首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The Q ST– F ST comparison has become an increasingly common method for inferring adaptive quantitative trait divergence among populations. For cases in which there is divergence in multiple traits, most studies have applied the method by performing multiple univariate Q ST– F ST comparisons. However, because traits are often genetically correlated, such univariate analyses are likely to paint a simplified picture of adaptive divergence. Here we show how the multivariate analogue of Q ST, FSTq, which accounts for genetic correlations among traits, can be used to supply a more detailed picture of multitrait divergence. We apply the method to naturally occurring genetic variation for a suite of sexually selected display traits in Drosophila serrata . The analyses suggest the operation of divergent multivariate selection that has influenced multiple independent axes of genetic variance in a sex-specific manner. Finally, we show how a comparison of the components of FSTq, the average within and among population genetic variance–covariance matrices, GW and GB, can be used as an additional test of the null expectation of neutral divergence, and allows for an investigation of whether natural populations have diverged along major or minor axes of genetic variance.  相似文献   

2.
Genetically correlated traits are known to respond to indirect selection pressures caused by directional selection on other traits. It is however unclear how local adaptation in populations diverging along some phenotypic traits but not others is affected by the joint action of gene flow and genetic correlations among traits. This simulation study shows that although gene flow is a potent constraining mechanism of population adaptive divergence, it may induce phenotypic divergence in traits under homogeneous selection among habitats if they are genetically correlated with traits under divergent selection. This correlated phenotypic divergence is a nonmonotonous function of migration and increases with mutational correlation among traits. It also increases with the number of divergently selected traits provided their genetic autonomy relative to the uniformly selected trait is reduced by specific patterns of genetic covariances: populations with lower effective trait dimensionality are more likely to generate very large correlated divergence. The correlated divergence is likely to be picked up by Q(ST)-F(ST) analysis of population genetic differentiation and be erroneously ascribed to adaptive divergence under divergent selection. This study emphasizes the necessity to understand the interaction between selection and the genetic basis of adaptation in a multivariate rather than univariate context.  相似文献   

3.
The importance of directional selection relative to neutral evolution may be determined by comparing quantitative genetic variation in phenotype (Q(ST)) to variation at neutral molecular markers (F(ST)). Quantitative divergence between salmonid life history types is often considerable, but ontogenetic changes in the significance of major sources of genetic variance during post-hatch development suggest that selective differentiation varies by developmental stage. In this study, we tested the hypothesis that maternal genetic differentiation between anadromous and resident brook charr (Salvelinus fontinalis Mitchill) populations for early quantitative traits (embryonic size/growth, survival, egg number and developmental time) would be greater than neutral genetic differentiation, but that the maternal genetic basis for differentiation would be higher for pre-resorption traits than post-resorption traits. Quantitative genetic divergence between anadromous (seawater migratory) and resident Laval River (Québec) brook charr based on maternal genetic variance was high (Q(ST) > 0.4) for embryonic length, yolk sac volume, embryonic growth rate and time to first response to feeding relative to neutral genetic differentiation [F(ST) = 0.153 (0.071-0.214)], with anadromous females having positive genetic coefficients for all of the above characters. However, Q(ST) was essentially zero for all traits post-resorption of the yolk sac. Our results indicate that the observed divergence between resident and anadromous brook charr has been driven by directional selection, and may therefore be adaptive. Moreover, they provide among the first evidence that the relative importance of selective differentiation may be highly context-specific, and varies by genetic contributions to phenotype by parental sex at specific points in offspring ontogeny. This in turn suggests that interpretations of Q(ST)-F(ST) comparisons may be improved by considering the structure of quantitative genetic architecture by age category and the sex of the parent used in estimation.  相似文献   

