首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NAD kinase (NADK, EC 2.7.1.23) is the sole NADP(+)-biosynthetic enzyme that catalyzes phosphorylation of NAD(+) to yield NADP(+) using ATP as a phosphoryl donor, and thus, plays a vital role in the cell and represents a potentially powerful antimicrobial drug target. Although methods for expression and purification of human NADK have been previously established (Lerner et al. Biochem Biophys Res Commun 288:69-74, 2001), the purification procedure could be significantly improved. In this study, we improved the method for expression and purification of human NADK in Escherichia coli and obtained a purified homogeneous enzyme only through heat treatment and single column chromatography. Using the purified human NADK, we revealed a sigmoidal kinetic behavior toward ATP and the inhibitory effects of NADPH and NADH, but not of NADP(+), on the catalytic activity of the enzyme. These inhibitory effects provide insight into the regulation of intracellular NADPH synthesis. Furthermore, these attributes may provide a clue to design a novel drug against Mycobacterium tuberculosis in which this bacterial NADK is potently inhibited by NADP(+).  相似文献   

2.
NAD(+)-dependent malic enzyme (NAD-ME) gene from Escherichia coli K12 was inserted into an expression vector pET24b(+) and transformed into E. coli BL21 (DE3). Recombinant NAD-ME was expressed upon IPTG induction, purified with affinity chromatography, and biochemically characterized. The results showed that recombinant NAD-ME could be produced mainly in a soluble form. The monomeric molecular weight of recombinant NAD-ME was about 65 kDa, whereas monomer, homotetramer, and homooctamer were formed in solution as revealed by nondenaturing polyacrylamide gel electrophoresis analysis. Finally, the K(m) values of NAD-ME for L-malate and NAD were determined as 0.420+/-0.174 and 0.097+/-0.038 mM, respectively, at pH 7.2. By using this over-expression and purification system, recombinant E. coli K12 NAD-ME can now be obtained in large quantity necessary for further biochemical characterization and applications.  相似文献   

3.
4.
5.
Streptococcus sobrinus, one agent of dental caries, secretes a protein that induces lymphocyte polyclonal activation of the host as a mechanism of immune evasion. We have isolated from culture supernatants of this bacterium a protein with murine B-cell-stimulatory properties and subsequently cloned the relevant gene. It contains an open reading frame of 825 bp encoding a polypeptide with 275 amino acid residues and a molecular mass of 30 kDa. The protein displays high sequence homology with NAD(+) synthetases from several organisms, including a conserved fingerprint sequence (SGGXD) characteristic of ATP pyrophosphatases. The polypeptide was expressed in Escherichia coli as a hexahistidine-tagged protein and purified in an enzymatically active form. The recombinant NAD(+) synthetase stimulates murine B cells after in vitro treatment of spleen cell cultures, as demonstrated by its ability to induce up-regulation of the expression of CD69, an early marker of lymphocyte activation. Stimulation with the recombinant NAD(+) synthetase was also observed with other B-cell markers, such as CD19(+), B220(+), and CD21(+). Cell proliferation follows the activation induced by the recombinant NAD(+) synthetase.  相似文献   

6.
Tuberculosis (TB) remains to be a global health problem. New drugs are badly needed to drastically reduce treatment time and overcome some of the challenges with tuberculosis treatment, such as multi-drug resistant (MDR) strain infected patients or tuberculosis/HIV co-infected patients. The essentiality of mycobacterial aromatic amino acid biosynthesis pathways and their absence from human host indicate that the member enzymes of these pathways promising drug targets for therapeutic agents against pathogen mycobacteria. Prephenate dehydrogenase (PDH) is a key regulatory enzyme in tyrosine biosynthesis, catalyzing the NAD(+)-dependent conversion of prephenate to p-hydroxyphenylpyruvate, making it a potential drug target for antibiotics discovery. The recombinant PDH with an N-terminal His-tag (His-rMtPDH) was first purified in Escherichia coli, and using enterokinase rMtPDH was obtained by cleaving the N-terminal fusion partner. The effect of pH, temperature and the cation-Na(+) on purified enzyme activity was characterized. The N-terminal fusion partner was found to have little effect on the biochemical properties of PDH. We also provide in vitro evidence that Mycobacterium tuberculosis PDH does not possess any chorismate mutase (CM) activity, which suggests that, unlike many other enteric bacteria (where PDH exists as a fusion protein with CM), M. tuberculosis PDH is a monofunctional protein.  相似文献   

