clathrin-coated vesicle detachment and movement away from the plasma membrane.  相似文献   

9.
10.
βPix, a Pak-interacting nucleotide exchange factor (Cool-1/p85SPR), is a Cdc42/Rac1-specific guanine nucleotide exchange factor (GEF) involved in various actin-related processes. Many previous studies have focused on ubiquitously expressed βPix-a, while the role of the neuronal-specific isoform βPix-b is still unknown, especially whether its role is distinct from or similar to βPix-a. Here we show that unlike βPix-a, overexpression of βPix-b stimulates actin-dependent comet formation in BHK21 cells. This effect is attributed to the interaction between its proline-rich domain (PRD) and the WH1 domain of N-WASP. In addition, we show that overexpression of βPix-b stimulates actin-dependent dendritic spine formation in rat hippocampal neurons in culture, a formation that is blocked by co-expression of the WH1 domain of N-WASP or the PRD of βPix-b. Knocking-down endogenous expression of βPix-b by shRNA reduced the number of dendritic spines, which were rescued only by PRD-containing βPix-b mutants. GEF activity of βPix-b is also required for these effects. The results show that neuronal-specific βPix-b stimulates actin-dependent processes in cells via the interaction between its PRD and the WH1 domain of N-WASP. Our results identify N-WASP as the first protein shown to interact with the PRD of βPix-b, raising the possibility that, as an N-WASP WH1-binding protein, βPix-b may regulate N-WASP's activity in cells.  相似文献   

11.
de Hoog CL  Foster LJ  Mann M 《Cell》2004,117(5):649-662
Focal adhesions are specialized attachment and signaling centers that form at sites of cell-matrix contacts. We employed a quantitative mass spectrometry-based method called SILAC to identify and quantify proteins interacting in an attachment-dependent manner with focal adhesion proteins. Subsequent confocal microscopy revealed a previously undescribed structure, which we have termed a spreading initiation center (SIC), existing only in early stages of cell spreading. SICs contain focal adhesion markers, appear to be surrounded by an actin sheath, and, surprisingly, contain numerous RNA binding proteins, ribosomal RNA, and perhaps other RNAs. Interfering with the function of FUS/TLS, hnRNP K, and hnRNP E1 results in increased spreading. Spreading initiation centers are ribonucleoprotein complexes distinct from focal adhesions and demonstrate a role for RNA and RNA binding proteins in the initiation of cell spreading.  相似文献   

12.
TRP proteins mostly assemble to homomeric channels but can also heteromerize, preferentially within their subfamilies. The TRPC1 protein is the most versatile member and forms various TRPC channel combinations but also unique channels with the distantly related TRPP2 and TRPV4. We show here a novel cross-family interaction between TRPC1 and TRPV6, a Ca2+ selective member of the vanilloid TRP subfamily. TRPV6 exhibited substantial co-localization and in vivo interaction with TRPC1 in HEK293 cells, however, no interaction was observed with TRPC3, TRPC4, or TRPC5. Ca2+ and Na+ currents of TRPV6-overexpressing HEK293 cells are significantly reduced by co-expression of TRPC1, correlating with a dramatically suppressed plasma membrane targeting of TRPV6. In line with their intracellular retention, remaining currents of TRPC1 and TRPV6 co-expression resemble in current-voltage relationship that of TRPV6. Studying the N-terminal ankyrin like repeat domain, structurally similar in the two proteins, we have found that these cytosolic segments were sufficient to mediate a direct heteromeric interaction. Moreover, the inhibitory role of TRPC1 on TRPV6 influx was also maintained by expression of only its N-terminal ankyrin-like repeat domain. Our experiments provide evidence for a functional interaction of TRPC1 with TRPV6 that negatively regulates Ca2+ influx in HEK293 cells.  相似文献   

13.

Background

Cortactin activates the actin-related 2/3 (Arp2/3) complex promoting actin polymerization to remodel cell architecture in multiple processes (e.g. cell migration, membrane trafficking, invadopodia formation etc.). Moreover, it was called the Achilles' heel of the actin cytoskeleton because many pathogens hijack signals that converge on this oncogenic scaffolding protein. Cortactin is able to modulate N-WASP activation in vitro in a phosphorylation-dependent fashion. Thus Erk-phosphorylated cortactin is efficient in activating N-WASP through its SH3 domain, while Src-phosphorylated cortactin is not. This could represent a switch on/off mechanism controlling the coordinated action of both nucleator promoting factors (NPFs). Pedestal formation by enteropathogenic Escherichia coli (EPEC) requires N-WASP activation. N-WASP is recruited by the cell adapter Nck which binds a major tyrosine-phosphorylated site of a bacterial injected effector, Tir (translocated intimin receptor). Tir-Nck-N-WASP axis defines the current major pathway to actin polymerization on pedestals. In addition, it was recently reported that EPEC induces tyrosine phosphorylation of cortactin.

