首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mapping of ecosystem service supply has become quite common in ecosystem service assessment practice for terrestrial ecosystems, but land cover remains the most common indicator for ecosystems ability to deliver ecosystem services. For marine ecosystems, practice is even less advanced, with a clear deficit in spatially-explicit assessments of ecosystem service supply. This situation, which generates considerable uncertainty in the assessment of ecosystems’ ability to support current and future human well-being, contrasts with increasing understanding of the role of terrestrial and marine biodiversity for ecosystem functioning and thereby for ecosystem services. This paper provides a synthesis of available approaches, models and tools, and data sources, that are able to better link ecosystem service mapping to current understanding of the role of ecosystem service providing organisms and land/seascape structure in ecosystem functioning. Based on a review of literature, models and associated geo-referenced metrics are classified according to the way in which land or marine use, ecological processes and especially biodiversity effects are represented. We distinguish five types of models: proxy-based, phenomenological, niche-based, trait-based and full-process. Examples from each model type are presented and data requirements considered. Our synthesis demonstrates that the current understanding of the role of biota in ecosystem services can effectively be incorporated into mapping approaches and opens avenues for further model development using hybrid approaches tailored to available resources. We end by discussing ways to resolve sources of uncertainty associated with model representation of biotic processes and with data availability.  相似文献   

2.
A one-dimensional ecological model of the meromictic brackish Lake Shira (Russia, Khakasia) was developed. The model incorporates state-of-the-art knowledge about the functioning of the lake ecosystem using the most recent field observations and ideas from PCLake, a general ecosystem model of shallow freshwater lakes. The model of Lake Shira presented here takes into account the vertical dynamics of biomasses of the main species of algae, zooplankton and microbial community, as well as the dynamics of oxygen, detritus, nutrients and hydrogen sulphide from spring to autumn. Solar radiation, temperature and diffusion are modelled using real meteorological data. The parameters of the model were calibrated to the field data, after applying different methods of sensitivity analysis to the model. The resulting patterns of phytoplankton and nutrients dynamics show a good qualitative and quantitative agreement with the field observations during the whole summer season. Results are less satisfactory with respect to the vertical distribution of zooplankton biomass. We hypothesize that this is due to the fact that the current model does not take the sex and age structure of zooplankton into account. The dynamics of oxygen, hydrogen sulphide and the modelled positions of the chemocline and thermocline are again in good agreement with field data. This resemblance confirms the validity of the approach we took in the model regarding the main physical, chemical and ecological processes. This general model opens the way for checking various hypotheses on the functioning of the Lake Shira ecosystem in future investigations and for analysing options for management of this economically important lake.  相似文献   

3.
The aim of the present study was to evaluate the microbial ecosystem of cultivated soils along the Evros river in NE Greece. Evros river together with its derivative rivers constitute the capital source of life and sustainable development of the area. Along this riverside watery ecosystem systematic agro-cultures were developed such as wheat, corn and vegetable cultures. The evaluation of the ecosystem microbial charge was conducted in both axes which are the watery ecosystem and the riverside cultivated soil area. Considerable discrimination of water quality was observed when considering chemical and microbiological parameters of the Evros river ecosystem. Ardas river possesses a better water quality than Evros and Erythropotamos, which is mainly due to the higher quantities that these two rivers accumulate from industrial, farming and urban residues leading to higher degree of pollution.An increased microbial pollution was recorded in two of the three rivers monitored and a direct relation in microbial and chemical charging between water and cultivated-soil ecosystems was observed. The protection of these ecosystems with appropriate cultivated practices and control of human and animal activities will define the homeostasis of the environmental area.  相似文献   

4.
The merging of community ecology and phylogenetic biology   总被引:2,自引:0,他引:2  
The increasing availability of phylogenetic data, computing power and informatics tools has facilitated a rapid expansion of studies that apply phylogenetic data and methods to community ecology. Several key areas are reviewed in which phylogenetic information helps to resolve long-standing controversies in community ecology, challenges previous assumptions, and opens new areas of investigation. In particular, studies in phylogenetic community ecology have helped to reveal the multitude of processes driving community assembly and have demonstrated the importance of evolution in the assembly process. Phylogenetic approaches have also increased understanding of the consequences of community interactions for speciation, adaptation and extinction. Finally, phylogenetic community structure and composition holds promise for predicting ecosystem processes and impacts of global change. Major challenges to advancing these areas remain. In particular, determining the extent to which ecologically relevant traits are phylogenetically conserved or convergent, and over what temporal scale, is critical to understanding the causes of community phylogenetic structure and its evolutionary and ecosystem consequences. Harnessing phylogenetic information to understand and forecast changes in diversity and dynamics of communities is a critical step in managing and restoring the Earth's biota in a time of rapid global change.  相似文献   

