首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Anabaena variabilis can be grown with dependence on either molybdenum (Mo) or vanadium (V) in the medium with essentially the same growth rates. Vanadium cultures reduce C2H2 to C2H4 and partly (to 2–3%) to C2H6. These C2H4 and C2H6 formations can be shown to be strictly light dependent, proving that the gases are formed by the cyanobacterium. C2H4 and C2H6 productions are accompanied by a H2 formation which is much higher than in Mo cultures. Maximal C2H2-formation rates are 2/3 lower in V-grown cells compared to Mo control cultures. This is the first demonstration of a light-dependent ethane formation and of the occurrence of the alternative nitrogenase in any phototroph.  相似文献   

2.
Preliminary studies have indicated that after addition of C2H2 there is a rapid decline in nitrogenase activity in the nodules of Datisca glomerata . The present work was undertaken to determine whether (1) there is also a decline in respiration and (2) the decline is associated with the cessation of ammonia production. The rates of C2H4 and CO2 evolution by nodulated root systems of Datisca were measured as a function of time after exposure to C2H2. The peak rate of C2H4 evolution occurred at 30 s after C2H2 exposure, while the rate of CO2 evolution started to decline at 60 s after exposure to C2H2. Incubation of nodules in a gas mixture containing Ar also caused a decline in CO2 evolution. Further, pretreatment with Ar eliminated most of the C2H2-induced decline in nitrogenase activity and CO2 evolution. These C2H2- and Ar-induced declines in Datisca nodules are more rapid than those reported in any other nodules. They are evidence that continued ammonia formation is essential for maintenance of normal nitrogenase activity in Datisca nodules.  相似文献   

3.
Role of growth regulators in the senescence of Arabidopsis thaliana leaves   总被引:1,自引:0,他引:1  
A homozygous, dominant, C2H4-resistant line of Arabidopsis thaliana (L.) Heynh (cv. Columbia; er ) was selected from ethylmethylsulfonate-mutagenized seed, and used to test the role of C2H4 and other growth regulators in senescence of mature leaves. Chlorophyll (Chl) loss from disks excised from leaves of er was much slower than that from wild-type (WT) disks, whether they were held in the light or in the dark. C2H4 accelerated Che loss from WT disks but had no effect on the yellowing of mutant disks. C2H4 biosynthesis was higher in disks from the mutant plants, particularly in the light. In the dark, treatment with the cytokinin, 6-benzyladenine (BA), reduced Chl loss from wild-type disks, but had no effect on mutant disks. In the light, BA treatment stimulated chlorophyll breakdown in both wild type and mutant disks. Treatment with abscisic acid (ABA) stimulated chlorophyll loss in wild-type and mutant disks, whether they were held in the light or the dark. C2H4 production was stimulated in ABA-treated disks, but they still yellowed even when C2H4 production was inhibited by application of aminooxyacetic acid (AOA). These data indicate that C2H4 is only one of the factors involved in leaf senescence, and that the promotion of senescence by ABA is not mediated through its stimulation of C2H4 production.  相似文献   

4.
The (C2H4+ H2(C2H2))/15N2 ratios of 15 clover- Rhizobium symbionts. soybean, and black medick symbionts were measured. Relative efficiency based on the C2H4 production and on 15N2 incorporation were compared, and in most symbionts there was little difference between the two measures of relative efficiency. Total measurable electron flux through nitrogenase during acetylene reduction and 15N2 incorporation were nearly equal for most symbionts studied. The relative efficiency and the (C2H4+ H2(C2H2))/15N2 ratio showed an inverse correlation. Use of this ratio appears preferable to use of the ratio of C2H2 reduction/N2 reduction. Some evolution of H2 was observed in the presence of C2H2.  相似文献   