4.
The impact of natural selection on the adaptive divergence of invasive populations can be assessed by testing the null hypothesis that the extent of quantitative genetic differentiation (Q(ST) ) would be similar to that of neutral molecular differentiation (F(ST) ). Using eight microsatellite loci and a common garden approach, we compared Q(ST) and F(ST) among ten populations of an invasive species Ambrosia artemisiifolia (common ragweed) in France. In a common garden study with varying water and nutrient levels, we measured Q(ST) for five traits (height, total biomass, reproductive allocation, above- to belowground biomass ratio, and days to flowering). Although low F(ST) indicated weak genetic structure and strong gene flow among populations, we found significant diversifying selection (Q(ST) > F(ST) ) for reproductive allocation that may be closely related to fitness. It suggests that abiotic conditions may have exerted selection pressure on A. artemisiifolia populations to differentiate adaptively, such that populations at higher altitude or latitude evolved greater reproductive allocation. As previous studies indicate multiple introductions from various source populations of A. artemisiifolia in North America, our results suggest that the admixture of introduced populations may have increased genetic diversity and additive genetic variance, and in turn, promoted the rapid evolution and adaptation of this invasive species.  相似文献   

5.
The comparison between quantitative genetic divergence (Q(ST) ) and neutral genetic divergence (F(ST) ) among populations has become the standard test for historical signatures of selection on quantitative traits. However, when the mutation rate of neutral markers is relatively high in comparison with gene flow, estimates of F(ST) will decrease, resulting in upwardly biased comparisons of Q(ST) vs. F(ST) . Reviewing empirical studies, the difference between Q(ST) and F(ST) is positively related to marker heterozygosity. After refuting alternative explanations for this pattern, we conclude that marker mutation rate indeed has had a biasing effect on published Q(ST) -F(ST) comparisons. Hence, it is no longer clear that populations have commonly diverged in response to divergent selection. We present and discuss potential solutions to this bias. Comparing Q(ST) with recent indices of neutral divergence that statistically correct for marker heterozygosity (Hedrick's G'st and Jost's D) is not advised, because these indices are not theoretically equivalent to Q(ST) . One valid solution is to estimate F(ST) from neutral markers with mutation rates comparable to those of the loci underlying quantitative traits (e.g. SNPs). Q(ST) can also be compared to Φ(ST) (Phi(ST) ) of amova, as long as the genetic distance among allelic variants used to estimate Φ(ST) reflects evolutionary history: in that case, neutral divergence is independent of mutation rate. In contrast to their common usage in comparisons of Q(ST) and F(ST) , microsatellites typically have high mutation rates and do not evolve according to a simple evolutionary model, so are best avoided in Q(ST) -F(ST) comparisons.  相似文献   

6.
Evolutionary biologists have long been interested in the processes influencing population differentiation, but separating the effects of neutral and adaptive evolution has been an obstacle for studies of population subdivision. A recently developed method allows tests of whether disruptive (ie, spatially variable) or stabilizing (ie, spatially uniform) selection is influencing phenotypic differentiation among subpopulations. This method, referred to as the F(ST) vs Q(ST) comparison, separates the total additive genetic variance into within- and among-population components and evaluates this level of differentiation against a neutral hypothesis. Thus, levels of neutral molecular (F(ST)) and quantitative genetic (Q(ST)) divergence are compared to evaluate the effects of selection and genetic drift on phenotypic differentiation. Although the utility of such comparisons appears great, its accuracy has not yet been evaluated in populations with known evolutionary histories. In this study, F(ST) vs Q(ST) comparisons were evaluated using laboratory populations of house mice with known evolutionary histories. In this model system, the F(ST) vs Q(ST) comparisons between the selection groups should reveal quantitative trait differentiation consistent with disruptive selection, while the F(ST) vs Q(ST) comparisons among lines within the selection groups should suggest quantitative trait differentiation in agreement with drift. We find that F(ST) vs Q(ST) comparisons generally produce the correct evolutionary inference at each level in the population hierarchy. Additionally, we demonstrate that when strong selection is applied between populations Q(ST) increases relative to Q(ST) among populations diverging by drift. Finally, we show that the statistical properties of Q(ST), a variance component ratio, need further investigation.  相似文献   

