首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Suppose one drug causes lethal mitotic arrest, another treatment causes irreversible senescence and a third drug inhibits cellular mass growth: Could cells treated with a combination of all three agents magically emerge alive and proliferating? The result of this experiment is presented here. By knowing the mechanisms of cell cycle arrest, death and senescence, we can design “rainbow combinations” that obediently kill or spare desired cells. Knowledge is power.  相似文献   

2.
One of the most controversial topics concerning Neisseria meningitidis is the definition of antimicrobial resistance. A process of harmonization, promoted by the European Monitoring Group on Meningococci (EMGM), is already in progress. There are several aspects of the MIC definition for meningococcal strains for which a consensus is needed, as follows. (1) What methods can be used? At present, both the Etest and agar dilution methods are recommended by the EMGM. Microdilution, also a recommended method, is not used across Europe. (2) What media produce the most reliable data? The use of Mueller-Hinton medium supplemented with 5% blood is recommended for the MIC determination of N. meningitidis by both Etest and agar dilution method. (3) What is the minimum set of antimicrobial agents to be tested? A minimum set should include rifampicin, ciprofloxacin (or another quinolone), penicillin, ampicillin and ceftriaxone. (4) What are the most suitable breakpoints for definition? There is no widely accepted robust evidence base for the definition of breakpoints. Although progress has been made in achieving a standardized methodology, we are still far from obtaining common breakpoints for antimicrobial resistance definition. These differences will imply inability for building a common epidemiologic figure about drug resistance.  相似文献   

3.
Drug resistance to 5-FU linked to reactive oxygen species modulator 1   总被引:1,自引:0,他引:1  
While acute oxidative stress triggers cell apoptosis or necrosis, persistent oxidative stress induces genomic instability and has been implicated in tumor progression and drug resistance. In a previous report, we demonstrated that reactive oxygen species modulator 1 (Romo1) expression was up-regulated in most cancer cell lines and suggested that increased Romo1 expression might confer chronic oxidative stress to tumor cells. In this study, we show that enforced Romo1 expression induces reactive oxygen species (ROS) production in the mitochondria leading to massive cell death. However, tumor cells that adapt to oxidative stress by increasing manganese superoxide dismutase (MnSOD), Prx I, and Bcl-2 showed drug resistance to 5-FU. To elucidate the relationship between 5-FU-induced ROS production and Romo1 expression, Romo1 siRNA was used to inhibit 5-FU-triggered Romo1 induction. Romo1 siRNA treatment efficiently blocked 5-FU-induced ROS generation, demonstrating that 5-FU treatment stimulated ROS production through Romo1 induction. Based on these results we suggest that cellular adaptive response to Romo1-induced ROS is another mechanism of drug resistance to 5-FU and Romo1 expression may provide a new clinical implication in drug resistance of cancer chemotherapy.  相似文献   

4.

Background

The identification of genetic changes that confer drug resistance or other phenotypic changes in pathogens can help optimize treatment strategies, support the development of new therapeutic agents, and provide information about the likely function of genes. Elucidating mechanisms of phenotypic drug resistance can also assist in identifying the mode of action of uncharacterized but potent antimalarial compounds identified in high-throughput chemical screening campaigns against Plasmodium falciparum.

Results

Here we show that tiling microarrays can detect de novo a large proportion of the genetic changes that differentiate one genome from another. We show that we detect most single nucleotide polymorphisms or small insertion deletion events and all known copy number variations that distinguish three laboratory isolates using readily accessible methods. We used the approach to discover mutations that occur during the selection process after transfection. We also elucidated a mechanism by which parasites acquire resistance to the antimalarial fosmidomycin, which targets the parasite isoprenoid synthesis pathway. Our microarray-based approach allowed us to attribute in vitro derived fosmidomycin resistance to a copy number variation event in the pfdxr gene, which enables the parasite to overcome fosmidomycin-mediated inhibition of isoprenoid biosynthesis.