5.
Abstract A denitrifying Cytophaga was isolated from soil enriched by anaerobic incubation with glucose, sulfide (S2−), nitrous oxide (N2O), and acetylene (C2H2). Such soil enrichments and pure cultures of the isolated Cytophaga reduced N2O rapidly even in the presence of a normally inhibitory concentration of C2H2 (4 kPa) providing S2− was present (8 μmol/g soil or 0.4 μmol/ml culture). Since C2H2 inhibition of the reduction of N2O is used as a tool in the assay of denitrification, the presence in large numbers of such a Cytophaga may influence the effectiveness of this assay especially in sulfidic environments.  相似文献   

6.
An open flow-through gas system was used to investigate the effect of plant age on nitrogenase activity in relation to root respiration (measured as CO2 release) and supra-ambient O2 levels in 24- to 51-day-old, nodulated Pisum sativum L. cv. Bodil. The effect of assaying plants repeatedly was also studied. The respiratory efficiency of nitrogenase [mol CO2 (mol C2H4)−1] and the relative decline in nitrogenase (EC 1.7.99.2) activity in response to introduction of C2H2 in the gas stream were unaffected by plant age. In contrast, the nitrogenase-linked respiration as a proportion of total root respiration increased with time. Accordingly, the specific respiration linked-to growth and maintenace of the noduled root system decreased with time. C2H2 reduction and root respiration were increased by supra-ambient O2 levels, but the tolerance to high O2 concentrations seemed to decrease with plant age. Repeated C2H2 assays on the same plants decreased their rate of growth and N accumulation: in addition, nitrogenase activity and root respiration were somewhat negatively affected. The results indicate that results from experiments with plants of different ages cannot always be directly compared, and that repeated C2H2 assays on the same plants should be applied with caution in physiological work.  相似文献   

7.
The quantitative relationship between C2H2 reduction, H2 evolution and 15N2 fixation was investigated in excised root nodules from pea plants ( Pisum sativum L. cv. Bodil) grown under controlled conditions. The C2H2/N2 conversion factor varied from 3.31 to 5.12 between the 32nd and the 67th day after planting. After correction for H2 evolution in air, the factor (C2H2-H2)/N2 decreased to values near the theoretical value 3, or in one case to a value significantly ( P < 0.05) below 3. The proportion of the total electron flow through nitrogenase, which is not wasted in H2 production but used for N2 reduction, is often stated as the relative efficiency (1-H2/C2H2). This factor varied significantly ( P < 0.05) during the growth period. The actual allocation of electrons to H2 and N2, expressed as the H2/N2 ratio, was independent of plant age, however. This discrepancy and the observation that the (C2H2-H2)/N2 conversion factor tended to be lower than 3, suggests that the C2H2reduction assay underestimates the total electron flow through nitrogenase.  相似文献   

8.
Abstract Nitrogenase activity of cells of Derxia gummosa (30 h growth in cultures without combined nitrogen) was not inhibited on adding nitrate. However, on adding either azaserine or methionine sulfoximine (MSX) with nitrate to these cells, nitrogenase (C2H2 reduction) was inhibited because nitrite accumulated in the reaction mixtures. Nitrite inhibition of the in vivo C2H2 reduction had a K i value of 16 μM. Both ammonia and glutamine inhibited N2 fixation (C2H2 reduction) in intact cells and in those treated with toluene. This inhibition by ammonia was relieved by methionine sulfoximine but not by glutamine. Azaserine enhanced the inhibition of nitrogenase produced by either ammonia or glutamine, since these treatments resulted in an accumulation of glutamine.  相似文献   

9.
ABSTRACT. Larvae of Plodia interpunctella deposit droplets of mandibular gland secretion onto silk filaments connecting particles within the substrate they inhabit, and on to the substrate itself. Active participation of the mouthparts is necessary for both the formation and deposition of these droplets along the filaments and occurs as the silk is spun. Deposition of secretion directly on the substratum does not involve the mouthparts and appears to result from contact between the lower surface of the head and the substratum. Larvae from which the mandibular glands have been removed by excision neither produce droplets on silk nor deposit them on the substratum. Those which are incapable of spinning silk due to cauterization of the spinneret are still able to deposit secretion on the substratum, however. Deposition of secretion on silk webbing does not occur when the setae which regulate formation of droplets on filaments are removed by shaving. Droplets are not characteristic of a particular larval instar but are produced by larvae of all instars as a normal function which does not depend upon intraspecific encounters. Four other Lepidopteran pests, Ephestia elutella, Ephestia cautella, Anagasta kuehniella and Antigasta catolaunalis , were also found to produce droplets of mandibular gland secretion in a similar manner to larvae of P. interpunctella.  相似文献   