7.
The additive genetic variance-covariance matrix (G) is a concept central to discussions about evolutionary change over time in a suite of traits. However, at the moment we do not know how fast G itself changes as a consequence of selection or how sensitive it is to environmental influences. We investigated possible evolutionary divergence and environmental influences on G using data from a factorial common-garden experiment where common frog (Rana temporaria) tadpoles from two divergent populations were exposed to three different environmental treatments. G-matrices were estimated using an animal model approach applied to data from a NCII breeding design. Matrix comparisons using both Flury and multivariate analysis of variance methods revealed significant differences in G matrices both between populations and between treatments within populations, the former being generally larger than the latter. Comparison of levels of population differentiation in trait means using Q(ST) indices with that observed in microsatellite markers (F(ST)) revealed that the former values generally exceeded the neutral expectation set by F(ST). Hence, the results suggest that intraspecific divergence in G matrix structure has occurred mainly due to natural selection.  相似文献   

8.
Determining how genetic variance changes under selection in natural populations has proved to be a very resilient problem in evolutionary genetics. In the same way that understanding the availability of genetic variance within populations requires the simultaneous consideration of genetic variance in sets of functionally related traits, determining how genetic variance changes under selection in natural populations will require ascertaining how genetic variance–covariance (G) matrices evolve. Here, we develop a geometric framework using higher-order tensors, which enables the empirical characterization of how G matrices have diverged among populations. We then show how divergence among populations in genetic covariance structure can then be associated with divergence in selection acting on those traits using key equations from evolutionary theory. Using estimates of G matrices of eight male sexually selected traits from nine geographical populations of Drosophila serrata, we show that much of the divergence in genetic variance occurred in a single trait combination, a conclusion that could not have been reached by examining variation among the individual elements of the nine G matrices. Divergence in G was primarily in the direction of the major axes of genetic variance within populations, suggesting that genetic drift may be a major cause of divergence in genetic variance among these populations.  相似文献   

9.
Comparative studies of quantitative genetic and neutral marker differentiation have provided means for assessing the relative roles of natural selection and random genetic drift in explaining among-population divergence. This information can be useful for our fundamental understanding of population differentiation, as well as for identifying management units in conservation biology. Here, we provide comprehensive review and meta-analysis of the empirical studies that have compared quantitative genetic (Q(ST)) and neutral marker (F(ST)) differentiation among natural populations. Our analyses confirm the conclusion from previous reviews - based on ca. 100% more data - that the Q(ST) values are on average higher than F(ST) values [mean difference 0.12 (SD 0.27)] suggesting a predominant role for natural selection as a cause of differentiation in quantitative traits. However, although the influence of trait (life history, morphological and behavioural) and marker type (e.g. microsatellites and allozymes) on the variance of the difference between Q(ST) and F(ST) is small, there is much heterogeneity in the data attributable to variation between specific studies and traits. The latter is understandable as there is no reason to expect that natural selection would be acting in similar fashion on all populations and traits (except for fitness itself). We also found evidence to suggest that Q(ST) and F(ST) values across studies are positively correlated, but the significance of this finding remains unclear. We discuss these results in the context of utility of the Q(ST)-F(ST) comparisons as a tool for inferring natural selection, as well as associated methodological and interpretational problems involved with individual and meta-analytic studies.  相似文献   

10.
Studies examining the effects of anthropogenic habitat fragmentation on both neutral and adaptive genetic variability are still scarce. We compared tadpole fitness-related traits (viz. survival probability and body size) among populations of the common frog (Rana temporaria) from fragmented (F) and continuous (C) habitats that differed significantly in population sizes (C > F) and genetic diversity (C > F) in neutral genetic markers. Using data from common garden experiments, we found a significant positive relationship between the mean values of the fitness related traits and the amount of microsatellite variation in a given population. While genetic differentiation in neutral marker loci (F(ST)) tended to be more pronounced in the fragmented than in the continuous habitat, genetic differentiation in quantitative traits (Q(ST)) exceeded that in neutral marker traits in the continuous habitat (i.e. Q(ST) > F(ST)), but not in the fragmented habitat (i.e. Q(ST) approximately F(ST)). These results suggest that the impact of random genetic drift relative to natural selection was higher in the fragmented landscape where populations were small, and had lower genetic diversity and fitness as compared to populations in the more continuous landscape. The findings highlight the potential importance of habitat fragmentation in impairing future adaptive potential of natural populations.  相似文献   

