首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Different chemical methods used to attach oligonucleotides by their 5′-end on a glass surface were tested in the framework of solid phase PCR where surface-bound instead of freely-diffusing primers are used to amplify DNA. Each method was first evaluated for its capacity to provide a high surface coverage of oligonucleotides essentially attached via a 5′-specific linkage that satisfyingly withstands PCR conditions and leaves the 3′-ends available for DNA polymerase activity. The best results were obtained with 5′-thiol-modified oligonucleotides attached to amino-silanised glass slides using a heterobifunctional cross-linker reagent. It was then demonstrated that the primers bound to the glass surface using the optimal chemistry can be involved in attaching and amplifying DNA molecules present in the reaction mix in the absence of freely-diffusing primers. Two distinct amplification processes called interfacial and surface amplification have been observed and characterised. The newly synthesised DNA can be detected and quantified by radioactive and fluorescent hybridisation assays. These new surface amplification processes are seen as an interesting approach for attachment of DNA molecules by their 5′-end on a solid support and can be used as an alternative route for producing DNA chips for genomic studies.  相似文献   

2.
Primer-design for multiplexed genotyping   总被引:8,自引:1,他引:8       下载免费PDF全文
Single-nucleotide polymorphism (SNP) analysis is a powerful tool for mapping and diagnosing disease-related alleles. Mutation analysis by polymerase-mediated single-base primer extension (minisequencing) can be massively parallelized using DNA microchips or flow cytometry with microspheres as solid support. By adding a unique oligonucleotide tag to the 5′ end of the minisequencing primer and attaching the complementary antitag to the array or bead surface, the assay can be ‘demultiplexed’. Such high-throughput scoring of SNPs requires a high level of primer multiplexing in order to analyze multiple loci in one assay, thus enabling inexpensive and fast polymorphism scoring. We present a computer program to automate the design process for the assay. Oligonucleotide primers for the reaction are automatically selected by the software, a unique DNA tag/antitag system is generated, and the pairing of primers and DNA tags is automatically done in a way to avoid any crossreactivity. We report results on a 45-plex genotyping assay, indicating that minisequencing can be adapted to be a powerful tool for high-throughput, massively parallel genotyping. The software is available to academic users on request.  相似文献   

3.
Microarrays printed on glass slides are often constructed by covalently linking modified oligonucleotide probes to a derivatized surface at considerable expense. In this article, we demonstrate that 14-base oligonucleotides with a poly(T)10 - poly(C)10 tail (TC tag), but otherwise unmodified, can be linked by UV light irradiation onto a plain, unmodified glass surface. Probes immobilized onto unmodified glass microscope slides performed similarly to probes bound to commercial amino-silane-coated slides and had comparable detection limits. The TC-tagged probes linked to unmodified glass did not show any significant decrease in hybridization performance after a 20 min incubation in water at 100 degrees C prior to rehybridization, indicating a covalent bond between the TC tag and unmodified glass. The probes were used in thermal minisequencing cycling reactions. Furthermore, the TC tag improved the hybridization performance of the immobilized probes on the amino-silane surface, indicating a general benefit of adding a TC tag to DNA probes. In conclusion, our results show that using TC-tagged DNA probes immobilized on an unmodified glass surface is a robust, heat-stable, very simple, and inexpensive method for manufacturing DNA microarrays.  相似文献   

4.
Fabrication of DNA microarrays using unmodified oligonucleotide probes   总被引:14,自引:0,他引:14  
Call DR  Chandler DP  Brockman F 《BioTechniques》2001,30(2):368-72, 374, 376 passim
Microarrays printed on glass slides are often constructed by covalently linking oligonucleotide probes to a derivatized surface. These procedures typically require relatively expensive amine- or thiol-modified oligonucleotide probes that add considerable expense to larger arrays. We describe a system by which unmodified oligonucleotide probes are bound to either nonderivatized or epoxy-silane-derivatized glass slides. Biotinylated PCR products are heat denatured, hybridized to the arrays, and detected using an enzymatic amplification system. Unmodified probes appear to detach from the slide surface at high pH (> 10.0), suggesting that hydrogen bonding plays a significant role in probe attachment. Regardless of surface preparation, high temperature (up to 65 degrees C) and low ionic strength (deionized water) do not disturb probe attachment; hence, the fabrication method described here is suitable for a wide range of hybridization stringencies and conditions. We illustrate kinetics of room temperature hybridizations for probes attached to nonderivatized slides, and we demonstrate that unmodified probes produce hybridization signals equal to amine-modified, covalently bound probes. Our method provides a cost-effective alternative to conventional attachment strategies that is particularly suitable for genotyping PCR products with nucleic acid microarrays.  相似文献   