10.
ABSTRACT. The locomotory response of walking parasitoids to a contact chemical from their host is reviewed, and in particular the response of the ichneumonid, Nemeritis canescens Grav., to the mandibular gland secretion of its host, Plodia interpunctella Hubn., is investigated. In response to the presentation of the host chemical on a surface, a walking Nemeritis exhibits a complex ortho-kinetic response involving stopping, walking at a reduced speed and probing with the ovipositor. In response to the removal of the chemical following presentation, as would occur when the insect left the edge of the chemical patch, the wasp exhibits a klinotactic response which directs it back to the patch at an average angle of 157° relative to the orientation at the moment of stimulation. This turning-back response at the patch edge greatly increases the time spent on a patch of contact chemical. The waning of this response determines when a host patch is abandoned. This waning is retarded by increasing the concentration of contact chemical on the patch and by opposition while on the patch.  相似文献   

11.
An open flow-through gas system was used to determine the effect of C2H2 and elevated O2 on acetylene reduction activity (ARA) and respiration of the intact, potted root system of Alnus incana (L.) Moench in symbiosis with Frankia Avcll or with a local source of Frankia . Both symbiotic systems responded to C2H2 by an immediate plateau range in ARA. The Plateau in ARA was in some cases followed by a decline of less extent than reported for many legumes. A concurrent decline in net respiration of the root system was on average 8% of the CO2 efflux prior to C2H2 introduction.
Respiration of the root systems in both symbioses responded to elevated oxygen levels in the 10 kPa C2H2 atmosphere by an increase of up to 17% of the net respiration prior to C2H2 introduction in 21 kPa O2. In contrast, the elevated oxygen levels resulted in an immediate drop in ARA followed by a minor increase to a stable level lower than that at the preceding, lower oxygen tension. The symbiosis with the local Frankia had lost all ARA when the partial pressure of O2 exceeded 50 kPa, whereas the symbiosis with Avcll still had some activity at 80 kPa O2. This difference in tolerance of elevated O2 clearly shows that the oxygen exclusion mechanisms may be controlled by the microsymbiont in Alnus-Frankia symbioses. The symbiotic systems recovered ARA to a similar extent when returned from elevated O2 levels to 21 kPa O2.  相似文献   

12.
Evolution of HCN from both rice ( Oryza sativa ) and cocklebur ( Xanthium pennsylvanicum ) seeds increased during a pre-germination period and preceded the evolution of (C2H4). These two species were adopted as the representatives of starchy and fatty seeds, respectively. Ethylene promotes seed germination of many species. However, HCN evolution declined abruptly when the radicles emerged and before the peak in C2H4 evolution. More-over, both rice and soybean ( Glycine max ) seeds showed some activity of β-cyanoalanine synthase (CAS, EC 4.4.1.9) even in the unimbibed dry state. The activities of CAS in the lower seed of cocklebur and in soybean seeds increased rapidly after emergence of the radicle. However, the CAS of rice seeds, with high activity in the dry state, exhibited a bimodal change, gradually decreasing until radicle emergence had occurred, but then increaing. It is thus likly that HCN evolution during initial imbibition may be derived from cyanogenic reserves and controlled by both pre-existing and subsequently-developing CAS. The exogenous application of C2H4 stimulated the activities of CAS in both rice and upper cocklebur seeds and reduced their cyanogen contents. Therefore, the decline of HCN evolution after germination seems to be due to the increased activities of CAS by endogenously produced C2H4.  相似文献   

