首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
The terminus region of the Escherichia coli chromosome contains two sites that inhibit the progression of DNA replication forks. These termination sites, designated T1 and T2, are separated by 7.5 min (350 kilobases [kb]) on the genetic map and are located at the extremities of the terminus region. They demonstrate polarity (they stop replication forks traveling in one direction but not the other) and inhibit replication forks that have passed through and are about to leave the terminus. We have used deletion mutations in the terminus region to map the locations of T1 and T2 more accurately and to initiate studies on the mechanism of replication fork inhibition. We have narrowed the boundaries of T1 and T2 to 20 and 4 kb, respectively. T1 maps between kb 80 and 100 on the physical map of the terminus region (J. P. Bouché, J. Mol. Biol. 154:1-20, 1982), and T2 maps between kb 438 and 442. In addition, we report here that deletion of the region containing the T2 termination site inactivated T1. Supplying the T2 region on a plasmid restored T1 function, demonstrating that inhibition of replication at T1 requires a trans-acting factor which maps in the vicinity of termination site T2. We have called this newly identified terminus function the termination utilization substance (tus).  相似文献   

2.
We used a Southern hybridization assay to locate precisely the sites at which DNA replication is arrested in the terminus region of the Escherichia coli chromosome. The assay was based on the properties of restriction fragments that contain stalled replication forks. Replication forks that entered the terminus from the clockwise direction with respect to the genetic map were inhibited near manA at a site called T2, which we located at kilobase 442 on the physical map of Bouché (J. P. Bouché, J. Mol. Biol. 154:1-20, 1982). Those that entered the terminus region traveling in the counterclockwise direction were inhibited near pyrF at a site called T1, which we located at kilobase 90. In each case we found only a single, precise site of arrest. Inhibition at T1 was not detectable in our assay in strains lacking the trans-acting locus tus, which is located near T2 and is required for T1 to function. We demonstrated that the sites of inhibition are also used during termination of replication in exponentially growing, wild-type cells. In all previous studies on the terminus of E. coli, inhibition has only been detected in strains that were modified so that the origin used was placed near the terminus to force the use of the sites of inhibition.  相似文献   

3.
Initiation and termination of chromosome replication in an Escherichia coli auxotroph subjected to amino acid starvation were examined by following the incorporation of [3H]thymidine into the EcoRI restriction fragments of the chromosome. The pattern of incorporation observed upon restoration of the amino acid showed that starvation blocks the process of initiation prior to deoxyribonucleic acid synthesis within any significant portion of the EcoRI fragment which contains the origin of replication, oriC. In this experiment, no incorporation of [3H]thymidine into EcoRI fragments from the terminus of replication was observed, nor was it found when a dnaC initiation mutant was used to prevent incorporation at the origin which might have obscured labeling of terminus fragments. Thus amino acid starvation does not appear to block replication forks shortly before termination of replication. Attempted synchronization of replication initiation by including a period of thymine starvation subsequent to the amino acid starvation led to simultaneous incorporation of [3H]-thymidine into all EcoRI fragments within the 240-kilobase region that surrounds oriC. It is shown that the thymine starvation step allowed initiation and a variable, but limited, amount of replication to occur.  相似文献   

4.
The recombinational rescue of chromosome replication was investigated in Escherichia coli strains with the unidirectional origin oriR1, from the plasmid R1, integrated within oriC in clockwise (intR1(CW)) or counterclockwise (intR1(CC)) orientations. Only the intR1(CC) strain, with replication forks arrested at the terminus, required RecA for survival. Unlike the strains with RecA-dependent replication known so far, the intR1(CC) strain did not require RecBCD, RecF, RecG, RecJ, RuvAB, or SOS activation for viability. The overall levels of degradation of replicating chromosomes caused by inactivation of RecA were similar in oriC and intR1(CC) strains. In the intR1(CC) strain, RecA was also needed to maintain the integrity of the chromosome when the unidirectional replication forks were blocked at the terminus. This was consistent with suppression of the RecA dependence of the intR1(CC) strain by inactivating Tus, the protein needed to block replication forks at Ter sites. Thus, RecA is essential during asymmetric chromosome replication for the stable maintenance of the forks arrested at the terminus and for their eventual passage across the termination barrier(s) independently of the SOS and some of the major recombination pathways.  相似文献   