7.
The essential gene efg, which complements ammonia-dependent growth (adgA) mutations in Rhodobacter capsulatus and is located at 38.1 min on the Escherichia coli chromosome, was found to code for NH3-dependent NAD synthetase. Crude extracts from a strain which overproduces the efg gene product contained up to 400 times more activity than crude extracts from the control strain, and the purified Efg protein possessed-NH3-dependent NAD synthetase activity. Glutamine-dependent NAD synthetase activity was found in crude extracts of E. coli but not in the purified enzyme, suggesting that it may be catalyzed by an additional subunit. An R. capsulatus strain carrying an adgA mutation was found to be deficient in NAD synthetase activity, and activity was restored by complementation with the E. coli gene. In accordance with the nomenclature proposed for Salmonella typhimurium (K. T. Hughes, B. M. Olivera, and J. R. Roth, J. Bacteriol. 170:2113-2120, 1988), the efg and adgA genes should now be designated nadE.  相似文献   

8.
Bacillus stearothermophilus H-804 isolated from a hot spring in Beppu, Japan, produced an ammonia-specific NAD synthetase (EC 6.3.1.5). The enzyme specifically used NH3 as an amide donor for the synthesis of NAD as it formed AMP and pyrophosphate from deamide-NAD and ATP. None of the l-amino acids tested, such as l-asparagine or l-glutamine, or other amino compounds such as urea, uric acid, or creatinine was used instead of NH3. Mg2+ was needed for the activity, and the maximum enzyme activity was obtained with 3 mM MgCl2. The molecular mass of the native enzyme was 50 kDa by gel filtration, and SDS-PAGE showed a single protein band at the molecular mass of 25 kDa. The optimum pH and temperature for the activity were from 9.0 to 10.0 and 60 degrees C, respectively. The enzyme was stable at a pH range of 7.5 to 9.0 and up to 60 degrees C. The Km for NH3, ATP, and deamide-NAD were 0.91, 0.052, and 0.028 mM, respectively. The gene encoding the enzyme consisted of an open reading frame of 738 bp and encoded a protein of 246 amino acid residues. The deduced amino acid sequence of the gene had about 32% homology to those of Escherichia coli and Bacillus subtilis NAD synthetases. We caused the NAD synthetase gene to be expressed in E. coli at a high level; the enzyme activity (per liter of medium) produced by the recombinant E. coli was 180-fold that of B. stearothermophilus H-804. The specific assay of ammonia and ATP (up to 25 microM) with this stable NAD synthetase was possible.  相似文献   

9.
Trypanosomes are flagellated protozoa responsible for serious parasitic diseases that have been classified by the World Health Organization as tropical sicknesses of major importance. One important drug target receiving considerable attention is the enzyme glyceraldehyde-3-phosphate dehydrogenase from the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease (T. cruzi Glyceraldehyde-3-phosphate dehydrogenase (TcGAPDH); EC 1.2.1.12). TcGAPDH is a key enzyme in the glycolytic pathway of T. cruzi and catalyzes the oxidative phosphorylation of D-glyceraldehyde-3-phosphate (G3P) to 1,3-bisphosphoglycerate (1,3-BPG) coupled to the reduction of oxidized nicotinamide adenine dinucleotide, (NAD(+)) to NADH, the reduced form. Herein, we describe the cloning of the T. cruzi gene for TcGAPDH into the pET-28a(+) vector, its expression as a tagged protein in Escherichia coli, purification and kinetic characterization. The His(6)-tagged TcGAPDH was purified by affinity chromatography. Enzyme activity assays for the recombinant His(6)-TcGAPDH were carried out spectrophotometrically to determine the kinetic parameters. The apparent Michaelis-Menten constant (K(M)(app)) determined for D-glyceraldehyde-3-phosphate and NAD(+) were 352±21 and 272±25 μM, respectively, which were consistent with the values for the untagged enzyme reported in the literature. We have demonstrated by the use of Isothermal Titration Calorimetry (ITC) that this vector modification resulted in activity preserved for a higher period. We also report here the use of response surface methodology (RSM) to determine the region of optimal conditions for enzyme activity. A quadratic model was developed by RSM to describe the enzyme activity in terms of pH and temperature as independent variables. According to the RMS contour plots and variance analysis, the maximum enzyme activity was at 29.1°C and pH 8.6. Above 37°C, the enzyme activity starts to fall, which may be related to previous reports that the quaternary structure begins a process of disassembly.  相似文献   