13.
Abstract Streptomyces antibioticus strain TÜ 99, from which a wide variety of active compounds had been isolated previously, was reinvestigated using an HPLC photoconductivity screening system. Four new compounds were isolated, characterized and their constitutions determined. All four were α,β-unsaturated γ-lactones; the most abundant compound 3 (C10H16O4), as well as compound 1 (C9H14O4) had a hydroxy group at C(5) of the lactone ring. The four lactones showed antibiotic activity against Pseudomonas aeruginosa and also a weak inhibition of the chitinase from Serratia marcescens .  相似文献   

14.
Vibeke Holter 《Ecography》1984,7(2):165-170
Nitrogen fixation activity was determined for Lotus tenuis. Medicago lupulina and Trifolium pratense . The three species grew in clones in grassland in an area reclaimed from brackish water in the 1940s. The N2[C2H2]-fixation was measured in soil cores throughout 1974 and 1975. From cores taken in dense and uniform stands of the species, the yearly N2[C2H2]-fixation at maximum cover was estimated. L. tenuis fixed about 4 g N m−2 yr−1 (area with max. cover 130%), i.e. 30–56% of its requirement. Both M. lupulina and T. pratense fixed about 7 g N m−2 yr−1 (maximum cover 37% and 80%) i.e. 67% of their N-requirement. Average N2[C2H2]-fixation for the whole area was 0.4 g N m−2 yr−1, considerably less than the N-addition through rainfall.  相似文献   

15.
Hypobaric conditions and treatments with ethylene and the ethylene analogue propylene were used to investigate effects of oxygen and elhylene on 1-aminocyclopropane-1-carboxylic acid (ACC) content, ACC synthase activity and ethylene production of apples ( Malus sylveslris Mill. cv. Golden Delicious). Prcclimacteric apples were stored in air at 6.6 kPa (reduced pressure); 6.6 kPa ventilated with pure O2; 6.6 kPa ventilated with 2600 μl 1−1 C2H4; and in air at 101.3 kPa (atmospheric pressure) for 4 months at 4°C. No ACC synthase activity was detectable in apples stored at 6.6 kPa, whereas ACC synthase activity was induced in apples stored at 6.6 kPa and ventilated with either O2 or C2H4. In a further experiment, preclimacteric apples were stored for 14 days either in air at 20 kPa or at 20 kPa ventilated with pure O2. Both treatments were supplied with 58 500 μl 1−1 propylene from day 0 to day 9 or from day 9 to day 12. Ethylene production of apples treated with propylene from day 0 to day 9 increased earlier than ethylene production of untreated apples. Propylene treatment from day 9 to day 12 did not stimulate ethylene production. Ethylene and propylene induced and stimulated extractable ACC synthase activity and ACC formation of apples. Oxygen enhanced this effect. The results also suggest inhibition of in vivo ACC synthase activity by propylene.  相似文献   

16.
Nodulated faba-beans ( Vicia faba L. var. minor) exhibiting high rates of N2 fixation (133 μmol C2H4 g−1 dry weight h−1), were subjected to water restriction. A loss of C2H2 reduction due to water stress was always associated with a decline of the leghemoglobin content for each of the 4 decreasing values of Ψmod. Electron micrographs showed ultrastructural alterations of the fixing tissue, which affected both partners and increased with the severity of water stress. In the nodule cytosol, the alkaline proteolysis approximately doubled when Ψmod decreased from −0.55 MPa to −1.55 MPa. Concomitantly, an increase of the nodule intracellular pH from 6.3 to 7.0 was observed. Proteolysis was due to serine proteases, exhibiting a pH-optimum of 8 and which actively degraded purified leghemoglobin in vitro (Km=100 μ M ). The degradation of leghemoglobin during water stress may contribute to the loss of C2H2 reduction and may affect the pattern of recovery upon rewatering.  相似文献   

