首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Perilipin 1 (Plin1) localizes at the surface of lipid droplets to regulate triglyceride storage and hydrolysis in adipocytes. Plin1 defect leads to low adiposity in mice and partial lipodystrophy in human. This study investigated the roles of Plin1 in adipocyte differentiation. Plin1 null (-/-) mice showed plenty of multilocular adipocytes and small unilocular adipocytes in adipose tissue, along with lack of a subpopulation of adipose progenitor cells capable of in vivo adipogenesis and along with downregulation of adipogenic pathway. Before initiation of differentiation, adipose stromal-vascular cells (SVCs) from Plin1-/- mice already accumulated numerous tiny lipid droplets, which increased in number and size during the first 12-h induction but thereafter became disappeared at day 1 of differentiation. The adipogenic signaling was dysregulated despite protein level of PPARγ was near normal in Plin1-/- SVCs like in Plin1-/- adipose tissue. Heterozygous Plin1+/- SVCs were able to develop lipid droplets, with both the number and size more than in Plin1-/- SVCs but less than in Plin1+/+ SVCs, indicating that Plin1 haploinsufficiency accounts for attenuated adipogenesis. Aberrant lipid droplet growth and differentiation of Plin1-/- SVCs were rescued by adenoviral Plin1 expression and were ameliorated by enhanced or prolonged adipogenic stimulation. Our finding suggests that Plin1 plays an important role in adipocyte differentiation and provides an insight into the pathology of partial lipodystrophy in patients with Plin1 mutation.  相似文献   

2.
Using differential display, we sought to identify novel genes expressed in the early stages of 3T3-L1 adipocyte differentiation. A gene which we have named "band25" was identified, and a full-length cDNA sequence was assembled. Sequence analysis revealed that the 2842-bp cDNA encodes a putative 628-amino acid protein product, which is a member of the GTPase-activating protein (GAP) family. This gene may be the murine homolog of the human MgcRacGAP protein, which was identified in male germ cells. Other closely related proteins include the Drosophila protein Rotund, several chimerins, and the human breakpoint cluster region (Bcr) protein. These GAP proteins all specifically inactivate Rac, a member of the Ras-like family of proteins. A consensus sequence for a diacyl glycerol/phorbol ester-binding domain was also found in the Band25 sequence. The expression of band25 mRNA is regulated during the differentiation of both adipocytes and myoblasts. Its mRNA was shown to be expressed at a low level in confluent 3T3-L1 preadipocytes and in differentiated 3T3-L1 adipocytes. Expression of band25 was increased 15.5 fold by 24 h after the induction of differentiation, when 3T3-L1 cells undergo several rounds of postconfluent cell division. Expression was also high in growing 3T3-L1 and C2C12 cells but decreased progressively as C2C12 cells underwent differentiation. These observations suggest that the expression of band25 is growth regulated and that the protein could play a role in the regulation of growth-related processes.  相似文献   

3.
The 3T3-L1 cell line, derived from 3T3 cells, is widely used in biological research on adipose tissue. 3T3-L1 cells have a fibroblast-like morphology, but, under appropriate conditions, they differentiate into an adipocyte-like phenotype. During the differentiation process, 3T3-L1 cells increase the synthesis of triglycerides and acquire the behavior of adipose cells. In particular, triglycerides accumulate in lipid droplets (LDs) embedded in the cytoplasm. The number and the size distribution of the LDs is often correlated with obesity and many other pathologies linked with fat accumulation. The integrated optical density (IOD) of the LDs is related with the amount of triglycerides in the droplets. The aim of this study is the attempt to characterize the size distribution and the IOD of the LDs in 3T3-L1 differentiated cells. The cells were differentiated into adipocytes for 5 days with a standard procedure, stained with Oil Red O and observed with an optical microscope. The diameter, area, optical density of the LDs were measured. We found an asymmetry of the kernel density distribution of the maximum Feret’s diameter of the LDs with a tail due to very large LDs. More information regarding the birth of the LDs could help in finding the best mathematical model in order to analyze fat accumulation in adipocytes.Key words: Lipid droplet, 3T3-L1, adipocyte, fat, triglyceride accumulation, integrated optical density  相似文献   

4.
Time-lapse observation of adipocytes during catecholamine-induced lipolysis clearly shows that shrinking of existing lipid droplets (LDs) occurs in some adipocytes and that small LDs are newly developed in almost all cells. Immunofluorescence imaging reveals that activation and localization of hormone-sensitive lipase (HSL) on the surface of LDs, which are required for conferring maximal lipolysis, are necessary for the shrinking of the LDs. However, not all adipocytes in which phosphorylated HSL is localized on LDs exhibit shrinking of LDs. The simultaneous shrinking and development of LDs yield apparent fragmentation and dispersion of LDs in adipocytes stimulated with catecholamine.  相似文献   