10.
Mitochondrial NAD(+)-dependent malic enzyme (EC 1.1.1.40) is expressed in rapidly proliferating cells and tumor cells, where it is probably linked to the conversion of amino acid carbon to pyruvate. In this paper, we report the cDNA cloning, amino acid sequence, and expression in Escherichia coli of functional human NAD(+)-dependent mitochondrial malic enzyme. The cDNA is 1,923 base pairs long and contains an open reading frame coding for a 584-amino acid protein. The molecular mass is 65.4 kDa for the unprocessed precursor protein. Comparison of the amino acid sequence of the human protein with the published NADP(+)-dependent mammalian cytosolic or plant chloroplast malic enzymes reveals highly conserved regions interrupted with long stretches of amino acids without significant homology. Expression of the processed protein in E. coli yielded an enzyme with the same kinetic and allosteric properties as malic enzyme purified from human cells.  相似文献   

11.
In order to explore the structure--function relationship of the Escherichia coli asparagine synthetase A it was necessary to devise a system for overexpression of the gene and purification of the gene product. The E. coli asparagine synthetase A structural gene was fused to the 3' end of the human carbonic anhydrase II structural gene and overexpressed in E. coli. The gene product, a 66 kDa fusion protein, which exhibited asparagine synthetase activity, was purified in a single step by affinity chromatography and used as the antigen for the production of monoclonal antibodies. The monoclonal antibodies were screened by ELISA. Colonies were chosen which were positive for purified fusion protein and negative for purified human carbonic anhydrase II. The E. coli asparagine synthetase A gene was then overexpressed and the gene product was used without purification for the final screen. The antibodies selected were used for immunoaffinity chromatography to purify the recombinant overexpressed E. coli asparagine synthetase A. Thus, a procedure is now available so that asparagine synthetase A can be purified to homogeneity in a single step.  相似文献   

12.
13.
Dudley A  McKinstry W  Thomas D  Best J  Jenkins A 《BioTechniques》2003,35(4):724-6, 728, 730 passim
The success of recombinant protein expression/purification in Escherichia coli depends on a high-fidelity system rendering purified proteins free of confounding contaminants such as endotoxin. Here we report on the expression and purification of a cryptic plasminogen-derived domain, kringle 5, which was previously reported to specifically inhibit endothelial cell growth and, therefore, angiogenesis. Using a histidine (HIS)-tag expression and Ni(+)-NTA agarose purification system identical to previous reports, we found that our purified recombinant kringle 5 did inhibit endothelial cell growth, but this activity could not be eradicated by heat denaturing or proteolysis of kringle 5 with various proteases. This led us to suspect the presence of a contaminant in the purified samples. Quantitative endotoxin testing using a limulus amoebocyte lysate assay revealed that all samples purified by Ni(+)-NTA agarose alone harbored high concentrations of endotoxin that could not be removed by additional purification on anion exchange chromatography. Finally, when kringle 5 was rendered endotoxin-free by purification on reverse phase high-performance liquid chromatography (HPLC), there was a complete loss of endothelial cell growth inhibitory activity. These results strongly suggest that endotoxin-free recombinant kringle 5 may not possess anti-angiogenic activity and demonstrates that, especially in angiogenesis type assays, endotoxin contamination can lead to a misinterpretation of results.  相似文献   

