首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Multiple isoforms of tropoelastin, the soluble precursor of elastin, are the products of translation of splice-variant mRNAs derived from the single-copy tropoelastin gene. Previous data had demonstrated DNA sequence heterogeneity in three domains of rat tropoelastin mRNA, indicating alternative splicing of several exons of the rat tropoelastin gene. Rat tropoelastin genomic clones encompassing the sites of alternative splicing were isolated and sequenced. Two sites of alternative splicing identified in rat tropoelastin mRNA sequences corresponded to exons 13-15 and exon 33 of the rat tropoelastin gene. Furthermore, the variable inclusion of an alanine codon in exon 16 resulted from two functional acceptor sites separated by three nucleotides. DNA sequences flanking exons subject to alternative splicing were analyzed. These exons contained splicing signals that differed from consensus sequences and from splicing signals of constitutively spliced exons. Introns immediately 5' of exons 14 and 33, for example, lacked typical polypyrimidine tracts and had weak, overlapping branch point sequences. Further, a region of secondary structure encompassing the acceptor site of exon 13 may influence alternative splicing of this exon. These results demonstrate that multiple cis-acting sequence elements may contribute to alternative splicing of rat tropoelastin pre-mRNA.  相似文献   

3.
目的2007年国内报道一例弱D型个体存在第4—9外显子选择性剪接的转录子,我们探讨正常Rh(D)阳性个体的RHD基因mRNA的选择性剪接区域。方法随机选择3名Rh(D)阳性个体,从新鲜全血中提取总RNA,通过特异性引物,采用“一步法”逆转录-PCR(1iT—PCR),扩增RHDmRNA第1~7外显子区域,以及第6-10外显子区域,然后cDNA琼脂糖凝胶电泳和成像分析。结果未发现第1~7外显子区域存在mRNA的选择性剪接条带,仅存在由特异性引物所扩增的第1—7外显子全长的序列条带;而第6~10外显子区域观察到5种替代剪切条带,序列分析显示分别为无缺失片段,以及完整缺失第7、第9、第7和9、第7—9外显子5种RHD转录子。结论正常Rh(D)抗原阳性个体的RHD基因mRNA的选择性剪接仅存在于第7~9外显子区域。  相似文献   

4.
The human calcitonin/CGRP-I (CALC-I) gene contains 6 exons and encodes two polypeptide precursors. In thyroid C-cells, calcitonin (CT) mRNA is produced by splicing of exons 1-2-3 to exon 4 (CT-encoding) and polyadenylation at exon 4. CGRP-I mRNA is produced in particular neural cells by splicing of exons 1-2-3 to exon 5 (CGRP-I-encoding) and the polyadenylated exon 6. We previously reported that model precursor RNAs containing the exon 3 to exon 5 region of the CALC-I gene are processed predominantly into CGRP-I mRNA in vitro, in nuclear extracts of several cell types (neural and non-neural). Using truncated precursor RNAs containing only the exon 3 to exon 4 region of the CALC-I gene it was shown that CT splicing is an inefficient reaction in which a uridine residue serves as the major site of lariat formation. Here we report that the low CT splicing efficiency and the dominance of CGRP-I splicing over CT splicing in vitro are primarily due to the usage of the CT-specific uridine branch acceptor. Mutation of this uridine residue into an adenosine residue resulted in a strong increase in CT splicing efficiency causing a reversal of the splicing pattern. In addition, it was shown that this point mutation also increased CT splicing efficiency in vivo. These results and data obtained from other experiments involving mutation of the CT splice acceptor site suggest that the uridine branch acceptor is a cis-acting element involved in regulation of the alternative processing of the CALC-I pre-mRNA.  相似文献   

5.
Celotto AM  Graveley BR 《Genetics》2001,159(2):599-608
The Drosophila melanogaster Down syndrome cell adhesion molecule (Dscam) gene encodes an axon guidance receptor that can express 38,016 different mRNAs by virtue of alternative splicing. The Dscam gene contains 95 alternative exons that are organized into four clusters of 12, 48, 33, and 2 exons each. Although numerous Dscam mRNA isoforms can be synthesized, it remains to be determined whether different Dscam isoforms are synthesized at different times in development or in different tissues. We have investigated the alternative splicing of the Dscam exon 4 cluster, which contains 12 mutually exclusive alternative exons, and found that Dscam exon 4 alternative splicing is developmentally regulated. The most highly regulated exon, 4.2, is infrequently used in early embryos but is the predominant exon 4 variant used in adults. Moreover, the developmental regulation of exon 4.2 alternative splicing is conserved in D. yakuba. In addition, different adult tissues express distinct collections of Dscam mRNA isoforms. Given the role of Dscam in neural development, these results suggest that the regulation of alternative splicing plays an important role in determining the specificity of neuronal wiring. In addition, this work provides a framework to determine the mechanisms by which complex alternative splicing events are regulated.  相似文献   