5.
We demonstrate that expression of the myocardial lipid droplet protein (MLDP) and ERα observed in adipose tissues is undetectable in 3T3-L1 cells but detectable in mouse embryonic fibroblasts (MEFs) and stromal-vascular cells (SVCs) during adipocyte differentiation. MLDP gene expression in MEFs or SVCs is induced by treatment with a PPARγ agonist or forced expression of PPARγ, indicating that PPARγ enhances MLDP expression during adipogenesis. PCR analyses reveal the dual expression of SREBP-1a and SREBP-1c in MEFs and SVCs as well as white adipose tissues unlike the predominant expression of SREBP-1a in 3T3-L1 cells. These results suggest that MEFs and SVCs are useful model cells for examining function of MLDP in lipid droplet formation and adipocyte differentiation.  相似文献   

6.
Lipid droplets (LDs) are organelles that coordinate lipid storage and mobilization, both processes being especially important in cells specialized in managing fat, the adipocytes. Proteomic analyses of LDs have consistently identified the small GTPase Rab18 as a component of the LD coat. However, the specific contribution of Rab18 to adipocyte function remains to be elucidated. Herein, we have analyzed Rab18 expression, intracellular localization and function in relation to the metabolic status of adipocytes. We show that Rab18 production increases during adipogenic differentiation of 3T3-L1 cells. In addition, our data show that insulin induces, via phosphatidylinositol 3-kinase (PI3K), the recruitment of Rab18 to the surface of LDs. Furthermore, Rab18 overexpression increased basal lipogenesis and Rab18 silencing impaired the lipogenic response to insulin, thereby suggesting that this GTPase promotes fat accumulation in adipocytes. On the other hand, studies of the β-adrenergic receptor agonist isoproterenol confirmed and extended previous evidence for the participation of Rab18 in lipolysis. Together, our data support the view that Rab18 is a common mediator of lipolysis and lipogenesis and suggests that the endoplasmic reticulum (ER) is the link that enables Rab18 action on these two processes. Finally, we describe, for the first time, the presence of Rab18 in human adipose tissue, wherein the expression of this GTPase exhibits sex- and depot-specific differences and is correlated to obesity. Taken together, these findings indicate that Rab18 is involved in insulin-mediated lipogenesis, as well as in β-adrenergic-induced lipolysis, likely facilitating interaction of LDs with ER membranes and the exchange of lipids between these compartments. A role for Rab18 in the regulation of adipocyte biology under both normal and pathological conditions is proposed.  相似文献   

7.
Extended synaptotagmins are endoplasmic reticulum proteins consisting of an SMP domain and multiple C2 domains that bind phospholipids and Ca2+. E-Syts create contact junctions between the ER and plasma membrane (PM) to facilitate the exchange of glycerophospholipids between the apposed membranes. We find in the differentiating adipocyte that the E-Syt3 carboxyl domain is cleaved by a multi-step mechanism that includes removing the C2C domain. Confocal and live-cell time-lapse studies show that truncated E-Syt3ΔC2C, as well as endogenous E-Syt3 and the coat protein PLIN1, target the LDs from an annular, single giant ER cisterna. Inhibition of the proteasome blocks the proteolytic cleavage of Esyt3 and E-Syt3ΔC2C and causes the E-Syt3ΔC2C retention in the giant cisterna. The Esyt3 and PLIN1 distributions and LDs biogenesis show that the primordial cisterna, as we call it, is the birth and nurturing site of LDs in the adipocyte. Isoproterenol-induced lipolysis results in loss of cytoplasmic LDs and reappearance of the primordial cisterna. Electron microscopy and 3D-electron tomography studies show that the primordial cisterna consists of a tightly packed network of varicose tubules with extensively blistered membranes. Rounds of homotypic fusions from nascent to mature LDs play a central role in LD growth. The knockdown of E-Syt3 inhibits LD biogenesis. The identification of the primordial cisterna, an organelle that substitutes the randomly scattered ER foci that mother the LDs in non-adipose cells, sets the stage for a better understanding of LD biogenesis in the adipocyte.  相似文献   