5.
The health of ecology refers to ecosystem health—an extension of the concept of health to the ecosystem level. Health is reflected in the absence of distress syndrome, and by productivity, organization and resilience that characterize sustainability in the Earth's ecosystems. Transformation of ecosystems under stress from healthy to pathological conditions is often irreversible, even when the initial stress factors are removed. The ecology of health refers to the fact that human health is influenced by ecological conditions. The breakdown of ecosystems under stress are often conducive to an increase in human pathogens, recycling toxic substances, reduced yields and compromised food supplies, scarcity of potable water, and air pollution, all of which increases human health vulnerability. Addressing human health issues from an ecological perspective takes account of the social, ecological, and biophysical determinants. This opens the door to potential interventions “upstream”, in order to prevent illness, in addition to treating the disease once the malady has occurred.  相似文献   

6.
Our ability to model the growth of microbes only relies on empirical laws, fundamentally restricting our understanding and predictive capacity in many environmental systems. In particular, the link between energy balances and growth dynamics is still not understood. Here we demonstrate a microbial growth equation relying on an explicit theoretical ground sustained by Boltzmann statistics, thus establishing a relationship between microbial growth rate and available energy. The validity of our equation was then questioned by analyzing the microbial isotopic fractionation phenomenon, which can be viewed as a kinetic consequence of the differences in energy contents of isotopic isomers used for growth. We illustrate how the associated theoretical predictions are actually consistent with recent experimental evidences. Our work links microbial population dynamics to the thermodynamic driving forces of the ecosystem, which opens the door to many biotechnological and ecological developments.  相似文献   

7.
生态系统健康评价的研究进展   总被引:82,自引:0,他引:82       下载免费PDF全文
生态系统健康评价是环境管理和生态系统监控的基础,生态系统监控可促进生态系统健康评价。首先介绍了生态系统健康概念的产生,发展及其不同的内涵,并着重回顾和讨论了生态系统健康评价指标及其存在的问题,生态系统健康评价指标包括生态指标,物理化学指标,人类健康与社会经济指标3大类,生态指标是反映生态系统特征和状态的生物指标,它分为生态系统,群落和种群与个体等不同层次的指标或指标体系,物理化学指标是检测生态系统的非生物环境的指标。人类健康与社会经济指标着眼于生态系统对人类生存与社会发展的支持作用,采用经济参数和社会发展的环境压力指标等来衡量生态服务的质量与可持续性,根据其敏感程度和功能性,生态系统健康评价指标分为早期预警指标,适宜程度指标和诊断指标3类,一个完整的生态系统评价应包括上述3大类指标或指标体系,但在具体的评价实践中往往因评价目的和对象的不同而有所选择,生态系统健康评价目前有两个亟待解决的问题,如何有效确立评价标准与参照系以及如何正确区分人为压力和自然干扰。  相似文献   

8.
9.
In China, renewable resources have attracted rising concerns in the sustainable development of circular agricultural economy because renewable resources are considered as a clean energy source and substitutes for chemical fertilizer in rural areas. However, a comprehensive analysis on renewable resources' effect on agricultural ecosystem is still absent. To fill the blank, this paper chose two typical planting-soil ecosystems including greenhouse-soil ecosystem and orchard-soil ecosystem to evaluate the amount of nonrenewable energy (NE) saving, ecological benefits and economic benefits by utilizing biogas fertilizer, in comparison to those by using chemical fertilizer. The results show that compared with chemical fertilizer treatment, in the greenhouse-soil ecosystem, the biogas fertilizer treatment can save 82667.18 MJ NE per hectare, reduce 6554.12 kg carbon dioxide (CO2) emission per hectare, improve soil fertility (soil organic matter, ammonia nitrogen, available phosphorus and available potassium), enhance plant quality (dry matter, solid content, reduced sugar, VC and soluble protein content), increase plant yield and add to 59,232.5 Yuan net income per hectare. We also found out that the optimum ratio of irrigation water and biogas fertilizer is water irrigated with 50% biogas slurry, which can lead to best fruit yield and quality in the orchard-soil ecosystem. It is concluded that promotion of biogas fertilizer can help China to realize low-carbon circular development of agriculture.  相似文献   

