首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mechanistic understanding of perchlorate () entry into plants is important for establishing the human health risk associated with consumption of contaminated produce and for assessing the effectiveness of phytoremediation. To determine whether common soil anions affect uptake and accumulation in higher plants, a series of competition experiments using lettuce (Lactuca sativa L.) were conducted between (50 nM) and (4–12 mM), (1–10 mM), or Cl (5–15 mM) in hydroponic solution. The effects of (0–5 mM) and pH (5.5–7.5) on uptake were also examined. Increasing in solution significantly reduced the amount of taken up by green leaf, butter head, and crisphead lettuces. Sulfate and Cl had no significant effects on uptake in lettuce over the concentrations tested. Increasing pH significantly reduced the amount of taken up by crisphead and green leaf lettuces, whereas increasing significantly reduced uptake in butter head lettuce. The inhibition by across all lettuce genotypes suggests that may share an ion carrier with , and the decrease in uptake with increasing pH or provides macroscopic evidence for cotransport across the plasma membrane.  相似文献   

2.
We present long-term nutrient data on the Changjiang River (Yangtze River) at six hydrological stations and eight principal tributaries during the period 1958–1985. Three patterns of temporal changes were observed in nitrate and nitrite : minimal variations in the upper catchment area, rapid increases in the middle watershed towards the end of the 1970s, and a gradual increase in the lower drainage basin. Prior to the 1970s, the level of throughout the Changjiang River system remained fairly constant. In the 1980s, however, this changed, with the lowest values in the upper Changjiang changing rapidly to the highest in the middle reaches and then declining slowly but steadily in the lower courses. Compared to and ammonium and soluble reactive phosphorus (SRP) showed smaller increases or no long-term variations, while dissolved silica (DSi) concentration generally decreased at most stations. These three patterns of and changes in the Changjiang River system were reflective of the difference in chemical fertilizer use and landscape features (e.g., slope, soil type and water body area) of the drainage basins of the primary tributaries. The decreases in DSi were most likely attributed to a reduction in suspended sediment loading due to dam constructions and increasing diatom consumption. The increase in and with a reduction in DSi concentrations in the Changjiang River could have significant effects on the stoichiometric balance of nutrients delivered to the East China Sea and the ecosystem in this dynamic region.  相似文献   

3.
As a result of increased anthropogenic nitrogen (N) loading in surface waters of agricultural watersheds, there is enhanced interest to understand and quantify N removal mechanisms. Denitrification, an important N removal mechanism in aquatic systems, may contribute to reducing N pollution in agricultural headwater streams. However, the key factors controlling this process in lotic systems remain unclear. The objective of our study was to examine the factors regulating rates of denitrification in the sediments of agricultural headwater streams in the mid-western USA. Denitrification rates were variable among streams and treatments (<0.1–28.0 μg N g AFDM−1 h−1) and on average, were higher than those reported for similar headwater streams. Carbon quantity and quality, and pH had no effect on denitrification, while temperature and nitrate ( ) concentrations had a positive effect on rates of denitrification. Specifically, controlled denitrification following Michaelis-Menten kinetics. We calculated a value of km (1.0 mg -N L-1) that was comparable to other studies in aquatic sediments but was well below the median in-stream concentrations (5.2–17.4 mg -N L−1) observed at the study sites. Despite high rates of denitrification, this removal mechanism is most likely saturated in the agricultural headwater streams we examined, suggesting that these systems are not effective at removing in-stream N. Handling editor: D. Ryder  相似文献   