8.
Expression of adrenomedullin (AM), a potent vasodilator peptide, was studied during adipocyte differentiation of human mesenchymal stem cells (hMSCs). Immunoreactive AM levels in the medium were increased at day 4 and 8 of the adipocyte differentiation. Northern blot analysis showed increased expression of AM mRNA in hMSCs-derived adipocytes at day 4, 8, 12, and 18. Transient transfection assay showed that the promoter activity was higher in hMSCs-derived adipocytes than in hMSCs, when cells were transfected with plasmids containing a cis-acting region (-70/-29) of the human AM gene. Electrophoretic mobility shift assay showed that specific bands bound to the region (-70/-29) in hMSCs-derived adipocytes but not in hMSCs, and were abolished by the stimulatory protein 1 (Sp1) antibody. The present study has shown that AM expression is up-regulated during adipocyte differentiation of hMSCs probably via the interaction between Sp1 or Sp1-related factor(s) and the AM promoter region (-70/-29).  相似文献   

9.
The expression of two genes encoding facilitated glucose transporter proteins was studied during the differentiation of the 3T3-L1 fibroblastic cell line into adipocytes. The mRNA encoding the widely expressed HepG2/brain glucose transporter (GTI) is detectable in fibroblasts and its abundance remains unchanged during differentiation. On the other hand, the mRNA encoding a glucose transporter protein (GTIII) localized exclusively to muscle and adipose tissue is undetectable in fibroblasts but present in adipocytes. GTIII mRNA is first expressed three days after differentiation of 3T3-L1 cells has begun. Similarly, it is not until 3 days following the initiation of differentiation that GTIII protein can be detected, as assayed either by Western immunoblot or indirect immunofluorescence. The latter technique localizes GTIII predominantly to the perinuclear region of the adipocyte. The appearance of GTIII in developing fat cells correlates temporally with the acquisition of an increased stimulation of hexose uptake by maximal concentrations of insulin. These data support the concept that the marked increase in hexose transport in adipocytes in response to insulin is dependent on the expression in these cells of a specific, hormone-regulatable transport protein.  相似文献   

10.
11.
12.
13.
The human lipodystrophy gene product Berardinelli-Seip congenital lipodystrophy 2/seipin has been implicated in adipocyte differentiation, lipid droplet (LD) formation, and motor neuron development. However, the molecular function of seipin and its disease-causing mutants remains to be elucidated. Here, we characterize seipin and its mis-sense mutants: N88S/S90L (both linked to motoneuron disorders) and A212P (linked to lipodystrophy) in cultured mammalian cells. Knocking down seipin significantly increases oleate incorporation into triacylglycerol (TAG) and the steady state level of TAG, and induces the proliferation and clustering of small LDs. By contrast, overexpression of seipin reduces TAG synthesis, leading to decreased formation of LDs. Expression of the A212P mutant, however, had little effect on LD biogenesis. Surprisingly, expression of N88S or S90L causes the formation of many small LDs reminiscent of seipin deficient cells. This dominant-negative effect may be due to the N88S/S90L-induced formation of inclusions where wild-type seipin can be trapped. Importantly, coexpression of wild-type seipin and the N88S or S90L mutant can significantly reduce the formation of inclusions. Finally, we demonstrate that seipin can interact with itself and its mutant forms. Our results provide important insights into the biochemical characteristics of seipin and its mis-sense mutants, and suggest that seipin may function to inhibit lipogenesis.  相似文献   

14.
The differentiation of brown adipocyte precursor cells was studied in interscapular brown adipose tissue of adult mice by electron microscopy. Different stages of cell differentiation were characterized in situ. Previous autoradiographic studies suggested that interstitial cells represent the precursor cells of fully differentiated brown adipocytes. The present observations provide morphological evidence for a progressive differentiation of interstitial stem cells into mature brown adipocytes. Four typical stages of development were identified: (1) interstitial cells, (2) protoadipocytes, (3) preadipocytes, and (4) mature brown adipocytes. Interstitial stem cells were small spindle shaped cells, situated between brown adipocytes and characterized by a high nuclear-cytoplasmic ratio, the scarcity of organelles, and the absence of lipid inclusions. Protoadipocytes resembled interstitial cells except that they contained a few tiny lipid droplets in their cytoplasm. Preadipocytes had a larger cytoplasm enclosing many mitochondria and lipid droplets; the smooth endoplasmic reticulum was well developed surrounding the lipid droplets, and was closely associated with the mitochondria. Preadipocytes had the typical structure of growing cells, developing long cytoplasmic processes between and around blood capillaries. Mature brown adipocytes represented the final stage of differentiation. Almost all their cellular volume was occupied by lipid droplets and numerous mitochondria with very dense cristae. Brown adipocytes were also characterized by a tight association with blood capillaries, as expected from metabolically active cells requiring oxygen and substrates. These observations provide direct ultrastructural evidence for a progressive differentiation of interstitial cells into brown adipocytes with a continuum of intermediate cellular types.  相似文献   