10.
As with natural ecosystems, species within the tumor microenvironment are connected by pairwise interactions (e.g. mutualism, predation) leading to a strong interdependence of different populations on each other. In this review we have identified the ecological roles played by each non-neoplastic population (macrophages, endothelial cells, fibroblasts) and other abiotic components (oxygen, extracellular matrix) directly involved with neoplastic development. A way to alter an ecosystem is to affect other species within the environment that are supporting the growth and survival of the species of interest, here the tumor cells; thus, some features of ecological systems could be exploited for cancer therapy. We propose a well-known antitumor therapy called photodynamic therapy (PDT) as a novel modulator of ecological interactions. We refer to this as “ecological photodynamic therapy.” The main goal of this new strategy is the improvement of therapeutic efficiency through the disruption of ecological networks with the aim of destroying the tumor ecosystem. It is therefore necessary to identify those interactions from which tumor cells get benefit and those by which it is impaired, and then design multitargeted combined photodynamic regimes in order to orchestrate non-neoplastic populations against their neoplastic counterpart. Thus, conceiving the tumor as an ecological system opens avenues for novel approaches on treatment strategies.  相似文献   

11.
蚯蚓在生态系统中的作用   总被引:23,自引:0,他引:23  
蚯蚓能够对许多决定土壤肥力的过程产生重要影响, 被称为“生态系统工程师”。它通过取食、消化、排泄和掘穴等活动在其体内外形成众多的反应圈, 从而对生态系统的生物、化学和物理过程产生影响。蚯蚓在生态系统中既是消费者、分解者, 又是调节者, 它在生态系统中的功能具体表现在: (1) 对土壤中有机质分解和养分循环等关键过程的影响; (2) 对土壤理化性质的影响; (3) 与植物、微生物及其他动物的相互作用。蚯蚓活动及其在生态系统中的功能受蚯蚓生态类群、种群大小、植被、母岩、气候、时间尺度以及土地利用历史的综合控制。蚯蚓外来种入侵与生态系统的关系以及蚯蚓对全球变化的响应和影响是两个值得关注的问题。土壤本身的复杂性, 蚯蚓自然历史和生物地理学知识的缺乏, 野外控制蚯蚓群落方法的滞后等都限制了蚯蚓生态学的发展。其他新技术如研究养分循环的碳氮同位素分析和揭示土壤微结构的图像分析等技术的应用是蚯蚓生态功能研究的迫切需要。  相似文献   

12.
Unveiling new microbial eukaryotes in the surface ocean   总被引:2,自引:0,他引:2  
A decade after molecular techniques were used to discover novel bacteria and archaea in the oceans, the same approach has revealed a wealth of new marine eukaryotic microbes. The approach has been particularly successful with the smallest eukaryotes, where morphological and culture approaches frequently fail. Analysis of samples from the surface ocean, the most accessible and supposedly well-known oceanic region, reveals novel eukaryotic diversity at all different levels: from the highest taxonomic rank to the lowest microdiverse clusters. Moreover, marine eukaryotic assemblages show a large diversity with members belonging to many different lineages. The implication of this large and novel eukaryotic diversity for biodiversity surveys and ecosystem functioning opens new avenues for future research.  相似文献   

