共查询到20条相似文献,搜索用时 15 毫秒
1.
The Escherichia coli chromosome is a circular DNA molecule that is approximately 1000 times compacted in the living cell, where it occupies approximately 15% of the cellular volume. The genome is organized in a way that facilitates chromosome maintenance and processing. Despite huge efforts, until recently little has been known about how the chromosome is organized within cells, where replication takes place, and how DNA is segregated before cell division. New techniques for labeling genetic loci and molecular machines are allowing the simultaneous tracking of genetic loci and such machines in living cells over time. These studies reveal remarkable organization, yet a highly dynamic flux of genetic loci and macromolecules. It seems likely that the cellular positioning of chromosomal loci is the outcome of the formation of two chromosome arms (replichores) by replication, followed by sequential chromosome segregation, rather than from the presence of cellular positioning markers. 相似文献
2.
Jacqueline Louarn Josette Patte Jean-Michel Louarn 《Molecular & general genetics : MGG》1979,172(1):7-11
Summary The directions of replication of several prophages integrated with a known orientation in the vicinity of the terminus (tre) of chromosome replication (trp::Mu, min 27; rev integrated within rac, min 31, man::Mu, min 35), have been established by determining the molecular polarity of Okazaki pieces specific to these prophages. The results obtained strongly suggest that the site tre is located between rac and man, an otherwise genetically silent region. 相似文献
3.
Luud J. H. Koppes 《Molecular & general genetics : MGG》1987,209(1):188-192
Summary The variability of the time interval between successive rounds of chromosome replication was estimated by density-shift experiments, by measuring the conversion of heavy DNA to hybrid density and light DNAs upon transfer of a steady-state culture growing in medium with [13C]glucose and 15NH4Cl to medium with light isotopes. The coefficient of variation (CV%) for the interreplication time of the Escherichia coli K12 chromosome was found to be 17%, i.e. similar to that for interdivision time. The presence of additional copies of oriC in the cell on a high copy number plasmid did not increase the CV of interreplication time. It is concluded that a single rate-limiting event is unlikely to time the initiation of chromosome replication. The regulation of initiation at oriC and the coordination with cell division is discussed. 相似文献
4.
5.
6.
A calcium flux at the termination of replication triggers cell devision in Escherichia coli : Hypothesis 总被引:1,自引:0,他引:1
V. Norris 《Cell calcium》1989,10(8):511-517
Cell division in Escherichia coli is coupled to chromosome replication. Even in the absence of known inducible division inhibitors, perturbations of chromosome replication affect cell division. Early studies suggested that a signal at the termination of replication might trigger subsequent division. Although later studies have suggested that fork encounter during termination is an active process involving specific termination sites and the tus protein, the coupling mechanism between termination and cell division remains to be elucidated. Recently it has been shown that the chromosome of a bacterium, Pseudomonas tabaci, contains a high proportion of calcium. E. coli maintains an intracellular concentration of free calcium identical to that of higher organisms and in dividing cells of E. coli a twenty-fold increase in the level of total calcium in the cytoplasm, a flux, occurs. In this article I propose that during the replication of the chromosome calcium entry balances calcium binding to DNA. At the termination of replication, there is a brief interval between the end of calcium binding to the chromosome and the end of calcium entry or release into the cytoplasm. During this interval the level of free calcium therefore rises. This rise may result in the observed flux by triggering the entry of calcium directly via voltage-gated calcium channels or indirectly via changes in phospholipid configurations. Mechanisms whereby these changes in calcium levels might be coupled to cell division and to a phospholipid control of the cell cycle are discussed. 相似文献
7.
Marcin Filutowicz 《Molecular & general genetics : MGG》1980,177(2):301-309
Summary It has been found that strains carrying mutations in the dnaA gene are unusually sensitive to COU, NAL or NOV, which are known to inhibit DNA gyrase activities. The delay in the initiation of chromosome replication after COU treatment has been observed in cells with chromosomes synchronized by amino acid starvation or by temperature shift-up (dnaA46). The unusual sensitivity of growth to COU of the initiation mutant runs parallel to a higher sensitivity to the drug of the initiation of chromosome replication.The double mutant, dnaA46 cou-110 has been isolated and mutation cou-110 conferring resistance of growth, initiation and elongation of chromosome replication to COU was mapped in the gene coding for the subunit of DNA gyrase. The reduced frequency of appearance of the mutants resistant to COU, NAL or NOV in the initiation mutant suggests that some mutations in genes coding for DNA gyrase subunits cannot coexist with the dnaA46 mutation. The possible mechanisms of the requirement of DNA gyrase for dnaA-dependent initiation of E. coli chromosome are discussed.Abbreviations used COU
coumermycin A1
- NAL
nalidixic acid
- NOV
novobiocin 相似文献
8.
9.
10.