11.
Chapuis E  Martin G  Goudet J 《Genetics》2008,180(4):2151-2161
Unraveling the effect of selection vs. drift on the evolution of quantitative traits is commonly achieved by one of two methods. Either one contrasts population differentiation estimates for genetic markers and quantitative traits (the Q(st)-F(st) contrast) or multivariate methods are used to study the covariance between sets of traits. In particular, many studies have focused on the genetic variance-covariance matrix (the G matrix). However, both drift and selection can cause changes in G. To understand their joint effects, we recently combined the two methods into a single test (accompanying article by Martin et al.), which we apply here to a network of 16 natural populations of the freshwater snail Galba truncatula. Using this new neutrality test, extended to hierarchical population structures, we studied the multivariate equivalent of the Q(st)-F(st) contrast for several life-history traits of G. truncatula. We found strong evidence of selection acting on multivariate phenotypes. Selection was homogeneous among populations within each habitat and heterogeneous between habitats. We found that the G matrices were relatively stable within each habitat, with proportionality between the among-populations (D) and the within-populations (G) covariance matrices. The effect of habitat heterogeneity is to break this proportionality because of selection for habitat-dependent optima. Individual-based simulations mimicking our empirical system confirmed that these patterns are expected under the selective regime inferred. We show that homogenizing selection can mimic some effect of drift on the G matrix (G and D almost proportional), but that incorporating information from molecular markers (multivariate Q(st)-F(st)) allows disentangling the two effects.  相似文献   

12.
Latitudinal variation in thermal reaction norms of key fitness traits may inform about the response of populations to climate warming, yet their adaptive nature and evolutionary potential are poorly known. We assessed the contribution of quantitative genetic, neutral genetic and environmental effects to thermal reaction norms of growth rate for populations of the damselfly Ischnura elegans. Among populations, reaction norms differed primarily in elevation, suggesting that time constraints associated with shorter growth seasons in univoltine, high-latitude as well as multivoltine, low-latitude populations selected for faster growth rates. Phenotypic divergence among populations is consistent with selection rather than drift as Q(ST) was greater than F(ST) in all cases. Q(ST) estimates increased with experimental temperature and were influenced by genotype by environment interactions. Substantial additive genetic variation for growth rate in all populations suggests that evolution of trait means in different environments is not constrained. Heritability of growth rates was higher at high temperature, driven by increased genetic rather than environmental variance. While environment-specific nonadditive effects also may contribute to heritability differences among temperatures, maternal effects did not play a significant role (where these could be accounted for). Genotype by environment interactions strongly influenced the adaptive potential of populations, and our results suggest the potential for microevolution of thermal reaction norms in each of the studied populations. In summary, the observed latitudinal pattern in growth rates is adaptive and results from a combination of latitudinal and voltinism compensation. Combined with the evolutionary potential of thermal reaction norms, this may affect populations' ability to respond to future climate warming.  相似文献   

13.
Patterns of variation in quantitative characters and genetic markers were compared among six regional populations of white spruce [Picea glauca (Moench) Voss]. Although some phenotypic characters were correlated with latitude (r = 0.791), longitude (r = -0.796) and precipitation during the growing season (r = 0.789), variability at genetic markers was not correlated with geographical or bioclimatic variables, and followed neutral expectations. Estimates of genetic diversity and population differentiation for 14 allozymes (translated regions of coding genes) were essentially indistinguishable from those observed for 11 expressed sequence tag polymorphisms (ESTPs) from untranslated regions of coding genes. Variation among populations for quantitative traits such as eighth year height (Q(ST) = 0.082), thirteenth year height (Q(ST) = 0.069), total wood density (Q(ST) = 0.102) and date of budset (Q(ST) = 0.246), was greater than for allozymes (G(ST) = 0.014) and ESTPs (G(ST) = 0.019). These trends suggest a strong adaptive response in quantitative traits, contrasting to allozymes and ESTPs where no selective response could be detected and where populations appeared to be essentially in a migration-drift equilibrium.  相似文献   