4.
A novel molecular connectivity index, , based on the adjacency matrix of molecular graphs and novel atomic valence connectivities, , for predicting the molar diamagnetic susceptibilities of organic compounds is proposed. The is defined as: , where and Ei are the atomic valence connectivity and the valence orbital energy of atom i, respectively. A good QSPR model for molar diamagnetic susceptibilities can be constructed from and using multivariate linear regression (MLR). The correlation coefficient r, standard error, and average absolute deviation of the MLR model are 0.9918, 5.56 cgs, and 4.26 cgs, respectively, for the 721 organic compounds tested (training set). Cross-validation using the leave-one-out method demonstrates that the MLR model is highly reliable statistically. Using the MLR model, the average absolute deviations of the predicted values of molar diamagnetic susceptibility of another 360 organic compounds (test set) is 4.34 cgs. The results show that the current method is more effective than literature methods for estimating the molar diamagnetic susceptibility of an organic compound. The MLR method thus provides an acceptable model for the prediction of molar diamagnetic susceptibilities of organic compounds. Figure Plot of calculated vs experimental values of molar diamagnetic susceptibilities using the multivariate linear regression (MLR) model (Eq. 8)  相似文献   

5.
Fluctuating hydrochemistry, as a result of extreme hydrological regimes, imposes major physiological constraints on the biota of ephemeral saline lakes. While the inverse relationship between salinity and zooplankton species richness is well-known across salinity gradients, few studies have documented closely the response of zooplankton to seasonal changes in salinity. Weekly sampling during two flood seasons at Sua Pan, an intermittent saline lake in central Botswana demonstrated the importance of spatial and temporal salinity gradients for crustacean community composition, associated with a decline in species richness, from 11 to three species. Conductivity ranged between 320 and 125,800 μS cm−1 during seasonal flooding; changing from dominance by and , Ca2+ and Mg2+, at the beginning of the floods, to NaCl dominated waters as the lake dried out and salinities increased. pH estimates generally ranged between 8.6 and 10, with maximum values recorded during initial flooding. Crustaceans comprised mainly Branchinella spinosa, Moina belli, Lovenula africana and Limnocythere tudoranceai, all of which occurred across a wide range of salinities, while halotolerant freshwater species (Metadiaptomus transvaalensis, Leptestheria striatochonca and the ostracods Plesiocypridopsis aldabrae, Cypridopsis newtoni and a newly identified Potamocypris species) disappeared above conductivities of 1,500 μS cm−1. A unique crustacean composition in southern Africa was attributed to Sua Pans’ rare chemical composition among southern African saline lakes; flood waters on Sua Pan contained a higher proportion of Na+ and , and less K+, Mg2+ and than over 80% of records from salt pans elsewhere in southern African. The freshwater species of crustaceans in Sua Pan were similar to those found in other southern Africa lakes, and these similarities decreased in lakes with higher pH and proportions of Na, and less SO4 and Mg in their chemical composition. The predominant saline tolerant species on Sua Pan, however, showed a greater similarity to those in saline lakes in southern and East Africa with higher proportions of and, particularly, Mg2+ in their chemical composition. Handling editor: J. M. Melack  相似文献   

6.
The biosorption of metal ions (Cr+3, , Cu+2, and Ni+2) on two algal blooms (designated HD-103 and HD-104) collected locally was investigated as a function of the initial metal ion concentration. The main constituent of HD-103 is Cladophora sp., while Spirulina sp. is present significantly in the bloom HD-104. Algal biomass HD-103 exhibited the highest Cu+2 uptake capacity (819 mg/g). This bloom adsorbed Ni+2 (504 mg/g), Cr+3 (347 mg/g), and (168 mg/g). Maximum of Ni+2 (1108 mg/g) is taken by HD-104. This species takes up 306, 202, and 576 mg/g Cr+3, , and Cu+2, respectively. Equilibrium data fit very well to both the Langmuir and the Freundlich isotherm models. The sorption process followed the Freundlich model better. Pseudo-first-order kinetic model could describe the kinetic data. Infrared (IR) spectroscopic data were employed to identify the site(s) of bonding. It was found that phosphate and peptide moieties participate in the metal uptake by bloom HD-103. In the case of bloom HD-104, carboxylate and phosphate are responsible for the metal uptake. The role of protein in metal uptake by HD-103 was investigated using polyacrylamide gel electrophoresis.  相似文献   