Grantley W. Lycett Elisha Orr Robert H. Pritchard 《Molecular & general genetics : MGG》1980,178(2):329-336
Summary DNA-DNA hybridisation experiments show that chloramphenicol induces a burst of initiation from the oriC region of a dnaA46 mutant of Escherichia coli at 36.5° C but not from the isogenic dnaA
+ strain. Following this stimulation of initiation, DNA replication proceeds normally towards the terminus. The temporal pattern of the extra initiation is in parallel with the induced stimulation of RNA synthesis caused by chloramphenicol in the same strain. This is consistent with the hypothesis that the stimulation of initiation in the dnaA mutant is the result of the stimulation of the synthesis of an RNA species. 相似文献
11.
Summary Comparative analyses were made between plasmid pSa17, a deletion derivative of pSa that is capable of replicating efficiently in Escherichia coli and plasmid pSa3, a derivative that is defective for replication. By comparing the restriction maps of these two derivatives, the regions essential for replication and for stable maintenance of the plasmid were determined. A 2.5 kb DNA segment bearing the origin of DNA replication of pSa17 was sequenced. A 36 kDa RepA protein was encoded in the region essential for replication. Downstream of the RepA coding region was a characteristic sequence including six 17 bp direct repeats, the possible binding sites of RepA protein, followed by AT-rich and GC-rich sequences. Furthermore, an 8 bp incomplete copy of the 17 bp repeat was found in the promoter region of the repA gene. Based on the hypothesis that RepA protein binds to this partial sequence as well as to intact 17 bp sequences, an autoregulatory system for the synthesis of RepA protein may be operative. Another open reading frame (ORF) was found in the region required for the stability of the plasmid. The putative protein encoded in this ORF showed significant homology to several site-specific recombination proteins. A possible role of this putative protein in stable maintenance of the plasmid is discussed. 相似文献
12.
Summary Plasmid pUC13 was used to clone DNA fragments of known sites from the chromosome of Escherichia coli. Each chimeric plasmid was introduced individually into the same dnaA46 mutant strain LC381 and suppressive integration (Sin) strains were selected. By means of cotransduction the null mutation recA56 was then introduced into each Sin strain and growth of each recA56 derivative at 42° C was scored. Strains that failed to grow at 42° C depended upon the recA gene for replication. Three factors were shown to limit the viability of LC381 harboring different chimeric plasmids and affect the degree of recA gene dependence of chromosome replication in the Sin strains at 42° C. It is suggested that these three constraints are the consequence of the organization of the E. coli chromosome, particularly the unique ability of terC to retard the progression of replication forks. Two classes of hypotheses concerning the function of the recA gene are considered. 相似文献
13.
Summary Among mutants of E. coli selected for temperaturesensitive growth, four were found to possess alterations in ribosomal proteins L7/L12. Of these, three apparently lack protein L7, the acetylated form of protein L12. Genetic analyses have revealed that the mutation responsible for this alteration maps at a locus around 34 min of the current E. coli genetic map, which is clearly different from the location for the structural gene for protein L7/L12 which is situated at 89 min. Hence, the gene affected in these mutants was termed rimL. Tryptic and thermolysin fingerprints of the protein L12 purified from the rimL mutants showed a profile indistinguishable from that of wild-type protein. It was found that the acetylase activity specific for protein L12 was negligible, when assayed in vitro, in the high-speed supernatant prepared from mutant cells. These results indicated that the three mutants contain mutations in the gene rimL that codes for an acetylating enzyme specific for ribosomal protein L12.Previous paper in this series is Isono and Isono (1980) 相似文献
14.
A terminal stage in the duplication of many bacterial plasmids involves the transient formation of catenated molecules containing two interlocked monomeric plasmid units. This property of plasmid replication was exploited to examine the relationship between F replication and the division cycle of Escherichia coli B/r cells growing in undisturbed, exponential-phase cultures. Various cultures of F′lac- or FKmr-containing cells were briefly exposed to [3H]thymidine, and then the transfer of radioactivity into, and out of, a catenated dimer consisting of two closed circular monomers was measured during a chase period. The fraction of plasmid molecules present in this dimer form was determined by separating cellular DNA in alkaline sucrose gradients. In addition, plasmid replication was studied in synchronously growing cultures by measuring both [3H]thymidine incorporation into covalently closed circular DNA and β-galactosidase inducibility. The results suggest that replication of F plasmids can take place throughout the cell division cycle, with the probability of replication increasing toward the end of the cycle. The presence of DNA homologous to the chromosome on the F′lac did not alter the replication pattern of the plasmid during the division cycle. 相似文献
15.
16.
O. P. Doubleday B. A. Bridges M. H. L. Green 《Molecular & general genetics : MGG》1975,140(3):221-230
Summary The photoreversibility of UV-induced mutations to Trp+ in strain Escherichia coli WP2 uvrA trp (unable to excise pyrimidine dimers) was lost at different rates during incubation in different media. In Casamino acids medium after a short initial lag, photoreversibility was lost over about one generation time; in minimal medium with tryptophan, photoreversibility persisted for more than two generations; in Casamino acids medium with pantoyl lactone photoreversibility was lost extremely slowly. The rate of loss of photoreversibility was unaffected by UV dose in either Casamino acids medium or in minimal medium. The same eventual number of induced mutants was obtained when cells were incubated for two generations in any of the three media before being transferred to selective plates supplemented with Casamino acids. Thus in each the proportion of cells capable of giving rise to a mutant was the same and only the rate at which these cells did so during post-irradiation growth varied, suggesting that there might be a specific fraction of pyrimidine dimers at a given site capable of initiating a mutagenic repair event, and that the size of this fraction is dose dependent. Segregation experiments have shown that error-prone repair appears to occur once only and is not repeated in subsequent replication cycles, in contrast to (presumed error-free) recombination repair.The results are discussed in the light of current models of UV mutagenesis. 相似文献
17.