5.
To explore a method for enhancing the immobilization and hybridization efficiency of oligonucleotides on DNA microarrays, conventional protocols of poly‐L‐lysine coating were modified by means of surface chemistry, namely, the slides were prepared by the covalently coupling of poly‐L‐lysine to a glycidoxy‐modified glass surface. The modified slides were then used to print microarrays for the detection of the SARS coronavirus by means of 60mer oligonucleotide probes. The characteristics of the modified slides concerning immobilization efficiency, hybridization dynamics, and probe stripping cycles were determined. The improved surface exhibited high immobilization efficiency, a good quality uniformity, and satisfactory hybridization dynamics. The spotting concentration of 10 μmol/L can meet the requirements of detection; the spots were approximately 170 nm in diameter; the mean fluorescence intensity of the SARS spots were between 3.2 × 104 and 5.0 × 104 after hybridization. Furthermore, the microarrays prepared by this method demonstrated more resistance to consecutive probe stripping cycles. The activated GOPS‐PLL slide could undergo hybridization stripping cycles for at least three cycles, and the highest loss in fluorescence intensity was found to be only 11.9 % after the third hybridization. The modified slides using the above‐mentioned method were superior to those slides treated with conventional approaches, which theoretically agrees with the fact that modification by surface chemistry attaches the DNA covalently firmly to the slides. This protocol may have great promise in the future for application in large‐scale manufacture.  相似文献   

6.
We present a method for rapid genetic analysis of small amounts of fungal material. Sterile glass slides, sufficiently small to fit in a standard PCR tube, were placed on agar inside a Petri dish. After a few days, fungal cultures start to overgrow the glass slides. Glass slides with attached mycelium were harvested, analysed microscopically, and placed into a standard PCR tube. Conserved primers flanking the ITS regions of rDNA repeat were used in a direct PCR with the fungal material. Sequence data were generated to be included in phylogenetic analyses to investigate the relationships of the studied mycorrhizal fungi from orchids. The mycelium attached to glass slides was also used for an in situ hybridization experiment using fluorescent labelled oligonucleotides as probes. Fluorescent signal was found throughout the cytoplasm when a probe specific to a site in the nuclear small subunit rRNA is used.  相似文献   

7.
Several technologically sophisticated high-throughput techniques have been recently developed for the study of human single nucleotide polymorphisms and the diagnosis of point mutations in human diseases. However, there is also a need for simple and inexpensive techniques suitable for clinical services and small research laboratories. Minisequencing meets the latter requirements. It is simple, non-radioactive and can be easily multiplexed by adding oligonucleotide tails of increasing size to the sequencing oligonucleotide primers. To optimize the minisequencing protocol, we designed a test multiplex system capable of typing simultaneously 12 different human autosomal single nucleotide polymorphisms. We discovered that the quality of minisequencing primers and the careful selection of the tail sequences were especially critical for success. This optimized protocol permits rapid genotyping at low cost and can serve as a blueprint for the creation of multiplex minisequencing systems suitable to virtually any typing application in population studies and medical genetics.  相似文献   

8.
A simple and rapid method for the analysis of genetic polymorphisms has been developed using allele-specific oligonucleotide arrays bound to glass supports. Allele-specific oligonucleotides are covalently immobilized on glass slides in arrays of 3 mm spots. Genomic DNA is amplified by PCR using one fluorescently tagged primer oligonucleotide and one biotinylated primer oligonucleotide. The two complementary DNA strands are separated, the fluorescently tagged strand is hybridized to the support-bound oligonucleotide array, and the hybridization pattern is detected by fluorescence scanning. Multiple polymorphisms present in the PCR product may be detected in parallel. The effect of spacer length, surface density and hybridization conditions were evaluated, as was the relative efficacy of hybridization with single or double-stranded PCR products. The utility of the method was demonstrated in the parallel analysis of 5 point mutations from exon 4 of the human tyrosinase gene.  相似文献   

9.
The chemical attachment of oligonucleotides on glass slides has been achieved using oxime bond formation. This method has been shown very efficient by comparison with the attachment of amino-oligonucleotides via reductive amination.  相似文献   

10.
用氨基修饰的载玻片制作cDNA微阵列   总被引:12,自引:0,他引:12  
cDNA微阵列已在基因差异表达、寻找新基因等研究方面获得广泛应用,但有关cDNA微阵列的制作,目前多采用多聚赖氨酸修饰的载玻片为探针固定载体,固定效果较差.用氨基硅烷处理的载玻片为载体制作cDNA微阵列,然后考察其固定效率、检测灵敏度、稳定性、实用性等指标.结果表明,用氨基硅烷处理的载玻片具有比多聚赖氨酸更令人满意的核酸固定效率、检测灵敏度,且稳定实用.因此,用氨基硅烷修饰的载玻片为探针固定载体制作cDNA微阵列较为理想.  相似文献   