6.
The Calcitonin/CGRP-I (CALC-I) gene is known to be expressed in a tissue specific fashion resulting in the production of Calcitonin mRNA in thyroid C-cells and CGRP-I mRNA in particular nerve cells. The alternative RNA processing reactions include splicing of exons 1, 2 and 3 to exon 4 and poly (A) addition at exon 4 (Calcitonin mRNA) or splicing of exons 1, 2 and 3 to exons 5 and 6 and poly (A) addition at exon 6 (CGRP-I mRNA). Using a model precursor RNA containing the exon 3 to exon 5 region of the human CALC-I gene we have investigated the Calcitonin- and CGRP-I mRNA-specific processing reactions in vitro, in nuclear extracts of Hela, PC12 and Ewing-1B cells, respectively. Extracts of PC12- and Ewing-1B cells were expected to perform CGRP mRNA-specific splicing, whereas Calcitonin mRNA specific processing was expected to occur in Hela cell extracts. Surprisingly, CGRP mRNA-specific splicing of exon 3 to exon 5 was the predominant reaction in all three extracts. Significant Calcitonin mRNA-specific splicing of exon 3 to exon 4 only took place upon elimination of the dominant downstream 3' splice site used in CGRP mRNA-specific splicing. This elimination occurs most definitively by cleavage at the Calcitonin mRNA specific poly (A) site at exon 4 which may then be the major regulatory mechanism for tissue-specific expression of the CALC-I gene.  相似文献   

7.
8.
9.
10.
11.
The Down syndrome cell adhesion molecule (Dscam) gene has essential roles in neural wiring and pathogen recognition in Drosophila melanogaster. Dscam encodes 38,016 distinct isoforms via extensive alternative splicing. The 95 alternative exons in Dscam are organized into clusters that are spliced in a mutually exclusive manner. The exon 6 cluster contains 48 variable exons and uses a complex system of competing RNA structures to ensure that only one variable exon is included. Here we show that the heterogeneous nuclear ribonucleoprotein hrp36 acts specifically within, and throughout, the exon 6 cluster to prevent the inclusion of multiple exons. Moreover, hrp36 prevents serine/arginine-rich proteins from promoting the ectopic inclusion of multiple exon 6 variants. Thus, the fidelity of mutually exclusive splicing in the exon 6 cluster is governed by an intricate combination of alternative RNA structures and a globally acting splicing repressor.  相似文献   

12.
A family of mammalian protocadherin (Pcdh) proteins is encoded by three closely linked gene clusters (alpha, beta, and gamma). Multiple alpha and gamma Pcdh mRNAs are expressed in distinct patterns in the nervous system and are generated by alternative pre-mRNA splicing between different "variable" exons and three "constant" exons within each cluster. We show that each Pcdh variable exon is preceded by a promoter and that promoter choice determines which variable exon is included in a Pcdh mRNA. In addition, we provide evidence that alternative splicing of variable exons within a gene cluster occurs via a cis-splicing mechanism. However, virtually every variable exon can engage in trans-splicing with constant exons from another cluster, albeit at a far lower level.  相似文献   