Conclusions

We show that newly emerged single nucleotide polymorphisms can readily be detected and that malaria parasites can rapidly acquire gene amplifications in response to in vitro drug pressure. The ability to define comprehensively genetic variability in P. falciparum with a single overnight hybridization creates new opportunities to study parasite evolution and improve the treatment and control of malaria.  相似文献   

5.
The evolution of resistance to antimicrobial chemotherapy is a major and growing cause of human mortality and morbidity. Comparatively little attention has been paid to how different patient treatment strategies shape the evolution of resistance. In particular, it is not clear whether treating individual patients aggressively with high drug dosages and long treatment durations, or moderately with low dosages and short durations can better prevent the evolution and spread of drug resistance. Here, we summarize the very limited available empirical evidence across different pathogens and provide a conceptual framework describing the information required to effectively manage drug pressure to minimize resistance evolution.  相似文献   

6.
P-glycoprotein (P-gp) is an ATP-dependent drug pump that confers multidrug resistance (MDR). In addition to its ability to efflux toxins, P-gp can also inhibit apoptosis induced by a wide array of cell death stimuli that rely on activation of intracellular caspases for full function. We therefore hypothesized that P-gp may have additional functions in addition to its role in effluxing xenotoxins that could provide protection to tumor cells against a host response. There have been a number of contradictory reports concerning the role of P-gp in regulating complement activation. Given the disparate results obtained by different laboratories and our published results demonstrating that P-gp does not affect cell death induced by another membranolytic protein, perforin, we decided to assess the role of P-gp in regulating cell lysis induced by a number of different pore-forming proteins. Testing a variety of different P-gp-expressing MDR cell lines produced following exposure of cells to chemotherapeutic agents or by retroviral gene transduction in the complete absence of any drug selection, we found no difference in sensitivity of P-gp(+ve) or P-gp(-ve) cells to the pore-forming proteins complement, perforin, or pneumolysin. Based on these results, we conclude that P-gp does not affect cell lysis induced by pore-forming proteins.  相似文献   

7.
In China, the estimated number of HIV infected cases is approaching one million. Although public education has been initiated for awareness and behavioral modification for this devastating infection, better diagnostic methods are needed to identify infected persons and manage infection. Simple and more accurate diagnostic tools have become available,particularly for early detection and to monitor treatment in those who receive anti-retroviral treatment. In this short review, we summarize some of the common and new methodologies that can be used in clinical laboratories, in the field,or in private laboratories. These range from simple antibody tests to more sophistical methods that are used to monitor disease progression and identify drug resistance. These tools can assist physicians, medical practitioners, and laboratory personnel to select suitable diagnostic tools for the diagnosis, blood screening, monitoring of disease progression, and for detection of drug resistance to anti-retroviral therapies.  相似文献   

8.
DIAGNOSIS OF HIV-1 INFECTION The diagnosis of HIV infection is most commonly ac- complished using tests to detect antibody to HIV using a screening test, followed by a supplemental test for confirmation. However, in many countries, including China, screen…  相似文献   

9.
Constantine NT  Kabat W  Zhao RY 《Cell research》2005,15(11-12):870-876
In China, the estimated number of HIV infected cases is approaching one million. Although public education has been initiated for awareness and behavioral modification for this devastating infection, better diagnostic methods are needed to identify infected persons and manage infection. Simple and more accurate diagnostic tools have become available, particularly for early detection and to monitor treatment in those who receive anti-retroviral treatment. In this short review, we summarize some of the common and new methodologies that can be used in clinical laboratories, in the field, or in private laboratories. These range from simple antibody tests to more sophistical methods that are used to monitor disease progression and identify drug resistance. These tools can assist physicians, medical practitioners, and laboratory personnel to select suitable diagnostic tools for the diagnosis, blood screening, monitoring of disease progression, and for detection of drug resistance to anti-retroviral therapies.  相似文献   

10.
In China, the estimated number of HIV infected cases is approaching one million. Although public education has been initiated for awareness and behavioral modification for this devastating infection, better diagnostic methods are needed to identify infected persons and manage infection. Simple and more accurate diagnostic tools have become available, particularly for early detection and to monitor treatment in those who receive anti-retroviral treatment. In this short review, we summarize some of the common and new methodologies that can be used in clinical laboratories, in the field, or in private laboratories. These range from simple antibody tests to more sophistical methods that are used to monitor disease progression and identify drug resistance. These tools can assist physicians, medical practitioners, and laboratory personnel to select suitable diagnostic tools for the diagnosis, blood screening, monitoring of disease progression, and for detection of drug resistance to anti-retroviral therapies.  相似文献   

11.
Various forms of preventive and prophylactic antimicrobial therapies have been proposed to combat HIV (e.g. pre-exposure prophylaxis), tuberculosis (e.g. isoniazid preventive therapy) and malaria (e.g. intermittent preventive treatment). However, the potential population-level effects of preventative therapy (PT) on the prevalence of drug resistance are not well understood. PT can directly affect the rate at which resistance is acquired among those receiving PT. It can also indirectly affect resistance by altering the rate at which resistance is acquired through treatment for active disease and by modifying the level of competition between transmission of drug-resistant and drug-sensitive pathogens. We propose a general mathematical model to explore the ways in which PT can affect the long-term prevalence of drug resistance. Depending on the relative contributions of these three mechanisms, we find that increasing the level of coverage of PT may result in increases, decreases or non-monotonic changes in the overall prevalence of drug resistance. These results demonstrate the complexity of the relationship between PT and drug resistance in the population. Care should be taken when predicting population-level changes in drug resistance from small pilot studies of PT or estimates based solely on its direct effects.  相似文献   