15.
Differentiation and growth of swine subcutaneous adipose tissue was assessed by chemical analysis of tissue components, cell size measurements of isolated adipocytes, and light and electron microscopic observations. At birth all adipocytes were multilocular (contained multiple small lipid droplets), but by day 3 postpartum, many were already differentiated to the unilocular state (one major, central lipid droplet). Microscopic observations of fixed tissue, cell size determinations on isolated adipocytes, and chemical analysis of tissue composition indicated a marked increase in adipocyte size accompanied by an increase in the size of the central lipid droplet with age. Small cells were observed at all ages (in both fixed tissue and isolated cell preparations), yielding biphasic size distributions. Although the adipocyte stem cell was not discerned, an early stage in differentiation, designated an adipoblast, was observed.  相似文献   

16.
The growth and aging of 3T3-L1 adipocytes were investigated in a synchronized tissue-culture system. We systematically characterized several major aspects of adipocyte metabolism and functions as variables of cell age. We found that terminal differentiation of 3T3-L1 cells is followed by a near-linear hypertrophic growth (increase in triglyceride content) of the cultured adipocytes throughout a 20-day study period. However, three metabolically and functionally distinct stages are recognized. The first stage overlaps with differentiation and is represented by small immature adipocytes. The second stage is characterized by fully mature adipocytes that show peaked overall metabolic activities. The third stage is marked by cell aging, with deterioration in every major aspect of the cell's functionality except for the function of net energy storage, which is preserved even in aged adipocytes. Compared with young mature adipocytes, older cells are increasingly insulin resistant, have decreased glucose uptake and fuel consumption, and show impaired glycerokinase-mediated fatty acid reesterification. Moreover, aged adipocytes show reduced gene expression for adiponectin and leptin, each of which is important in systemic regulation of energy metabolism. The characterization of these cell age-dependent changes in adipocyte functionality provides a model for understanding dynamic changes at the tissue level and suggests that adipose tissue is modifiable via adipocyte aging.  相似文献   

17.
18.
During adipocyte differentiation, the cells experience dramatic alterations in morphology, motility and cell-ECM contact. Focal adhesion kinase (pp125FAK), a widely expressed non-receptor tyrosine kinase in integrin signaling, has been reported to participate in these events in various cells. Utilizing 3T3-L1 cells and primary rat preadipocytes, we explored the role of FAK in adipocyte differentiation. Gradual cleavage of FAK was demonstrated during adipcoyte differentiation, both in vitro and in vivo. This cleavage of FAK was mediated by calpain. Inhibition of calpain activity resulted in the rescue of FAK degradation, accompanied with the disturbance of final maturation of adipocyte. Our study revealed that FAK participated in adipocyte differentiation, and its cleavage by calpain was required to fulfill the final maturation of adipocytes.  相似文献   

19.
Microscopic examination of adipocytes isolated from adult rat epididymal adipose tissue revealed numerous small cells (< 10 μm) morphologically similar to larger adipocytes. These small adipocytes appear identical to a new classification of adipose cells termed preadipocytes. Electron micrographs of these preadipocytes revealed examples of cells < 10 μm in diameter in various stages of maturation and lipid accumulation. The percent distribution pattern of these small adipocytes was not significantly altered by exercise although exercise shifted the distribution patterns of the larger cells (> 30 μm) toward a smaller mean cell size. The quantitative significance of preadipocytes is not established but these preliminary observations indicate that adipocytes < 10 μm in diameter may account for a numerically greater proportion of the total adipocytes observed in collagenase isolated preparations than heretofore recognized, although their contribution to total adipose mass is probably negligible.  相似文献   

20.
The mouse adipsin gene encodes a serine protease with complement factor D activity that is expressed during adipocyte differentiation and is deficient in several animal models of obesity. We have investigated the regulation of adipsin expression by transfecting preadipocytes and adipocytes with plasmids containing the 5'-flanking region of the adipsin gene linked to a reporter gene. Constructions containing a -950 to +35 segment of the adipsin promoter were preferentially expressed in adipose cells. Deletion experiments identified a region from -114 to -38 which contains a large inverted repeat sequence and negatively regulated gene expression in preadipocytes and positively regulated expression in fat cells. Exonuclease III protection and gel retardation assays indicated that this region of duplex DNA had multiple binding sites for nuclear factors, several of which were preadipose specific. In addition, we also identified two distinct factors that bound symmetrically and sequence specifically to the inverted repeat sequences only when they were in single-stranded form; one of these factors was induced during adipocyte differentiation. These results suggest that the control of the adipsin promoter in differentiation may involve an interplay of multiple regulated DNA-binding proteins, including two that have preferential affinity for single-stranded DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号