13.
14.
15.
16.
The rat beta-tropomyosin (beta-TM) gene encodes both skeletal muscle beta-TM mRNA and nonmuscle TM-1 mRNA via alternative RNA splicing. This gene contains eleven exons: exons 1-5, 8, and 9 are common to both mRNAs; exons 6 and 11 are used in fibroblasts as well as in smooth muscle, whereas exons 7 and 10 are used in skeletal muscle. Previously we demonstrated that utilization of the 3' splice site of exon 7 is blocked in nonmuscle cells. In this study, we use both in vitro and in vivo methods to investigate the regulation of the 5' splice site of exon 7 in nonmuscle cells. The 5' splice site of exon 7 is used efficiently in the absence of flanking sequences, but its utilization is suppressed almost completely when the upstream exon 6 and intron 6 are present. The suppression of the 5' splice site of exon 7 does not result from the sequences at the 3' end of intron 6 that block the use of the 3' splice site of exon 7. However, mutating two conserved nucleotides GU at the 5' splice site of exon 6 results in the efficient use of the 5' splice site of exon 7. In addition, a mutation that changes the 5' splice site of exon 7 to the consensus U1 snRNA binding site strongly stimulates the splicing of exon 7 to the downstream common exon 8. Collectively, these studies demonstrate that 5' splice site competition is responsible, in part, for the suppression of exon 7 usage in nonmuscle cells.  相似文献   

17.
18.
Genomic organization of the rat inward rectifier K(+) channel Kir7.1 was determined in an attempt to clarify how multiple species of its mRNA are generated in a tissue-specific manner and how its expression is regulated. The rat Kir7.1 gene spans >40 kilobases (kb) and consists of eight exons; the first four exons encode the 5'-untranslated region that is unusually long ( approximately 3 kb). The coding region is located in exons 5 and 6. In the testis, exon 4 is processed as four exons (4a-4d), whereas it is recognized as a single exon in the small intestine. The three major species of rat Kir7.1 mRNA (1.4, 2.2, and 3.2 kb) were found to arise from alternative usage of the two promoters and polyadenylation signals and by alternative splicing of the 5'-noncoding exons. The splicing pattern of the 5'-noncoding exons is quite complex and highly tissue-specific, suggesting that complex mechanisms may operate to regulate the Kir7.1 expression. Deletion and mutational analysis of the promoter activity indicated that the rat Kir7.1 gene is regulated by cAMP through a CCAAT element. The cAMP induction was also demonstrated using the rat follicular cell line FRTL-5 endogenously expressing Kir7.1.  相似文献   

19.
CaV1.2 calcium channels play roles in diverse cellular processes such as gene regulation, muscle contraction, and membrane excitation and are diversified in their activity through extensive alternative splicing of the CaV1.2 mRNA. The mutually exclusive exons 8a and 8 encode alternate forms of transmembrane segment 6 (IS6) in channel domain 1. The human genetic disorder Timothy syndrome is caused by mutations in either of these two CaV1.2 exons, resulting in disrupted Ca(2+) homeostasis and severe pleiotropic disease phenotypes. The tissue-specific pattern of exon 8/8a splicing leads to differences in symptoms between patients with exon 8 or 8a mutations. Elucidating the mechanisms controlling the exon 8/8a splicing choice will be important in understanding the spectrum of defects associated with the disease. We found that the polypyrimidine tract-binding protein (PTB) mediates a switch from exon 8 to 8a splicing. PTB and its neuronal homolog, nPTB, are widely studied splicing regulators controlling large sets of alternative exons. During neuronal development, PTB expression is down-regulated with a concurrent increase in nPTB expression. Exon 8a is largely repressed in embryonic mouse brain but is progressively induced during neuronal differentiation as PTB is depleted. This splicing repression is mediated by the direct binding of PTB to sequence elements upstream of exon 8a. The nPTB protein is a weaker repressor of exon 8a, resulting in a shift in exon choice when nPTB replaces PTB in cells. These results provide mechanistic understanding of how these two exons, important for human disease, are controlled.  相似文献   

20.
To study splice site selection in alternative RNA processing we used the human Calcitonin/CGRP-I (CALC-I) gene. Expression of the CALC-I gene in thyroid C-cells results predominantly in calcitonin (CT) mRNA (containing exons 1 to 4) whereas CGRP-I mRNA (containing exons 1,2,3,5 and 6) is the exclusive product in particular nerve cells. We previously reported that a model precursor RNA containing the exon 3 to exon 5 region is predominantly processed into CGRP-I mRNA in vitro using nuclear extracts of three different cell types. To study CT specific processing in Hela cell nuclear extracts we have used precursor RNAs corresponding to the exon 3 to exon 4 region containing only CT specific processing signals. The results revealed the usage of a uridine residue 23 nucleotides upstream of the 3' splice site as the major site of lariat formation in CT specific splicing. The implications of this finding for the alternative, tissue specific processing of the CALC-I pre-mRNA and for branch point selection in general are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号