12.
Direct acting antivirals have dramatically increased the efficacy and tolerability of hepatitis C treatment, but drug resistance has emerged with some of these inhibitors, including nonstructural protein 3/4?A protease inhibitors (PIs). Although many co-crystal structures of PIs with the NS3/4A protease have been reported, a systematic review of these crystal structures in the context of the rapidly emerging drug resistance especially for early PIs has not been performed. To provide a framework for designing better inhibitors with higher barriers to resistance, we performed a quantitative structural analysis using co-crystal structures and models of HCV NS3/4A protease in complex with natural substrates and inhibitors. By comparing substrate structural motifs and active site interactions with inhibitor recognition, we observed that the selection of drug resistance mutations correlates with how inhibitors deviate from viral substrates in molecular recognition. Based on this observation, we conclude that guiding the design process with native substrate recognition features is likely to lead to more robust small molecule inhibitors with decreased susceptibility to resistance.  相似文献   

13.
The Gotham Prize was awarded to Alex Varshavsky for “Targeting the absence”, a strategy employing negative targets of cancer therapy. This is a brilliant example of therapeutic engineering: designing a sequence of events that leads to the selective killing of one type of cell, while sparing all others. A complex molecular device (Varshavsky’s Demon) examines DNA, recognizes the present target in normal cells and kills cancer cells. The strategy is limited by the delivery (transfection or infection) of DNA-based devices into each cell of our body. How can we overcome this limitation? Can therapeutic engineering be applied to small drugs? Can each small molecule reach a cell separately and, once in a cell, exert orchestrated action governed by cellular context? Here I describe how a combination of small drugs can acquire a demonic power to check, choose and selectively kill. The cytotoxicity is restricted to cells lacking (or having) one of the targets. For example, in the presence of a normal target, one drug can cancel the cytotoxic action of another drug. And by increasing a number of targets, we can increase the precision and power of such ‘restrictive’ combinations. Here I discuss restrictive combinations of currently available drugs that could be tested in clinical trials. Could then these combinations cure cancer today? And what does ‘cure’ really mean? This article suggests the answer.  相似文献   

14.
How can we optimize the use of drugs against parasites to limit the evolution of drug resistance? This question has been addressed by many theoretical studies focusing either on the mixing of various treatments, or their temporal alternation. Here we consider a different treatment strategy where the use of the drug may vary in space to prevent the rise of drug-resistance. We analyze epidemiological models where drug-resistant and drug-sensitive parasites compete in a one-dimensional spatially heterogeneous environment. Two different parasite life-cycles are considered: (i) direct transmission between hosts, and (ii) vector-borne transmission. In both cases we find a critical size of the treated area, under which the drug-resistant strain cannot persist. This critical size depends on the basic reproductive ratios of each strain in each environment, on the ranges of dispersal, and on the duration of an infection with drug-resistant parasites. We discuss optimal treatment strategies that limit disease prevalence and the evolution of drug-resistance.  相似文献   

15.
16.
Stordal B  Davey M 《IUBMB life》2007,59(11):696-699
Many mechanisms of cisplatin resistance have been proposed from studies of cellular models of resistance including changes in cellular drug accumulation, detoxification of the drug, inhibition of apoptosis and repair of the DNA adducts. A series of resistant models were developed from CCRF-CEM leukaemia cells with increasing doses of cisplatin from 100 ng/ml. This produced increasing resistance up to 7-fold with a treatment dose of 1.6 microg/ml. Cisplatin resistance in these cells correlated with increases in the antioxidant glutathione, yet treatment with buthionine sulphoximine, an inhibitor of glutathione synthesis, had no effect on resistance, suggesting that the increase in glutathione was not directly involved in cisplatin resistance. Two models were developed from H69 SCLC cells, H69-CP and H69CIS200 using 100 ng/ml or 200 ng/ml cisplatin respectively. Both cell models were 2-4 fold resistant to cisplatin, and have decreased expression of p21 which may increase the cell's ability to progress through the cell cycle in the presence of DNA damage. Both the H69-CP and H69CIS200 cells showed no decrease in cellular cisplatin accumulation. However, the H69-CP cells have increased levels of cellular glutathione and are cross resistant to radiation whereas the H69CIS200 cells have neither of these changes. This suggests that increases in glutathione may contribute to cross-resistance to other drugs and radiation, but not directly to cisplatin resistance. There are multiple resistance mechanisms induced by cisplatin treatment, even in the same cell type. How then should cisplatin-resistant cancers be treated? Cisplatin-resistant cell lines are often more sensitive to another chemotherapeutic drug paclitaxel (H69CIS200), or are able to be sensitized to cisplatin with paclitaxel pre-treatment (H69-CP). The understanding of this sensitization by paclitaxel using cell models of cisplatin resistance will lead to improvements in the clinical treatment of cisplatin resistant tumours.  相似文献   