Results

Here we demonstrate that cortactin phosphorylation is absent on N-WASP deficient cells, but is recovered by re-expression of N-WASP. We used purified recombinant cortactin and Tir proteins to demonstrate a direct interaction of both that promoted Arp2/3 complex-mediated actin polymerization in vitro, independently of cortactin phosphorylation.

Conclusion

We propose that cortactin binds Tir through its N-terminal part in a tyrosine and serine phosphorylation independent manner while SH3 domain binding and activation of N-WASP is regulated by tyrosine and serine mediated phosphorylation of cortactin. Therefore cortactin could act on Tir-Nck-N-WASP pathway and control a possible cycling activity of N-WASP underlying pedestal formation.  相似文献   

14.
Replication protein A (RPA) is displaced from single-stranded DNA (ssDNA) by Rad51 during the initiation of homologous recombination. Interactions between these proteins have been reported, but the functional significance of the direct RPA-Rad51 interaction has yet to be elucidated. We have identified and characterized the interaction between DNA-binding domain A of RPA (RPA70A) and the N-terminal domain of Rad51 (Rad51N). NMR chemical shift mapping showed that Rad51N binds to the ssDNA-binding site of RPA70A, suggesting a competitive mechanism for the displacement of RPA from ssDNA by Rad51. A structure of the RPA70A-Rad51N complex was generated by experimentally guided modeling and then used to design mutations that disrupt the binding interface. Functional ATP hydrolysis assays were performed for wild-type Rad51 and a mutant defective in binding RPA. Rates of RPA displacement for the mutant were significantly below those of wild-type Rad51, suggesting that a direct RPA-Rad51 interaction is involved in displacing RPA in the initiation stage of genetic recombination.  相似文献   

15.
One of the most important questions in cell biology concerns how cells reorganize after sensing polarity cues. In the present study, we describe the formation of an actin-rich domain on the apical surface of human primary endothelial cells adhering to the substrate and investigate its role in cell polarity. We used confocal immunofluorescence procedures to follow the redistribution of proteins required for endothelial cell polarity during spreading initiation. Activated Moesin, vascular endothelial cadherin and partitioning defective 3 were found to be localized in the apical domain, whereas podocalyxin and caveolin-1 were distributed along the microtubule cytoskeleton axis, oriented from the centrosome to the cortical actin-rich domain. Moreover, activated signaling molecules were localized in the core of the apical domain in tight association with filamentous actin. During cell attachment, loss of the apical domain by Moesin silencing or drug disruption of the actin cytoskeleton caused irregular cell spreading and mislocalization of polarity markers. In conclusion, our results suggest that the apical domain that forms during the spreading process is a structural organizer of cell polarity by regulating trafficking and activation of signaling proteins.  相似文献   

16.
To propel itself in infected cells, the pathogen Shigella flexneri subverts the Cdc42-controlled machinery responsible for actin assembly during filopodia formation. Using a combination of bacterial motility assays in platelet extracts with Escherichia coli expressing the Shigella IcsA protein and in vitro analysis of reconstituted systems from purified proteins, we show here that the bacterial protein IcsA binds N-WASP and activates it in a Cdc42-like fashion. Dramatic stimulation of actin assembly is linked to the formation of a ternary IcsA-N-WASP-Arp2/3 complex, which nucleates actin polymerization. The Arp2/3 complex is essential in initiation of actin assembly and Shigella movement, as previously observed for Listeria monocytogenes. Activation of N-WASP by IcsA unmasks two domains acting together in insertional actin polymerization. The isolated COOH-terminal domain of N-WASP containing a verprolin-homology region, a cofilin-homology sequence, and an acidic terminal segment (VCA) interacts with G-actin in a unique profilin-like functional fashion. Hence, when N-WASP is activated, its COOH-terminal domain feeds barbed end growth of filaments and lowers the critical concentration at the bacterial surface. On the other hand, the NH(2)-terminal domain of N-WASP interacts with F-actin, mediating the attachment of the actin tail to the bacterium surface. VASP is not involved in Shigella movement, and the function of profilin does not require its binding to proline-rich regions.  相似文献   