The stringent response causes inhibition of replication of plasmid pBR322 in amino acid-starved Escherichia coli cells whereas in relaxed mutants the replication of this plasmid proceeds for several hours. On the basis of density shift experiments and pulse-labelling experiments we showed that most of the pBR322 molecules begin replication during the relaxed response and the rate of plasmid DNA synthesis in unstarved and isoleucine-starved relA
–] bacteria is similar. We found that the Rom function plays a key role in the stringent control of plasmid pBR322 replication, as insertional inactivation of the rom gene causes amplification of pBR322rom
– in both relA
– and relA
+ strains during amino acid starvation. Moreover, pUC19, which is a pBR322-derived plasmid lacking the rom gene, behaves like pBR322rom
–, whereas introduction of the rom gene into the pUC19 replicon drives it into the pBR322 mode of replication in amino acid-starved bacteria. A model for the regulation of pBR322 plasmid DNA replication by Rom protein in amino acid-starved Escherichia coli strains is proposed. 相似文献
18.
Summary A mutant of Escherichia coli K12 has been isolated which shows an alteration in the ribosomal protein S18. Genetic analyses have revealed that the mutation causing this alteration maps at 99.3 min of the E. coli genetic map, between dnaC and deo. This indicated that the mutation has occurred in a gene different from the structural gene for this protein which has been located at 94 min. From the N-terminal amino acid sequence analysis it is concluded that the mutation has resulted in loss of the N-terminal acetyl group of this protein. The gene which is affected in this mutant is termed rimI that most likely specifies an enzyme acetylating the N-terminal alanine of protein S18. The mutation does not affect the acetylation of two other ribosomal proteins, S5 and L12, both of which are known to be acetylated in wild-type E. coli K12. 相似文献
19.
B. A. Bridges R. P. Mottershead S. G. Sedgwick 《Molecular & general genetics : MGG》1976,144(1):53-58
Summary Escherichia coli K12 Hfr H Tsxs Strs and F- Pro- Tsxr His- Arg- Strr bacteria were conjugated in the absence of arginine with or without glucose. The efficiency of conjugation, measured by the frequency of Pro+ and His+ recombinants was not affected. Arginine starvation alone did not affect the tsxs gene expression which occurred in all the zygotes which had received the gene. In contrast, argine and glucose starvation allows tsxs expression only in those zygotes in which the donor gene had been integrated in the genome. As the glucose starvation brings on a destabilization of the messenger RNA synthesized by the F- cells in absence of arginine, the results can be interpreted as follows: the transferred tsxs genes are transitorily expressed in all the zygotes at the unintegrated state. After this transient period, only those genes integrated in the chromosomes of the zygotes continue to be expressed. 相似文献
20.
Summary The in vivo role of the Escherichia coli protein DnaA in the replication of plasmid pBR322 was investigated, using a plasmid derivative carrying an inducible dnaA
+ gene. In LB medium without inducer, the replication of this plasmid, like that of pBR322, was inhibited by heat inactivation of chromosomal DnaA46 protein so that plasmid accumulation ceased 1 to 2 h after the temperature shift. This inhibition did not occur when the plasmid dnaA
+ gene was expressed in the presence of the inducer isopropyl-1-thin--d-galactopyranoside (IPTG). Inhibition was also not observed in glycerol minimal medium or in the presence of low concentrations of rifampicin or chloramphenicol. Deletion of the DnaA binding site and the primosome assembly sites (pas, rri) downstream of the replication origin did not affect the plasmid copy number during exponential growth at 30° C, or after inactivation of DnaA by a shift to 42° C in a dnaA46 host, or after oversupply of DnaA, indicating that these sites are not involved in a rate-limiting step for replication in vivo. The accumulation of the replication inhibitor, RNAI, was independent of DnaA activity, ruling out the possibility that DnaA acts as a repressor of RNAI synthesis, as has been suggested in the literature. Changes in the rate of plasmid replication in response to changes in DnaA activity (in LB medium) could be resolved into an early, rom-dependent, and a late, rom-independent component. Rom
– plasmids show only the late effect. After heat inactivation of DnaC, plasmid replication ceased immediately. These results, together with previously published reports, suggest that DnaA plays no specific role during in vivo replication of ColE1 plasmids and that the gradual cessation of plasmid replication after heat inactivation of DnaA in LB medium results from indirect effects of the inhibition of chromosome replication and the ensuing saturation of promoters with RNA polymerase under nonpermissive growth conditions. 相似文献