17.
Antiviral drugs, most notably the neuraminidase inhibitors, are an important component of control strategies aimed to prevent or limit any future influenza pandemic. The potential large-scale use of antiviral drugs brings with it the danger of drug resistance evolution. A number of recent studies have shown that the emergence of drug-resistant influenza could undermine the usefulness of antiviral drugs for the control of an epidemic or pandemic outbreak. While these studies have provided important insights, the inherently stochastic nature of resistance generation and spread, as well as the potential for ongoing evolution of the resistant strain have not been fully addressed. Here, we study a stochastic model of drug resistance emergence and consecutive evolution of the resistant strain in response to antiviral control during an influenza pandemic. We find that taking into consideration the ongoing evolution of the resistant strain does not increase the probability of resistance emergence; however, it increases the total number of infecteds if a resistant outbreak occurs. Our study further shows that taking stochasticity into account leads to results that can differ from deterministic models. Specifically, we find that rapid and strong control cannot only contain a drug sensitive outbreak, it can also prevent a resistant outbreak from occurring. We find that the best control strategy is early intervention heavily based on prophylaxis at a level that leads to outbreak containment. If containment is not possible, mitigation works best at intermediate levels of antiviral control. Finally, we show that the results are not very sensitive to the way resistance generation is modeled.  相似文献   

18.
Drug resistance remains a major problem for the treatment of HIV. Resistance can occur due to mutations that were present before treatment starts or due to mutations that occur during treatment. The relative importance of these two sources is unknown. Resistance can also be transmitted between patients, but this process is not considered in the current study. We study three different situations in which HIV drug resistance may evolve: starting triple-drug therapy, treatment with a single dose of nevirapine and interruption of treatment. For each of these three cases good data are available from literature, which allows us to estimate the probability that resistance evolves from standing genetic variation. Depending on the treatment we find probabilities of the evolution of drug resistance due to standing genetic variation between 0 and 39%. For patients who start triple-drug combination therapy, we find that drug resistance evolves from standing genetic variation in approximately 6% of the patients. We use a population-dynamic and population-genetic model to understand the observations and to estimate important evolutionary parameters under the assumption that treatment failure is caused by the fixation of a single drug resistance mutation. We find that both the effective population size of the virus before treatment, and the fitness of the resistant mutant during treatment, are key-arameters which determine the probability that resistance evolves from standing genetic variation. Importantly, clinical data indicate that both of these parameters can be manipulated by the kind of treatment that is used.  相似文献   

19.
For drug development and pharmaceutical research, targeting the molecular abnormalities is considered as a new challenge. A number of diseases including cancer are linked to perturbation of tyrosine kinase (TK). Imatinib (Glivec or Gleevec, Novartis), the most potent inhibitor of c-abl TK, was recently developed. This molecule has been approved in the treatment of chronic myeloid leukemia (CML). However, emergence of clinical resistance regarding a low rate of CML patients leads to intensive research. In the current article, we discuss the data and the mechanism of the resistance phenomenon. This review illustrates the important requirement to transfer back the information from patient to laboratory in order to improve future drug design.  相似文献   

20.
With a predicted 382.4 per 100,000 people expected to suffer from some form of malignant neoplasm by 2015, and a current death toll of 1 out of 8 deaths worldwide, improving treatment and/or drug design is an essential focus of cancer research. Multi-drug resistance is the leading cause of chemotherapeutic failure, and delivery of anticancer drugs to the inside of cancerous cells is another major challenge. Fifteen years ago, in a completely different field in which improving drug delivery is the objective, the bioavailability of oral compounds, Christopher Lipinski formulated some rules that are still used by the pharmaceutical industry as rules of thumb to improve drug delivery to their target. Although Lipinski’s rules were not formulated to improve delivery of antineoplastic drugs to the inside of cancer cells, it is interesting to note that the problems are similar. On the basis of the strong similarity between the fields, we discuss how they can be connected and how new drug targets can be defined in cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号