17.
Filopodia and lamellipodia are dynamic actin-based structures that determine cell shape and migration. Filopodia are thought to sense the environment and direct processes such as axon guidance and neurite outgrowth. Cdc42 is a small GTP-binding protein and member of the RhoGTPase family. Cdc42 and its effector IRSp53 (insulin receptor phosphotyrosine 53 kDa substrate) have been shown to be strong inducers of filopodium formation. IRSp53 consists of an I-BAR (inverse-Bin-Amphiphysin-Rvs) domain, a Cdc42-binding domain and an SH3 domain. The I-BAR domain of IRSp53 induces membrane tubulation of vesicles and dynamic membrane protrusions lacking actin in cells. The IRSp53 SH3 domain interacts with proteins that regulate actin filament formation e.g. Mena, N-WASP, mDia1 and Eps8. In this review we suggest that the mechanism for Cdc42-driven filopodium formation involves coupling I-BAR domain-induced membrane protrusion with SH3 domain-mediated actin dynamics through IRSp53.  相似文献   

18.
Infections by enteropathogenic Escherichia coli (EPEC) cause diarrhea linked to high infant mortality in developing countries. EPEC adheres to epithelial cells and induces the formation of actin pedestals. Actin polymerization is driven fundamentally through signaling mediated by Tir bacterial effector protein, which inserts in the plasma membrane of the infected cell. Tir binds Nck adaptor proteins, which in turn recruit and activate N-WASP, a ubiquitous member of the Wiskott-Aldrich syndrome family of proteins. N-WASP activates the Arp2/3 complex to promote actin polymerization. Other proteins aside from components of the Tir-Nck-N-WASP pathway are recruited to the pedestals but their functions are unknown. Here we investigate the function of two alternatively spliced isoforms of Crk adaptors (CrkI/II) and the paralog protein CrkL during pedestal formation by EPEC. We found that the Crk isoforms act as redundant inhibitors of pedestal formation. The SH2 domain of CrkII and CrkL binds to phosphorylated tyrosine 474 of Tir and competes with Nck to bind Tir, preventing its recruitment to pedestals and thereby inhibiting actin polymerization. EPEC infection induces phosphorylation of the major regulatory tyrosine in CrkII and CrkL, possibly preventing the SH2 domain of these proteins from interacting with Tir. Phosphorylated CrkII and CrkL proteins localize specifically to the plasma membrane in contact with EPEC. Our study uncovers a novel role for Crk adaptors at pedestals, opening a new perspective in how these oncoproteins regulate actin polymerization.  相似文献   

19.
Transducer of Cdc42-dependent actin assembly protein 1 (TOCA1) is an effector of the Rho family small G protein Cdc42. It contains a membrane-deforming F-BAR domain as well as a Src homology 3 (SH3) domain and a G protein-binding homology region 1 (HR1) domain. TOCA1 binding to Cdc42 leads to actin rearrangements, which are thought to be involved in processes such as endocytosis, filopodia formation, and cell migration. We have solved the structure of the HR1 domain of TOCA1, providing the first structural data for this protein. We have found that the TOCA1 HR1, like the closely related CIP4 HR1, has interesting structural features that are not observed in other HR1 domains. We have also investigated the binding of the TOCA HR1 domain to Cdc42 and the potential ternary complex between Cdc42 and the G protein-binding regions of TOCA1 and a member of the Wiskott-Aldrich syndrome protein family, N-WASP. TOCA1 binds Cdc42 with micromolar affinity, in contrast to the nanomolar affinity of the N-WASP G protein-binding region for Cdc42. NMR experiments show that the Cdc42-binding domain from N-WASP is able to displace TOCA1 HR1 from Cdc42, whereas the N-WASP domain but not the TOCA1 HR1 domain inhibits actin polymerization. This suggests that TOCA1 binding to Cdc42 is an early step in the Cdc42-dependent pathways that govern actin dynamics, and the differential binding affinities of the effectors facilitate a handover from TOCA1 to N-WASP, which can then drive recruitment of the actin-modifying machinery.  相似文献   

20.
Zettl M  Way M 《Current biology : CB》2002,12(18):1617-1622
A complex of N-WASP and WASP-interacting protein (WIP) plays an important role in actin-based motility of vaccinia virus and the formation of filopodia. WIP is also required to maintain the integrity of the actin cytoskeleton in T and B lymphocytes and is essential for T cell activation. However, in contrast to many other N-WASP binding proteins, WIP does not stimulate the ability of N-WASP to activate the Arp2/3 complex. Although the WASP homology 1 (WH1) domain of N-WASP interacts directly with WIP, we still lack the exact nature of its binding site. We have now identified and characterized the N-WASP WH1 binding motif in WIP in vitro and in vivo using Shigella and vaccinia systems. The WH1 domain, which is predicted to have a similar structural fold to the Ena/VASP homology 1 (EVH1) domain, binds to a sequence motif in WIP (ESRFYFHPISD) that is very different from the EVH1 proline-rich DL/FPPPP ligand. Interaction of the WH1 domain of N-WASP with WIP is dependent on the two highly conserved phenylalanine residues in the motif. The WH1 binding motif we have identified is conserved in WIP, CR16, WICH, and yeast verprolin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号