14.
Subcellular fractionation of bovine thyroid tissue by differential pelleting and isopycnic gradient centrifugation in a zonal rotor indicated that NAD(+) glycohydrolase is predominantly located and rather uniformly distributed in the plasma membrane. Comparison of NAD(+) glycohydrolase activities of intact thyroid tissue slices, functional rat thyroid cells in culture (FRT(l)) and their respective homogenates indicated that most if not all of the enzyme (catalytic site) is accessible to extracellular NAD(+). The reaction product nicotinamide was predominantly recovered from the extracellular medium. The diazonium salt of sulphanilic acid, not penetrating into intact cells, was able to decrease the activity of intact thyroid tissue slices to the same extent as in the homogenate. Under the same conditions this reagent almost completely abolished NAD(+) glycohydrolase activity associated with intact thyroid cells in culture. The triazine dye Cibacron Blue F3GA and its high-M(r) derivative Blue Dextran respectively completely eliminated or caused a severe depression in the NAD(+) glycohydrolase activity of FRT(l) cells. The enzyme could be readily solubilized from bovine thyroid membranes by detergent extraction, and was further purified by gel filtration and affinity chromatography on Blue Sepharose CL-6B. The overall procedure resulted in a 1940-fold purification (specific activity 77.6mumol of nicotinamide released/h per mg). The purified enzyme displays a K(m) of 0.40mm for beta-NAD(+), a broad pH optimum around pH7.2 (0.1 m-potassium phosphate buffer) and an apparent M(r) of 120000. Nicotinamide is an inhibitor (K(i) 1.9mm) of the non-competitive type. The second reaction product ADP-ribose acts as a competitive inhibitor (K(i) 2.7mm). The purified enzyme splits beta-NAD(+), beta-NADP(+), beta-NADH and alpha-NAD(+) at rates in the relative proportions 1:0.75:<0.02:<0.02 and exhibits transglycosidase (pyridine-base exchange) activity. Anionic phospholipids such as phosphatidylinositol and phosphatidylserine inhibit the partially purified enzyme. A stimulating effect was observed upon the addition of histones.  相似文献   

15.
S-Adenosylhomocysteine (AdoHcy) hydrolase has emerged as an attractive target for antiparasitic drug design because of its role in the regulation of all S-adenosylmethionine-dependent transmethylation reactions, including those reactions crucial for parasite replication. From a genomic DNA library of Trypanosoma cruzi, we have isolated a gene that encodes a polypeptide containing a highly conserved AdoHcy hydrolase consensus sequence. The recombinant T. cruzi enzyme was overexpressed in Escherichia coli and purified as a homotetramer. At pH 7.2 and 37 degrees C, the purified enzyme hydrolyzes AdoHcy to adenosine and homocysteine with a first-order rate constant of 1 s(-1) and synthesizes AdoHcy from adenosine and homocysteine with a pseudo-first-order rate constant of 3 s(-1) in the presence of 1 mM homocysteine. The reversible catalysis depends on the binding of NAD(+) to the enzyme. In spite of the significant structural homology between the parasitic and human AdoHcy hydrolase, the K(d) of 1.3 microM for NAD(+) binding to the T. cruzi enzyme is approximately 11-fold higher than the K(d) (0.12 microM) for NAD(+) binding to the human enzyme.  相似文献   

16.
旨在构建植原体免疫主导膜蛋白Imp基因原核表达载体,并进行初步表达。以重组克隆质粒pMD18-T-Imp为模板,PCR扩增Imp基因片段。构建表达载体pET-28a(+)-Imp,转化宿主菌E.coliBL21(DE3)。筛选阳性克隆,提取重组质粒作PCR鉴定、酶切鉴定及IPTG诱导表达鉴定。PCR及双酶切结果显示,重组质粒pET-28a(+)-Imp构建成功。经IPTG诱导BL21(pET-28a(+)-Imp)表达约20 kD的蛋白,与预期的携带6×His-Tag的目的蛋白(19.5 kD)大小相符,主要以包涵体形式存在。结果显示,构建的表达载体pET-28a(+)-Imp在E.coliBL21(DE3)中能够达一定量表达,为进一步纯化Imp蛋白奠定基础。  相似文献   