17.
Germinating seeds of many species contain two types of β-cyanoalanine synthase (CAS, EC 4.4.1.9) that convert HCN to β-cyanoalanine. One is cytoplasmic CAS (cyt-CAS), which is precipitated by 50 to 60% (NH4)2SO4 and has a pH optimum of 10.5. Cytoplasmic CAS is present at high levels in dry seed and its activity does not increase during imbibition. The activity of cyt-CAS is not affected by exogenously applied ethylene (C2H4), except in rice ( Oryza sativa cv. Sasanishiki). The second type of CAS found in seed is mitochondrial CAS (mit-CAS), which is precipitated by 60 to 70% (NH4)2SO4 and has a pH optimum of 9.5. Mitochondrial CAS is present at low levels in dry seed, and its activity increases greatly during imbibition in the seeds of all species tested. Exposure to C2H4 stimulated mit-CAS activity in seeds of rice, barley ( Hordeum vulgare cv. Hadakamugi). cucumber ( Cucumis sativus cv. Kagafushinari) and cocklebur ( Xanthium pennsylvanicum ). The increase in the mit-CAS activity in cocklebur in response to C2H4 commenced alter a lag period of 2 to 3 h when the duration of soaking was short (16 h), but commenced without a lag period when the seeds were soaked for three months. Application of both chloramphenicol and cycloheximide to the axial and cotyledonary tissues of cocklebur seeds strongly inhibited growth as well as the increase in mit-CAS activity. It is postulated that the mit-CAS is synthesized de novo during imbibition and that its activity is regulated by C2H4, CO2 which also promotes seed germination in some species, was ineffective m stimulating mit-CAS activity in cocklebur seeds.  相似文献   

18.
Phenol (C6H5OH) at non-lethal concentrations in hard water had no effect on the urine flow rate or haematocrit of rainbow trout for exposure times of 24 h. Phenol was detected in the urine in a non-conjugated form and unchanged phenol was also extracted from muscle, blood and brain. Uptake of phenol into tissue was found to be rapid with an equilibrium concentration being reached in 3 h. Loss of phenol after exposure was as rapid. The equilibrium concentration for muscle was similar to the phenol concentration to which the fish were exposed. Blood and brain contained smaller amounts. Close to or above the lethal threshold concentration (48-h lc509 mg 1-l; 15°C) the fish had higher than ambient concentrations in their tissues most notably in the brain. Above the lethal threshold there is evidence of a large uptake of phenol by erythrocytes.  相似文献   

19.
Semi-solid medium was used to isolate an aerobic, N2-fixing (C2H2-reducing), H2-utilizing bacterium from the roots of kallar grass ( Leptochloa fusca ). The organism was identified by morphological, cultural and biochemical characteristics. The N2-fixing, zoogloeal floc-forming isolate described here is a new species.  相似文献   

20.
Medicago ciliaris (L.) All., a salt-tolerant legume, was not nodulated by Rhizobium meliloti (2011), a strain commonly used for field inoculation of alfalfas. A strain of Rhizobium meliloti (ABS7) was isolated from saline Algerian soils. It is generally more salt-resistant than strain 2011, exhibits a higher rate of growth and induces the formation of nodules on M. ciliaris . C2H2 reduction activity of M. ciliaris nodules was inhibited by 50% in the presence of 200 m M NaCl in the culture medium. whereas 100 m M NaCl was sufficient to inhibit the activity of nodules of M. sativa (L. cv. Europe). C2H2 reduction by bacteroids, isolated from nodules of the two species of alfalfa, was directly inhibited by the presence of NaCl in the incubation medium. In both cases, glucose could support bacteroid nitrogen fixation, but only in a narrow range of O2 tensions. Bacteriods from M. ciliaris were more tolerant to salt than M. sativa ones. The salt resistance of bacteroids from nodules of plants watered with NaCl solutions was not improved in either species. Salt directly added to the incubation mixture of bacteroids or to the culture medium of plants inhibited O2 uptake of bacteroids isolated from nodules of both M. ciliaris and M. sativa . The depressive effect of NaCl on bacteroid C2H2 reduction could be directly related to the drop in bacteroid respiration. The nitrogen fixation capacity of the M. ciliaris-Rhizobium meliloti (ABS7) symbiosis under saline conditions leads us to recommend the introduction of this association in salt-troubled areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号