7.
Effects of light on the short term competition for organic and inorganic nitrogen between maize and rhizosphere microorganisms were investigated using a mixture of amino acid, ammonium and nitrate under controlled conditions. The amount and forms of N added in the three treatments was identical, but only one of the three N forms was labeled with 15N. Glycine was additionally labeled with 14C to prove its uptake by maize and incorporation into microbial biomass in an intact form. Maize out-competed microorganisms for during the whole experiment under low and high light intensity. Microbial uptake of 15N and 14C was not directly influenced by the light intensity, but was indirectly related to the impact the light intensity had on the plant. More was recovered in microbial biomass than in plants in the initial 4 h under the two light intensities, although more 15N-glycine was incorporated into microbial biomass than in plants in the initial 4 h under low light intensity. Light had a significant effect on uptake by maize, but no significant effects on the uptake of or 15N-glycine. High light intensity significantly increased plant uptake of and glycine 14C. Based on 14C to 15N recovery ratios of plants, intact glycine contributed at least 13% to glycine-derived nitrogen 4 h after tracer additions, but it contributed only 0.5% to total nitrogen uptake. These findings suggest that light intensity alters the competitive relationship between maize roots and rhizosphere microorganisms and that C4 cereals such as maize are able to access small amounts of intact glycine. We conclude that roots were stronger competitor than microorganisms for inorganic N, but microorganisms out competed plants during a short period for organic N, which was mineralized into inorganic N within a few hours of application to the soil and was thereafter available for root uptake.  相似文献   

8.
Summary A simple heteronuclear relayed E.COSY pulse sequence with a minimum number of pulses is proposed for the quantitative determination of heteronuclear three-bond J-coupling constants in uniformly 13C-enriched polypeptide samples. Numerous heteronuclear three-bond coupling constants, including , , , and , can be determined for each residue from a single heteronuclear relayed E.COSY spectrum. Couplings relevant for stereospecific assignments as well as for the determination of dihedral angles in the amino acid backbone and in side chains are obtained. The method is demonstrated on the uniformly 13C-enriched decapeptide antamanide (-Val1-Pro2-Pro3-Ala4-Phe5-Phe6-Pro7-Pro8-Phe9-Phe10-).  相似文献   

9.
Summary A set of three-dimensional triple-resonance experiments is described which provide , , and coupling constants. The pulse sequences generate E.COSY-like multiplet patterns and comprise a magnetization transfer from the amide proton to the α-proton or vice versa via the directly bound heteronuclei. For residues with the 1Hα spin resonating close to the H2O signal, a modified HNCA experiment can be employed to measure the vicinal 1HN,1Hα couplings. Ambiguities associated with the conversion of values into ϕ-angle constraints for protein structure determination can be resolved with the knowledge of the heteronuclear 3J-couplings. In favourable cases, stereospecific assignments of glycine α-protons can be obtained by employing the experiments described here in combination with NOE data. The methods are applied to flavodoxin from Desulfovibrio vulgaris.  相似文献   

10.
11.
The pathway and ab initio direct kinetics of the decomposition 5-aminotetrazole (5-ATZ) to HN3 and NH2CN was investigated. Reactant, products and transition state were optimized with MP2 and B3LYP methods using 6–311G** and aug-cc-pVDZ basis sets. The intrinsic reaction coordinate curve of the reaction was calculated using the MP2 method with 6–311G** basis set. The energies were refined using CCSD(T)/6–311G**. Rate constants were evaluated by conventional transition-state theory (CVT) and canonical variational transition-state theory (TST), with tunneling effect over 300 to 2,500 K. The results indicated that the tunneling effect and the variational effect are small for the calculated rate constants. The fitted three-parameter expression calculated using the CVT and TST methods are and , respectively. Figure The mechanism of the decomposition process of 5-ATZ to HN3 and NH2CN  相似文献   