14.
Sahli HF  Conner JK  Shaw FH  Howe S  Lale A 《Genetics》2008,180(2):945-955
Weedy species with wide geographical distributions may face strong selection to adapt to new environments, which can lead to adaptive genetic differentiation among populations. However, genetic drift, particularly due to founder effects, will also commonly result in differentiation in colonizing species. To test whether selection has contributed to trait divergence, we compared differentiation at eight microsatellite loci (measured as F(ST)) to differentiation of quantitative floral and phenological traits (measured as Q(ST)) of wild radish (Raphanus raphanistrum) across populations from three continents. We sampled eight populations: seven naturalized populations and one from its native range. By comparing estimates of Q(ST) and F(ST), we found that petal size was the only floral trait that may have diverged more than expected due to drift alone, but inflorescence height, flowering time, and rosette formation have greatly diverged between the native and nonnative populations. Our results suggest the loss of a rosette and the evolution of early flowering time may have been the key adaptations enabling wild radish to become a major agricultural weed. Floral adaptation to different pollinators does not seem to have been as necessary for the success of wild radish in new environments.  相似文献   

15.
Mimura M  Aitken SN 《Heredity》2007,99(2):224-232
Fossil pollen records suggest rapid migration of tree species in response to Quaternary climate warming. Long-distance dispersal and high gene flow would facilitate rapid migration, but would initially homogenize variation among populations. However, contemporary clinal variation in adaptive traits along environmental gradients shown in many tree species suggests that local adaptation can occur during rapid migration over just a few generations in interglacial periods. In this study, we compared growth performance and pollen genetic structure among populations to investigate how populations of Sitka spruce (Picea sitchensis) have responded to local selection along the historical migration route. The results suggest strong adaptive divergence among populations (average Q(ST)=0.61), corresponding to climatic gradients. The population genetic structure, determined by microsatellite markers (R(ST)=0.09; F(ST)=0.11), was higher than previous estimates from less polymorphic genetic markers. The significant correlation between geographic and pollen haplotype genetic (R(ST)) distances (r=0.73, P<0.01) indicates that the current genetic structure has been shaped by isolation-by-distance, and has developed in relatively few generations. This suggests relatively limited gene flow among populations on a recent timescale. Gene flow from neighboring populations may have provided genetic diversity to founder populations during rapid migration in the early stages of range expansion. Increased genetic diversity subsequently enhanced the efficiency of local selection, limiting gene flow primarily to among similar environments and facilitating the evolution of adaptive clinal variation along environmental gradients.  相似文献   

16.
Microevolutionary responses to spatial variation in the environment seem ubiquitous, but the relative role of selection and neutral processes in driving phenotypic diversification remain often unknown. The moor frog (Rana arvalis) shows strong phenotypic divergence along an acidification gradient in Sweden. We here used correlations among population pairwise estimates of quantitative trait (P(ST) or Q(ST) from common garden estimates of embryonic acid tolerance and larval life-history traits) and neutral genetic divergence (F(ST) from neutral microsatellite markers), as well as environmental differences (pond pH, predator density, and latitude), to test whether this phenotypic divergence is more likely due to divergent selection or neutral processes. We found that trait divergence was more strongly correlated with environmental differences than the neutral marker divergence, suggesting that divergent natural selection has driven phenotypic divergence along the acidification gradient. Moreover, pairwise P(ST) s of embryonic acid tolerance and Q(ST) s of metamorphic size were strongly correlated with breeding pond pH, whereas pairwise Q(ST) s of larval period and growth rate were more strongly correlated with geographic distance/latitude and predator density, respectively. We suggest that incorporating measurements of environmental variation into Q(ST) -F(ST) studies can improve our inferential power about the agents of natural selection in natural populations.  相似文献   

17.
Volis S 《The New phytologist》2011,192(1):237-248
? Both genetic drift and natural selection result in genetic/phenotypic differentiation over space. I analyzed the role of local adaptation in the genetic differentiation of populations of the annual grass Hordeum spontaneum sampled along an aridity gradient. ? The study included the introduction of plants having desert vs nondesert origin into natural (desert) environment, analysis of population differentiation in allozymes and random amplified polymorphic DNA (RAPD) markers vs phenotypic traits (Q(ST) -F(ST) comparison), and planting interpopulation hybrids under simulated desert conditions in a glasshouse. ? The results of the home advantage test, Q(ST) -F(ST) comparison and crossbreeding were consistent with local adaptation; that is, that differentiation of the desert plants from plants of nondesert origin in phenotypic traits was adaptive, giving them home advantage. Each method used provided additional, otherwise unavailable, information, meaning that they should be viewed as complementary rather than alternative approaches. ? Gene flow from adjacent populations (i.e. populations experiencing the desert environment) via seeds (but not pollen) had a positive effect on fitness by enhancing natural selection and counteracting drift. At the same time, the effect of genes from the species distributional core (nondesert plants) by either seed or pollen had a negative fitness effect despite its enriching effect on neutral diversity. The pattern of outbreeding depression observed in interpopulation hybrids (F(1) ) and their segregating progeny (F(2) ) was inconsistent with underdominance, but indicated the presence of additive, dominance and epistatic effects.  相似文献   