5.
SeqA protein negatively regulates replication initiation in Escherichia coli and is also proposed to organize maturation and segregation of the newly replicated DNA. The seqA mutants suffer from chromosomal fragmentation; since this fragmentation is attributed to defective segregation or nucleoid compaction, two‐ended breaks are expected. Instead, we show that, in SeqA's absence, chromosomes mostly suffer one‐ended DNA breaks, indicating disintegration of replication forks. We further show that replication forks are unexpectedly slow in seqA mutants. Quantitative kinetics of origin and terminus replication from aligned chromosomes not only confirm origin overinitiation in seqA mutants, but also reveal terminus under‐replication, indicating inhibition of replication forks. Pre‐/post‐labelling studies of the chromosomal fragmentation in seqA mutants suggest events involving single forks, rather than pairs of forks from consecutive rounds rear‐ending into each other. We suggest that, in the absence of SeqA, the sister‐chromatid cohesion ‘safety spacer’ is destabilized and completely disappears if the replication fork is inhibited, leading to the segregation fork running into the inhibited replication fork and snapping the latter at single‐stranded DNA regions.  相似文献   

6.
Bacteria that have a circular chromosome with a bidirectional DNA replication origin are thought to utilize a ‘replication fork trap’ to control termination of replication. The fork trap is an arrangement of replication pause sites that ensures that the two replication forks fuse within the terminus region of the chromosome, approximately opposite the origin on the circular map. However, the biological significance of the replication fork trap has been mysterious, as its inactivation has no obvious consequence. Here we review the research that led to the replication fork trap theory, and we aim to integrate several recent findings that contribute towards an understanding of the physiological roles of the replication fork trap. Likely roles include the prevention of over‐replication, and the optimization of post‐replicative mechanisms of chromosome segregation, such as that involving FtsK in Escherichia coli.  相似文献   

7.
In bacteria, Ter sites bound to Tus/Rtp proteins halt replication forks moving only in one direction, providing a convenient mechanism to terminate them once the chromosome had been replicated. Considering the importance of replication termination and its position as a checkpoint in cell division, the accumulated knowledge on these systems has not dispelled fundamental questions regarding its role in cell biology: why are there so many copies of Ter, why are they distributed over such a large portion of the chromosome, why is the tus gene not conserved among bacteria, and why do tus mutants lack measurable phenotypes? Here we examine bacterial genomes using bioinformatics techniques to identify the region(s) where DNA polymerase III‐mediated replication has historically been terminated. We find that in both Escherichia coli and Bacillus subtilis, changes in mutational bias patterns indicate that replication termination most likely occurs at or near the dif site. More importantly, there is no evidence from mutational bias signatures that replication forks originating at oriC have terminated at Ter sites. We propose that Ter sites participate in halting replication forks originating from DNA repair events, and not those originating at the chromosomal origin of replication.  相似文献   

8.
The movement of replication forks during polyoma DNA synthesis in isolated nuclei was analyzed by digesting newly synthesized DNA with the restriction endonuclease HpaII which cleaves polyoma DNA into eight unique fragments. The terminus of in vitro DNA synthesis was identified by cleaving newly completed molecules with HpaII. The distribution of label in the restriction fragments showed that the in vitro DNA synthesis was bidirectional and had the normal terminus of replication. Analysis of replicative intermediates pulse-labeled in vitro further suggested that DNA synthesis in isolated nuclei is an ordered process similar to replication in intact cells. Replication forks moved with a constant rate from the origin towards the terminus of replication. The nonlinear course of the DNA synthesis reaction in the isolated nuclei seems to result from the random inactivation of replication forks rather than a decrease in the rate of fork movement. During the in vitro synthesis a replication fork could maximally synthesize a DNA chain about 1,000 nucleotides long. The results suggest that some replication forks might be initiated in vitro at the origin of replication.  相似文献   