11.
优化了醛基载玻片的制备方法 ,探讨了醛基修饰载玻片固定寡核苷酸探针的性质。研究发现氨基硅烷试剂的浓度是影响载玻片荧光背景的主要因素 ;2 %氨基化试剂处理 16min、戊二醛处理 30min可以得到荧光背景较低、固定效果较好的醛基载玻片。寡核苷酸固定过程中 ,末端氨基修饰没有明显的特异性 ,但是可以提高被固定探针的杂交容量。在较低的浓度 (小于 10 μmol L)时 ,探针的浓度与杂交信号趋近线性关系 ,浓度为 2 0 μmol L时杂交信号达到饱和  相似文献   

12.
Microarrays have been used extensively in gene expression profiling and genotyping studies. To reduce the high cost and enhance the consistency of microarray experiments, it is often desirable to strip and reuse microarray slides. Our genome-wide analysis of microRNA expression involves the hybridization of fluorescently labeled nucleic acids to custom-made, spotted DNA microarrays based on GAPSII-coated slides. We describe here a simple and effective method to regenerate such custom microarrays that uses a very low-salt buffer to remove labeled nucleic acids from microarrays. Slides can be stripped and reused multiple times without significantly compromising data quality. Moreover, our analyses of the performance of regenerated slides identifies parameters that influence the attachment of oligonucleotide probes to GAPSII slides, shedding light on the interactions between DNA and the microarray surface and suggesting ways in which to improve the design of oligonucleotide probes.  相似文献   

13.
Near-infrared (near-IR) excitation produces little background signal from biological molecules, making near-IR fluorescence technology highly useful in proteomic and genomic applications. To increase the emissions of near-IR fluorophores, we examined the use of metal-enhanced fluorescence on these longer wavelength dyes. IRDye®700- and IRDye®800-labeled DNA oligonucleotides and proteins were spotted onto silver island film (SIF)-coated glass slides, and analyzed using a LI-COR Odyssey® IR imaging system. We observed more than 18-fold enhancement of the IRDye®700 and 15-fold enhancement of the IRDye®800-labeled DNA oligonucleotides when spotted on SIF-coated surfaces compared with uncoated surfaces. We also demonstrated that the enhanced emissions produced on the SIF-coated slides remained linear over several orders of magnitude, that the emissions remained reproducible across a slide surface, and that the SIF-coated slide remained effective at enhancing emissions after 9 months of storage. Our results indicate that SIF-coated glass slides are effective at enhancing near-IR fluorescence and could be developed into an effective tool to aid in molecular biological applications.  相似文献   

14.
A rapid method for the construction of oligonucleotide arrays   总被引:2,自引:0,他引:2  
A simple method has been devised to construct oligonucleotide array on a variety of surfaces using commonly available reagents and chemistry with good efficiency and accuracy. The method involves the generation of hydroxyl functionalities on glass, polypropylene, polyethylene, and commonly used surfaces for construction of oligonucleotide arrays followed by their activation with trifluoroethanesulfonyl chloride (tresyl chloride). The activated surface in the subsequent reaction is used to covalently immobilize oligonucleotides in regioselective fashion to create an oligonucleotide array. The surface bound tresyl sulfonate esters allow the immobilization of oligonucleotides specifically via their 3'- or 5'-end having mercaptohexyl- or aminohexyl functionalities. The constructed oligonucleotide arrays were successfully used to analyze oligonucleotides by hybridization technique.  相似文献   

15.
LeProust E  Zhang H  Yu P  Zhou X  Gao X 《Nucleic acids research》2001,29(10):2171-2180
Achieving high fidelity chemical synthesis on glass plates has become increasingly important, since glass plates are substrates widely used for miniaturized chemical and biochemical reactions and analyses. DNA chips can be directly prepared by synthesizing oligonucleotides on glass plates, but the characterization of these micro-syntheses has been limited by the sub-picomolar amount of material available. Most DNA chip syntheses have been assayed using in situ coupling of fluorescent molecules to the 5′-OH of the synthesized oligonucleotides. We herein report a systematic investigation of oligonucleotide synthesis on glass plates with the reactions carried out in an automated DNA synthesizer using standard phosphoramidite chemistry. The analyses were performed using 32P gel electrophoresis of the oligonucleotides cleaved from glass plates to provide product distribution profiles according to chain length of oligonucleotides. 5′-Methoxythymidine was used as the chain terminator, which permits assay of coupling reaction yields as a function of chain length growth. The results of this work reveal that a major cause of lower fidelity synthesis on glass plates is particularly inefficient reactions of the various reagents with functional groups close to glass plate surfaces. These problems cannot be detected by previous in situ fluorescence assays. The identification of this origin of low fidelity synthesis on glass plates should help to achieve improved synthesis for high quality oligonucleotide microarrays.  相似文献   