17.
We describe the heterologous expression of a recombinant Saccharomyces cerevisiae isoleucyl-tRNA synthetase (IRS) gene in Escherichia coli, as well as the purification and characterization of the recombinant gene product. High level expression of the yeast isoleucyl-tRNA synthetase gene was facilitated by site-specific mutagenesis. The putative ribosome-binding site of the yeast IRS gene was made to be the consensus of many highly expressed genes of E. coli. Mutagenesis simultaneously created a unique BclI restriction site such that the gene coding region could be conveniently subcloned as a "cassette." The variant gene was cloned into the expression vector pKK223-3 (Brosius, J., and Holy, A. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 6929-6933) thereby creating the plasmid pKR4 in which yeast IRS expression is under the control of the isopropyl-thio-beta-galactopyranoside (IPTG)-inducible tac promoter. Recombinant yeast IRS, on the order of 10 mg/liter of cell culture, was purified from pKR4-infected and IPTG-induced E. coli strain TG2. Yeast IRS was purified to homogeneity by a combination of anion-exchange and hydroxyapatite gel chromatography. Inhibition of yeast IRS activity by the antibiotic pseudomonic acid A was tested. The yeast IRS enzyme was found to be 10(4) times less sensitive to inhibition by pseudomonic acid A (Ki = 1.5 x 10(-5) M) than the E. coli enzyme. E. coli strain TG2 infected with pKR4, and induced with IPTG, had a plating efficiency of 100% at inhibitor concentrations in excess of 25 micrograms/ml. At the same concentration of pseudomonic acid A, E. coli strain TG2 infected with pKK223-3 had a plating efficiency less than 1%. The ability of yeast IRS to rescue E. coli from pseudomonic acid A suggests that the eukaryotic synthetase has full activity in its prokaryotic host and has specificity for E. coli tRNA(ile).  相似文献   

18.
The gene encoding S-adenosylhomocysteine (AdoHcy) hydrolase in Leishmania donovani was subcloned into an expression vector (pPROK-1) and expressed in Escherichia coli. Recombinant L. donovani AdoHcy hydrolase was then purified from cell-free extracts of E. coli using three chromatographic steps (DEAE-cellulose chromatofocusing, Sephacryl S-300 gel filtration, and Q-Sepharose ion exchange). The purified recombinant L. donovani enzyme exists as a tetramer with a molecular weight of approximately 48 kDa for each subunit. Unlike recombinant human AdoHcy hydrolase, the catalytic activity of the recombinant L. donovani enzyme was shown to be dependent on the concentration of NAD+ in the incubation medium. The dissociation constant (Kd) for NAD+ with the L. donovani enzyme was estimated to be 2.1 +/- 0.2 microM. The Km values for the natural substrates of the enzyme, AdoHcy, Ado, and Hcy, were determined to be 21 +/- 3, 8 +/- 2, and 82 +/- 5 microM, respectively. Several nucleosides and carbocyclic nucleosides were tested for their inhibitory effects on this parasitic enzyme, and the results suggested that L. donovani AdoHcy hydrolase has structural requirements for binding inhibitors different than those of the human enzyme. Thus, it may be possible to eventually exploit these differences to design specific inhibitors of this parasitic enzyme as potential antiparasitic agents.  相似文献   

19.
A limited number of proteins of Mycobacterium tuberculosis have been characterized so far for their use as potential candidates for diagnosis and vaccine studies. This study was aimed at cloning, expression, and purification of a 27 kDa protein (otherwise known as the MPT51 or Rv3803c protein) of M. tuberculosis. The Rv3803c gene was PCR amplified using primers that contain specific restriction sites. The amplified product was inserted initially into pTOPO and then sub-cloned into pET15b and pET24d vectors, such that the recombinant protein is predicted to contain an N-terminal or a C-terminal histidine tag, respectively. The recombinant plasmids were introduced into Escherichia coli BL21 (DE3) and the recombinant proteins were purified from the cytosolic fractions of the E. coli sonicates by nickel-NTA chromatography. The purity, molecular mass, and the conformation of the proteins were determined by high performance liquid chromatography (HPLC), matrix assisted laser desorption-ionization-time-of-flight (MALDI-TOF), and circular dichroism (CD) studies, respectively. The purified proteins were found to be immunogenic and useful for immunodiagnostic studies of tuberculosis by enzyme linked immunosorbent assay (ELISA), with a sensitivity of 71% and specificity of 95%.  相似文献   

20.
Nitrile hydratases (NHases) are industrially important iron- and cobalt-containing enzymes that are used in the large-scale synthesis of acrylamide. Heterologous expression of NHases has been complicated by the fact that other proteins (activators or metallochaperones) appear to be required to produce NHases in their catalytically active form. We report a novel heterologous system for the expression of catalytically active iron-containing NI1 NHase in Escherichia coli, involving coexpression with the E. coli GroES and GroEL chaperones. The purified recombinant enzyme was found to be highly similar to the enzyme purified from Comamonas testosteroni according to its spectroscopic features, catalytic properties with various substrates, and post-translational modifications. In addition, we report a rapid and convenient spectrophotometric method to monitor the activity of NI1 NHase during purification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号