9.
Pathological replication in cells lacking RecG DNA translocase   总被引:1,自引:1,他引:0  
Little is known about what happens when forks meet to complete DNA replication in any organism. In this study we present data suggesting that the collision of replication forks is a potential threat to genomic stability. We demonstrate that Escherichia coli cells lacking RecG helicase suffer major defects in chromosome replication following UV irradiation, and that this is associated with high levels of DNA synthesis initiated independently of the initiator protein DnaA. This UV-induced stable DNA replication is dependent on PriA helicase and continues long after UV-induced lesions have been excised. We suggest UV irradiation triggers the assembly of new replication forks, leading to multiple fork collisions outside the terminus area. Such collisions may generate branched DNAs that serve to establish further new forks, resulting in uncontrolled DNA amplification. We propose that RecG reduces the likelihood of this pathological cascade being set in motion by reducing initiation of replication at D- and R-loops, and other structures generated as a result of fork collisions. Our results shed light on why replication initiation in bacteria is limited to a single origin and why termination is carefully orchestrated to a single event within a restricted area each cell cycle.  相似文献   

10.
Summary The capacity for initiation and subsequent chain elongation was examined in several DNA temperature sensitive mutants of Escherichia coli after the mutants had been held at nonpermissive temperature for approximately 1.5 generation equivalents and then returned to permissive temperature in the presence of chloramphenicol. The results obtained indicate that 4–5 sets of replication forks can be initiated after return to permissive temperature in the presence of chloramphenicol but the forks apparently become stalled and fail to complete chromosomal replication in the presence of chloramphenicol. In temperature reversible dnaA mutants, once the chloramphenicol is removed the forks appear to be able to resume replication at the nonpermissive temperature. The relationship between premature initiation and premature chain termination is discussed.  相似文献   

11.
In bacteria, PriA protein, a conserved DEXH‐type DNA helicase, plays a central role in replication restart at stalled replication forks. Its unique DNA‐binding property allows it to recognize and stabilize stalled forks and the structures derived from them. Cells must cope with fork stalls caused by various replication stresses to complete replication of the entire genome. Failure of the stalled fork stabilization process and eventual restart could lead to various forms of genomic instability. The low viability of priA null cells indicates a frequent occurrence of fork stall during normal growth that needs to be properly processed. PriA specifically recognizes the 3′‐terminus of the nascent leading strand or the invading strand in a displacement (D)‐loop by the three‐prime terminus binding pocket (TT‐pocket) present in its unique DNA binding domain. Elucidation of the structural basis for recognition of arrested forks by PriA should provide useful insight into how stalled forks are recognized in eukaryotes.  相似文献   

12.
13.
14.
A prevalent view of DNA replication has been that it is carried out in fixed "replication factories." By tracking the progression of sister replication forks with respect to genetic loci in live Escherichia coli, we show that at initiation replisomes assemble at replication origins irrespective of where the origins are positioned within the cell. Sister replisomes separate and move to opposite cell halves shortly after initiation, migrating outwards as replication proceeds and both returning to midcell as replication termination approaches. DNA polymerase is maintained at stalled replication forks, and over short intervals of time replisomes are more dynamic than genetic loci. The data are inconsistent with models in which replisomes associated with sister forks act within a fixed replication factory. We conclude that independent replication forks follow the path of the compacted chromosomal DNA, with no structure other than DNA anchoring the replisome to any particular cellular region.  相似文献   

15.
Arrest of replication forks by various internal and external threats evokes a myriad of cellular reactions, collectively known as DNA replication checkpoint responses. In bacteria, PriA is essential for restoration of stalled replication forks and recombinational repair of double-stranded DNA breaks and is a candidate sensor protein that may recognize arrested forks. Here, we report that PriA protein specifically recognizes 3' termini of arrested nascent DNA chains at model stalled replication forks in vitro. Mutations in the putative "3' terminus binding pocket" present in the N-terminal segment of PriA result in reduced binding to stalled replication fork structures and loss of its biological functions. The results suggest a mechanism by which stalled replication forks are recognized by a sensor protein for checkpoint responses.  相似文献   

16.
In E. coli, DNA replication termination occurs at Ter sites and is mediated by Tus. Two clusters of five Ter sites are located on each side of the terminus region and constrain replication forks in a polar manner. The polarity is due to the formation of the Tus-Ter-lock intermediate. Recently, it has been shown that DnaB helicase which unwinds DNA at the replication fork is preferentially stopped at the non-permissive face of a Tus-Ter complex without formation of the Tus-Ter-lock and that fork pausing efficiency is sequence dependent, raising two essential questions: Does the affinity of Tus for the different Ter sites correlate with fork pausing efficiency? Is formation of the Tus-Ter-lock the key factor in fork pausing? The combined use of surface plasmon resonance and GFP-Basta showed that Tus binds strongly to TerA-E and G, moderately to TerH-J and weakly to TerF. Out of these ten Ter sites only two, TerF and H, were not able to form significant Tus-Ter-locks. Finally, Tus's resistance to dissociation from Ter sites and the strength of the Tus-Ter-locks correlate with the differences in fork pausing efficiency observed for the different Ter sites by Duggin and Bell (2009).  相似文献   