16.
The hybridization behavior of small oligonucleotides arrayed on glass slides is currently unpredictable. In order to examine the hybridization efficiency of capture probes along target nucleic acid, 20-mer oligonucleotide probes were designed to hybridize at different distances from the 5' end of two overlapping 402- and 432-bp ermB products amplified from the target DNA. These probes were immobilized via their 5' end onto glass slides and hybridized with the two labeled products. Evaluation of the hybridization signal for each probe revealed an inverse correlation with the length of the 5' overhanging end of the captured strand and the hybridization signal intensity. Further experiments demonstrated that this phenomenon is dependent on the reassociation kinetics of the free overhanging tail of the captured DNA strand with its complementary strand. This study delineates key predictable parameters that govern the hybridization efficiency of short capture probes arrayed on glass slides. This should be most useful for designing arrays for detection of PCR products and nucleotide polymorphisms.  相似文献   

17.
A chemistry was developed that permits on DNA-arrays both the covalent immobilisation of pre-fabricated nucleic acids-such as oligonucleotides, PCR-products or peptide nucleic acid oligomers-and the in situ synthesis of such compounds on either glass or polypropylene surfaces. Bonding was found to be stable even after some 30 cycles of stripping. Due to a dendrimeric structure of the linker molecule, the loading can be modified in a controlled manner and increased beyond the capacity of glass without negative effects on hybridisation efficiency. Also, the chemistry warrants the modulation of other surface properties such as charge or hydrophobicity. Preferentially, attachment of nucleic acids takes place only via the terminal amino-group of amino-modified oligonucleotides or the terminal hydroxyl-group of unmodified molecules so that the entire molecule is accessible to probe hybridisation. This derivatisation represents a support chemistry versatile enough to serve nearly all current forms of DNA-arrays or microchips.  相似文献   

18.
A structured chemical platform based on chitosan, an amine-rich polysaccharide, is presented as an alternative chemistry to functionalize solid support (in this case, glass slides) for grafting biomolecules. This approach has been adopted for generating arrays using amino-modified oligonucleotides with two different lengths (25-mer and 70-mer) for different purposes. Results using these chitosan-activated surfaces indicate high oligonucleotide loading capacity, good availability to hybridization against targets, and effectiveness in enzyme-mediated single nucleotide polymorphism (SNP) detection procedures by DNA polymerase and DNA ligase enzymes with low background. Universal arrays have been prepared and extensively used with excellent results in different applications. The chitosan-treated surfaces were also evaluated for their performance in a gene expression experiment.  相似文献   

19.
The efficient surface patterning of oligonucleotides was accomplished onto the inner wall of fused-silica capillary tubes as well as on the surface of glass slides through oxime bond formation. The robustness of the method was demonstrated by achieving the surface immobilization of up to three different oligonucleotide sequences inside the same capillary tube. The method involves the preparation of surfaces grafted with reactive aminooxy functionalities masked with the photocleavable protecting group, 2-(2-nitrophenyl) propyloxycarbonyl group (NPPOC). Briefly, NPPOC-aminooxy silane 1 was prepared and used to silanize the glass surfaces. The NPPOC group was cleaved under brief irradiation to unmask the reactive aminooxy group on surfaces. These reactive aminooxy groups were allowed to react with aldehyde-containing oligonucleotides to achieve an efficient surface immobilization. The advantage associated with the present approach is that it combines the high-coupling efficiency of oxime bond formation with the convenience associated with the use of photolabile groups. The present strategy thus offers an alternative approach for the immobilization of biomolecules in the microchannels of "labs on a chip" devices.  相似文献   

20.
Two different solid supports, channel glass and flat glass, were compared for their affect on the sensitivity and efficiency of DNA hybridization reactions. Both solid supports were tested using a set of arrayed, synthetic oligonucleotides that are designed to detect short insertion/deletion polymorphisms (SIDPs). A total of 13 different human SIDPs were chosen for analysis. Capture probes, designed for this test set, were covalently immobilized on substrates. Hybridization efficiency was assessed using fluorescently labeled stacking probes which were preannealed to the target and then hybridized to the support-bound oligonucleotide array; the hybridization pattern was detected by fluorescence imaging. It was found that structural features of nucleic acid capture probes tethered to a solid support and the molecular basis of their interaction with targets in solution have direct implications on the hybridization process. Our results demonstrate that channel glass has a number of practical advantages over flat glass including higher sensitivity and a faster hybridization rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号