13.
Historically management of human use of ecosystems has been based around engineering and chemical approaches and through the construction of treatment facilities, effluent controls and setting chemical concentrations, both at end of pipe and in the aquatic environment. However, the general continued degradation of many ecosystems shows these approaches alone are insufficient. In the Laurentian Great Lakes the Great Lakes Water Quality Agreement was first signed in 1972 and ratified in 1978 and in 1987 tacitly acknowledged the problems with a chemical only approach by requiring the development of ecosystem objectives in the 1978 agreement. Furthermore, the agreement specifically identified numerical ecosystem objectives in the 1987 agreement. The evolution of ecosystem objectives in the Great Lakes has expanded from the strictly numerical objectives such as production of lake trout and abundance of the amphipod Pontoporeia hoyi. More recent developments in ecosystem objectives have been the inclusion of indicators for wildlife, habitat, human health and stewardship.Prepared as a discussion paper presented to the United Nations Economic Commission for Europe's seminar on an Ecosystems Approach to Water Management (May 27–31, 1991).  相似文献   

14.
长期不同养分投入对土壤养分和水稻生产持续性的影响   总被引:5,自引:0,他引:5  
以中国科学院桃源农业生态试验站15a长期田间定位试验为研究对象,分析了不同养分投入对稻田土壤养分和水稻产量可持续性的影响.结果表明,化肥与系统内循环的有机物料循环的肥力效力和产量效应基本一致,有机物料循环更有利于土壤有机质和氮素的积累;在不同养分投入下,土壤耕层有机质和全氮均呈上升趋势,年均增长率分别为1.5%~5.8%和2.5%~9.4%;与试验前相比,不同养分投入耕层磷素变动幅度在-18.3%到30%之间,钾素养分有所亏缺,下降幅度在8.1%~22.6%之间;通过可持续性指数的分析得出,土壤N素养分的可持续性对化肥的依赖性较大,而P、K养分的可持续性则对有机肥的依赖性更高.稻田生态系统具有良好的自维持能力,系统内有机物循环有利于提高稻谷产量的稳定性和可持续性.  相似文献   

15.
Kolmar H 《The FEBS journal》2008,275(11):2684-2690
Cystine-knot miniproteins are members of a large family of small proteins that are defined by a common structural scaffold which is stabilized by three intramolecular disulfide bonds. Cystine-knot miniproteins display a broad spectrum of therapeutically useful natural biological activities and several family members are marketed as therapeutics or are in clinical development. Because of their extraordinary intrinsic chemical and proteolytic stability they provide promising scaffolds for the introduction of therapeutically relevant functionalities. Several successful engineering efforts have been reported to generate miniproteins with novel activities by rational design via functional loop grafting or by directed evolution via screening of scaffold-constrained random libraries. Owing to their small size they are amenable to recombinant as well as to chemical routes of synthesis, which opens up new avenues in optimizing biological activity, specificity and bioavailability by site-specific modification, introduction of non-natural amino acids or chemical conjugation.  相似文献   

16.
生态风险评价及研究进展   总被引:30,自引:1,他引:30  
生态风险是当前环境管理研究领域中的一个热点问题,其研究着重关注化学、物理和生物的胁迫因子可能对生态系统或其组分的有害影响.生态风险评价对科学制定环境管理决策有着重要的意义.要对生态系统进行有效地管理,必须预测不利生态影响发生的可能性及后果,减小其对于生态系统或某些组分的损害程度.本文对生态风险评价的研究方法、工具以及研究趋势进行了综述,指出了目前生态风险评价中还需要进一步加强的研究领域,认为在当前城市化水平不断提高的情况下要关注城市生态风险,并针对存在的一些问题提出了今后的研究展望.  相似文献   

17.
Assessing ecosystem health is an ongoing priority for governments, scientists and managers worldwide. There are several decades of scientific literature discussing ecosystem health and approaches to assess it, with applications to aquatic and terrestrial environments incorporating economic, environmental and social processes. We conducted a systematic review of studies that assess ecosystem health to update our current understanding of how ecosystem health is being defined, and provide new ideas and directions on how it can be measured. We focused the review on studies that used the term ‘ecosystem health’ or the equivalent terms ‘ecosystem integrity’, ‘ecosystem quality’ and ‘ecosystem protection’, in lotic freshwater and estuarine environments, and examined how many of these included explicit definitions of what ecosystem health means for their study system. We collected information about the temporal and geographical distribution of studies, and the types of indicators (biological, physical or chemical) used in the assessments. We found few studies clearly defined ecosystem health and justified the choice of indicators. Given the broad use of the term it seems impractical to have an overarching definition of ecosystem health, but rather an approach that is able to define and measure health on a case by case basis. A combination of biological, physical and chemical indicators was commonly used to assess ecosystem health in both estuarine and freshwater studies, with a strong bias towards fish and macroinvertebrate community metrics (e.g. diversity, abundance and composition). We found only two studies that simultaneously considered both freshwater and estuarine sections of the ecosystem, highlighting the significant knowledge gap in our understanding of the transfer of flow, nutrients and biota between the different systems—all key factors that influence ecosystem health. This review is the first to combine knowledge from both freshwater and estuarine ecosystem assessments and critically review how aquatic ecosystem health is defined and measured since the late-1990s, providing the basis for setting achievable management goals relating to ecosystem health into the future.  相似文献   