17.
Our laboratory has previously shown that replication of a small plasmid, p174, containing the genetically defined Epstein-Barr virus (EBV) latent origin of replication, oriP, initiates within oriP at or near a dyad symmetry (DS) element and terminates specifically at a family of repeated sequences (FR), also located within oriP. We describe here an analysis of the replication of intact approximately 170-kb EBV genomes in four latently infected cell lines that uses two-dimensional gel replicon mapping. Initiation was detected at oriP in all EBV genomes examined; however, some replication forks appear to originate from alternative initiation sites. In addition, pausing of replication forks was observed at the two clusters of EBV nuclear antigen 1 binding sites within oriP and at or near two highly expressed viral genes 0.5 to 1 kb upstream of oriP, the EBV-encoded RNA (EBER) genes. In the Raji EBV genome, the relative abundance of these stalled forks and the direction in which they are stalled indicate that most replication forks originate upstream of oriP. We thus searched for additional initiation sites in the Raji EBV and found that the majority of initiation events were distributed over a broad region to the left of oriP. This delocalized pattern of initiation resembles initiation of replication in several well-characterized mammalian chromosomal loci and is the first described for any viral genome. EBV thus provides a unique model system with which to investigate factors influencing the selection of replication initiation and termination sites in mammalian cells.  相似文献   

18.
Blockage of replication forks can have deleterious consequences for the cell as it may prompt premature termination of DNA replication. Moreover, the blocked replication intermediate (RI) could be particularly sensitive to recombination processes. We analysed the different populations of RIs generated in vivo in the bacterial plasmid pPI21 after pausing of replication forks at the inversely oriented ColE1 origin. To achieve this goal, a new method was developed based on two-dimensional agarose gel electrophoresis. This method allows the isolation of specific RIs, even when they were rather scarce, from the total DNA. Here we describe the occurrence of RI restriction fragments containing reversed forks. These Holliday-like structures have been postulated but never observed before.  相似文献   

19.
Joseph Germino  Deepak Bastia 《Cell》1981,23(3):681-687
The replication terminus of the drug resistance factor R6K has been cloned into the plasmid vectors pBR313 and pBR322. When the exogenously added DNA is replicated in vitro using cell extracts prepared from Escherichia coli, the plasmid replication terminus temporarily arrests the progression of the unidirectionally moving replication fork at or near the cloned terminator sequence. When the relative location of the terminator sequence is changed with respect to the replication origin, the point of arrest of the replication fork shifts correspondingly to the new location of the terminator. Termination of replication takes place in vitro regardless of whether the cell extracts used in the in vitro reaction are prepared from E. coli with a resident terminus sequence containing plasmid. From these observations we conclude that the termination of replication in vitro is identical or very similar to that observed in vivo, membrane association is not necessary for the activity of the replication terminus and the terminus sequence does not code for a transacting factor necessary for termination of replication. Therefore, any transacting factor which may be needed for the termination of replication must be coded by the host chromosome.  相似文献   

20.
Escherichia coli CRT4624-P2sig5 is a dnaA mutant in which integration of the prophage P2sig5 has occurred at the attP2II site (min 85). This strain was integratively suppressed, and when cells were shifted to 42 degrees C replication was initiated at a site in or near the P2 prophage. Initially, this replication occurred primarily in the direction that corresponds to the clockwise direction on the genetic map. Replication also occurred in the counterclockwise direction, but the initiation of replication in this direction occurred approximately 40 min later than the initiation of replication in the other direction. Because of this delay, the replication forks that traveled in the clockwise direction were the first to arrive in the region of the replication terminus. These replication forks ceased replication near the aroD locus (min 37), and it is proposed that the replication terminus is between the aroD and rac loci (min 31). A model is proposed for the cycle of chromosome replication in this strain at 42 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号