12.
Interactions of structurally dissimilar anionic compounds with the plasma membrane of HEK293 cells were analyzed by patch clamp and electrorotation. The combined approach provides complementary information on the lipophilicity, preferential affinity of the anions to the inner/outer membrane leaflet, adsorption depth and transmembrane mobility. The anionic species studied here included the well-known lipophilic anions dipicrylamine (DPA), tetraphenylborate (TPB) and [W2(CO)10(S2CH)], the putative lipophilic anion and three new heterocyclic W(CO)5 derivatives. All tested anions partitioned strongly into the cell membrane, as indicated by the capacitance increase in patch-clamped cells. The capacitance increment exhibited a bell-shaped dependence on membrane voltage. The midpoint potentials of the maximum capacitance increment were negative, indicating the exclusion of lipophilic anions from the outer membrane leaflet. The adsorption depth of the large organic anions DPA, TPB and increased and that of W(CO)5 derivatives decreased with increasing concentration of mobile charges. In agreement with the patch-clamp data, electrorotation of cells treated with DPA and W(CO)5 derivatives revealed a large dispersion of membrane capacitance in the kilohertz to megahertz range due to the translocation of mobile charges. In contrast, in the presence of TPB and no mobile charges could be detected by electrorotation, despite their strong membrane adsorption. Our data suggest that the presence of oxygen atoms in the outer molecular shell is an important factor for the fast translocation ability of lipophilic anions.  相似文献   

13.
Lead (Pb2+) is a well-known highly toxic element. The mechanisms of the Pb2+ toxicity are not well understood for nitrogen metabolism of higher plants. In this paper, we studied the effects of various concentrations of PbCl2 on the nitrogen metabolism of growing spinach. The experimental results showed that Pb2+ treatments significantly decreased the nitrate nitrogen absorption and inhibited the activities of nitrate reductase, glutamate dehydrogenase, glutamine synthase, and glutamic–pyruvic transaminase of spinach, and inhibited the synthesis of organic nitrogen compounds such as protein and chlorophyll. However, Pb2+ treatments increased the accumulation of ammonium nitrogen in spinach cell. It implied that Pb2+ could inhibit inorganic nitrogen to be translated into organic nitrogen in spinach, thus led to the reduction in spinach growth.  相似文献   

14.
Using a recombinant luminescent Nitrosomonas europaea assay to quantify biological nitrification inhibition (BNI), we found that a wild relative of wheat (Leymus racemosus (Lam.) Tzvelev) had a high BNI capacity and releases about 20 times more BNI compounds (about 30 ATU g−1 root dry weight 24 h−1) than Triticum aestivum L. (cultivated wheat). The root exudate from cultivated wheat has no inhibitory effect on nitrification when applied to soil; however, the root exudate from L. racemous suppressed formation and kept more than 90% of the soil’s inorganic-N in the -form for 60 days. The high-BNI capacity of L. racemosus is mostly associated with chromosome Lr#n. Two other chromosomes Lr#J, and Lr#I also have an influence on BNI production. Tolerance of L. racemosus to is controlled by chromosome 7Lr#1-1. Sustained release of BNI compounds occurred only in the presence of in the root environment. Given the level of BNI production expressed in DALr#n and assuming normal plant growth, we estimated that nearly 87,500,000 ATU of BNI activity ha−1 day−1 could be released in a field of vigorously growing wheat; this amounts to the equivalent of the inhibitory effect from the application of 52.5 g of the synthetic nitrification inhibitor nitrapyrin (one AT unit of BNI activity is equivalent to 0.6 μg of nitrapyrin). At this rate of BNI production it would take only 19 days for a BNI-enabled wheat crop to produce the inhibitory power of a standard commercial application of nitrapyrin, 1 kg ha−1. The synthetic nitrification inhibitor, dicyandiamide, blocked specifically the AMO (ammonia monooxygenase) pathway, while the BNI from L. racemosus blocked the HAO (hydroxylamine oxidoreductase) pathway in Nitrosomonas. Here we report the first finding of high production of BNI in a wild relative of any cereal and its successful introduction and expression in cultivated wheat. These results demonstrate the potential for empowering the new generation of wheat cultivars with high-BNI capacity to control nitrification in wheat-production systems. Responsible Editor: Hans Lambers.  相似文献   