18.
Kremer A  Le Corre V 《Heredity》2012,108(4):375-385
We dissected the relationship between genetic differentiation (Q(ST)) for a trait and its underlying genes (G(STq), differentiation for a quantitative locus) in an evolutionary context, with the aim of identifying the conditions in which these two measurements are decoupled. We used two parameters (θ(B) and θ(W)) scaling the contributions of inter- and intrapopulation allelic covariation between genes controlling the trait of interest. We monitored the changes in θ(B) and θ(W), Q(ST) and G(STq) over successive generations of divergent and stabilizing selection, in simulations for an outcrossing species with extensive gene flow. The dynamics of these parameters are characterized by two phases. Initially, during the earliest generations, differentiation of the trait increases very rapidly and the principal and immediate driver of Q(ST) is θ(B). During subsequent generations, G(STq) increases steadily and makes an equal contribution to Q(ST). These results show that selection first captures beneficial allelic associations at different loci at different populations, and then targets changes in allelic frequencies. The same patterns are observed when environmental change modifies divergent selection, as shown by the very rapid response of θ(B) to the changes of selection regimes. We compare our results with previous experimental findings and consider their relevance to the detection of molecular signatures of natural selection.  相似文献   

19.
Reduced genetic variation at marker loci in small populations has been well documented, whereas the relationship between quantitative genetic variation and population size has attracted little empirical investigation. Here we demonstrate that both neutral and quantitative genetic variation are reduced in small populations of a fragmented plant metapopulation, and that both drift and selective change are enhanced in small populations. Measures of neutral genetic differentiation (F(ST)) and quantitative genetic differentiation (Q(ST)) in two traits were higher among small demes, and Q(ST) between small populations exceeded that expected from drift alone. This suggests that fragmented populations experience both enhanced genetic drift and divergent selection on phenotypic traits, and that drift affects variation in both neutral markers and quantitative traits. These results highlight the need to integrate natural selection into conservation genetic theory, and suggests that small populations may represent reservoirs of genetic variation adaptive within a wide range of environments.  相似文献   

20.
The bluegill sunfish, Lepomis macrochirus, is a widespread exotic species in Japan that is considered to have originated from 15 fish introduced from Guttenberg, Iowa, in 1960. Here, the genetic and phenotypic traits of Japanese populations were examined, together with 11 native populations of the USA using 10 microsatellite markers and six meristic traits. Phylogenetic analysis reconfirmed a single origin of Japanese populations, among which populations established in the 1960s were genetically close to Guttenberg population, keeping high genetic diversity comparable to the ancestral population. In contrast, genetic diversity of later-established populations significantly declined with genetic divergence from the ancestral population. Among the 1960s established populations, that from Lake Biwa showed a significant isolation-by-distance pattern with surrounding populations in which genetic bottlenecks increased with geographical distance from Lake Biwa. Although phenotypic divergence among populations was recognized in both neutral and adaptive traits, P(ST)-F(ST) comparisons showed that it is independent of neutral genetic divergence. Divergent selection was suggested in some populations from reservoirs with unstable habitats, while stabilizing selection was dominant. Accordingly, many Japanese populations of L. macrochirus appear to have derived from Lake Biwa population, expanding their distribution with population bottlenecks. Despite low propagule pressure, the invasion success of L. macrochirus is probably because of its drastic population growth in Lake Biwa shortly after its introduction, together with artificial transplantations. It not only enabled the avoidance of a loss in genetic diversity but also formed a major gene pool that supported local adaptation with high phenotypic plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号