18.
Industrial ecosystems are fruitful sites for examining ecosystem management. Sewage treatment plants, breweries, biotechnology reactors, and ethanol production plants are all ecosystems—complex biophysical systems in which communities of bacteria, yeast, fungi, and other organisms are maintained to extract services or resources. The industrial analog to ecosystem management is “process control”, where the industrial operator is the ecosystem manager. Process control is the management of a production process through the careful measurement and adjustment of its physical and chemical conditions. By analyzing the history of process control in activated sludge sewage treatment plants, I show the importance of craft knowledge in ecosystem management. Sewage treatment plant workers, through their experience in operating the plants, developed means of evaluating process conditions based on sight and smell rather than laboratory analysis. These craft techniques developed and persisted in spite of concerted efforts on the part of sanitary scientists to institute “scientific” control of the process based on laboratory analysis and models of microbial kinetics, suggesting that craft knowledge of ecosystem function can contribute to successful management. The craft knowledge of sewage plant workers is a kind of adaptive management, in which workers constantly adjust ecosystem parameters and observe the results. This approach is contrasted to “command and control” approaches to treatment plant automation, which have met with uneven success.  相似文献   

19.
土地利用变化对陆地生态系统碳贮量的影响   总被引:49,自引:8,他引:41  
陆地生态系统是重要的碳库之一,在碳素生物地球化学循环中起着重要作用.本文就森林、农田生态系统,综述了土地利用变化对陆地生态系统碳贮量的影响及其可能的作用机制.土地利用变化显著地影响陆地生态系统的结构和功能,造成系统碳贮量的变化,这很大程度取决于生态系统类型和土地利用方式的改变.森林砍伐后变为农田和草地,使生态系统中植被和土壤碳贮量大大降低.土壤碳含量的降低主要是由于凋落物输入的减少,有机质分解速度的提高,以及耕种措施对有机质物理保护的破坏造成的.土壤碳损失主要发生在森林砍伐后较短的时期内,而其降低速率取决于诸多因素以及土壤理化和生物过程.农田和草地弃耕恢复为森林,以及农田保护性管理措施的利用.能够使大气中的碳在植被和土壤中得到汇集.森林恢复过程中植被可以大量汇集大气中的碳,而由于农田耕种历史不同以及土壤空间异质性。导致土壤碳汇集速率差异极大.保护性农田管理措施(诸如免耕、合理的种植制度、化肥的施用等)可以影响土壤理化特性、作物根系生长以及残茬数量和质量、土壤微生物数量和活性,维持和提高土壤碳含量水平.  相似文献   

20.
Ecosystems are often exposed to mixtures of chemical contaminants, but the scientific community lacks a theoretical framework to predict the effects of mixtures on biodiversity and ecosystem properties. We conducted a freshwater mesocosm experiment to examine the effects of pairwise agrochemical mixtures [fertiliser, herbicide (atrazine), insecticide (malathion) and fungicide (chlorothalonil)] on 24 species‐ and seven ecosystem‐level responses. As postulated, the responses of biodiversity and ecosystem properties to agrochemicals alone and in mixtures was predictable by integrating information on each functional group's (1) sensitivity to the chemicals (direct effects), (2) reproductive rates (recovery rates), (3) interaction strength with other functional groups (indirect effects) and (4) links to ecosystem properties. These results show that community ecology theory holds promise for predicting the effects of contaminant mixtures on biodiversity and ecosystem services and yields recommendations on which types of agrochemicals to apply together and separately to reduce their impacts on aquatic ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号