15.
Japanese pear (Pyrus pyrifolia Nakai) has a gametophytic self-incompatibility (GSI) mechanism controlled by a single S-locus with multiple S-haplotypes, each of which contains separate genes that determine the allelic identity of pistil and pollen. The pistil S gene is the S-ribonuclease (S-RNase) gene, whereas good candidates for the pollen S gene are the F-box protein genes. A self-compatible (SC) cultivar, ‘Osa-Nijisseiki’, which is a bud mutant of ‘Nijisseiki’ (S 2 S 4), has a stylar-part mutant -haplotype, which lacks the S 4-RNase gene but retains the pollen S gene. To delineate the deletion breakpoint in the -haplotype, we constructed a bacterial artificial chromosome (BAC) library from an S 4-homozygote, and assembled a BAC contig of 570 kb around the S 4-RNase. Genomic PCR of DNA from S 4- and -homozygotes and the DNA sequence of the BAC contig allowed the identification of a deletion of 236 kb spanning from 48 kb upstream to 188 kb downstream of S 4-RNase. The -haplotype lacks 34 predicted open reading frames (ORFs) including the S 4-RNase and a pollen-specific F-box protein gene (termed as S 4 F-box0). Genomic PCR with a primer pair designed from the deletion junctions yielded a product specific for the -haplotype. The product could be useful as a maker for early selection of SC cultivars harboring the -haplotype. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Gill function in an elasmobranch   总被引:1,自引:0,他引:1  
Summary Highly efficient oxygen uptake in elasmobranchs, as indicated by frequent excess of over has previously been ascribed to the operation of multicapillary rather than counter-current gas exchange by the gills. Analysis of models shows that, at maximum efficiency, a multicapillary system cannot account for values of greater than . In Port Jackson sharks Heterodontus portusjacksoni) commonly exceeds , which indicates the operation of a functional counter-current at the respiratory surface. The anatomical basis of this counter-current is provided by the demonstration that a continuous flow of water passes between the secondary lamellae into septal canals and thence via the parabranchial cavities to the exterior.Queen Elizabeth II Fellow.  相似文献   

17.
During the last 60 years, pollution of the groundwater with has greatly increased in many parts of Europe, as a consequence of excessive use of manure and synthetic fertilisers. Monitoring of groundwater-fed wetlands indicated that sediments with high concentrations had the lowest Fe and concentrations in the pore water. A comparison of two restored open water fens, differing in supply via the groundwater, indicated that the redox potential and the sulphate ( ) reduction rate were lower when the groundwater contained not only but also high concentrations. The lower reduction rates in the -rich open water fen were associated with lower concentrations and the presence of plant species characteristic of clear water. In contrast, the higher reduction rates in the -poor open water fen were associated with very high concentrations and massive development of plant species characteristic of eutrophic environments. Investigations at -rich seepage sites in black alder carrs, showed that high concentrations in the pore water caused chlorosis in the alder carr vegetation, due to lower availability of Fe in the pore water and less Fe uptake by the plants. Experimental desiccation of sediments proved that the -rich seepage sites contained no oxidisable FeS x , contrary to -poor locations, which became acidified and mobilised extremely high amounts of due to FeS x oxidation. A laboratory experiment showed that addition to sediments led to reduced releases of Fe, and S2–, very likely due to the oxidation of reduced Fe and S compounds. Overall, the results confirmed that is an energetically more favourable electron acceptor in anaerobic sediments than Fe and , and that high loads function as a redox buffer, preventing reduction of Fe and . Limited reduction prevents S2– -mediated mobilisation of from Fe- complexes. At a higher redox potential, reduced Fe, including FeS x , was oxidised, increasing the content of Fe(III) capable of binding . This prevented increased availability and the concomitant massive development of plant species characteristic of eutrophic environments.  相似文献   

18.
Summary In seawater (SW)-adaptedMugil andFundulus, gill effluxes of Na+ and of Cl and the simultaneously recorded transgill potential (P.D.) differ according to whether they are measured in stressed or rested animals.In rested animals of the two species, transfer to Ringer's solution considerably reduces the P.D. but not . InFundulus, is also decreased. Transfer of the two species from SW to fresh water (FW) reduces and by 75 to 85% and leads to a large inversion of P.D. When K+ is added to FW, a gill depolarization occurs, as well as a large increase of and .These results suggest that: 1) the P.D. originates primarily from the diffusion of cations, the gill permeability to Na+ ( ) being greater than that to Cl ( ), 2) a Cl/Cl exchange independent of P.D. is associated with the Cl pump; 3) Cl pump activity is linked to Na+/K+ exchange which in turn is associated to a Na+/Na+ exchange diffusion mechanism.In stressed individuals of the two species, the P.D. in SW, as well as the P.D. changes observed during transfer experiments, are considerably reduced. The decrease of and observed after transfer from SW to FW are also minimised. Changes are smaller inFundulus. The decrease of P.D. characterizing stressed animals may be at least in part due to a 3 to 4 fold increase of which becomes equal to in both species.As a result of stress, the K+-activated Na+ and Cl excretion mechanisms are totally inhibited inFundulus and partially so inMugil.Stress response seems more intense inFundulus and recovery from stress faster inMugil.  相似文献   

19.
A carbon membrane-aerated biofilm reactor (CMABR) was developed to treat synthetic wastewater. Such membrane exhibited a high degree of adhesion and good permeability. Continuous experiments showed that COD and -N removal efficiency were 90 ± 2 and 92 ± 4% at removal rates of 35.6 ± 3.8 g COD/m2 per day and 9.3 ± 0.6 g -N/m2 per day, respectively. After 108 days, effluent total nitrogen (TN) kept at 35 ± 4 mg/L when influent -N increased to 144–164 mg/L and removal efficiency of TN reached 78 ± 3%. Furthermore, Stoichiometric analysis revealed that 70–90% of oxygen supplied was consumed by nitrifier. Scanning electron microscopic (SEM) images and component analysis of penetrating fluid revealed that extracellular polymeric substance (EPS) adhered to pore and that alkaline washing was an effective method to remove them. The study demonstrated that carbon membrane could be used as effective gas-permeable membrane in MABR for wastewater treatment.  相似文献   

20.
Summary Nitrate reductase (EC 1.6.6.2) activity (NRA), as measured by an in vivo assay, is present in needle leaves and mycorrhizal fine root tips of adult Norway spruce [Picea abies (L.) Karst.] in at least equal amounts on a fresh weight basis, in both adult and 5-year-old trees. NRA could also be demonstrated in trunk wood of deroted trees after fertilization with 5 mM , exhibiting a longitudinal profile in the trunk. Inducibility in needles can more efficiently be achieved by NO2 (100 g·m-3) than by 5 mM nitrate, which is effective only in root-amputated trees. A remarkably high level of needle-NRA in unfertilized trees, which are characterized by a very low level of nitrate in the xylem sap, suggests that NRA in spruce needles may in part be constitutive. Organic-N is a major nitrogen source for the needles even in root-amputated trees, indicating pronounced exchange processes between ray parenchyma and trunk xylem, which in turn are modified by the nitrogen source fed to the trunk stump. Intact trees exhibit a very similar amino acid composition of the xylem sap, regardless of whether or has been fed. The amino acid pattern of the needles is not thrown out of balance by flooding with and , which occurs in fertilized derooted trees. This indicates a distinct potential for homoeostasis of nitrogen entrance-metabolism (i.e. NRA and glutamine synthetase activity) in the needles. In the ectomycorrhiza/fine root-system (EMC), marked differences in NRA were observed depending on root-tip diameter and along the longitudinal profile of the fine roots. EMC-nitrate reductase is strongly enhanced by . Needle-NRA exhibits a circannual rhythm. An early summer maximum is followed by a December minimum. This activity pattern matches well the transitory increase of soluble nitrogen in spring and the total protein maximum in winter. In an indirect way assimilatory NRA may well contribute to nitrogen overfertilization (by consumption of NOX) as one possible cause of the contemporary decline of spruce populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号