首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Delta-Notch signaling pathway is an evolutionarily conserved intercellular signaling mechanism essential for cell fate specification. Mind bomb 1 (Mib1) has been identified as a ubiquitin ligase that promotes the endocytosis of Delta. We now report that mice lacking Mib1 die prior to embryonic day 11.5, with pan-Notch defects in somitogenesis, neurogenesis, vasculogenesis and cardiogenesis. The Mib1-/- embryos exhibit reduced expression of Notch target genes Hes5, Hey1, Hey2 and Heyl, with the loss of N1icd generation. Interestingly, in the Mib1-/- mutants, Dll1 accumulated in the plasma membrane, while it was localized in the cytoplasm near the nucleus in the wild types, indicating that Mib1 is essential for the endocytosis of Notch ligand. In accordance with the pan-Notch defects in Mib1-/- embryos, Mib1 interacts with and regulates all of the Notch ligands, jagged 1 and jagged 2, as well as Dll1, Dll3 and Dll4. Our results show that Mib1 is an essential regulator, but not a potentiator, for generating functional Notch ligands to activate Notch signaling.  相似文献   

2.
3.
Mind bomb (Mib) is an E3 ubiquitin ligase that activates the Notch signaling pathway. A previous study demonstrated that the generation of late-born GABAergic neurons may be regulated by the interplay between Mib and retinoic acid (RA). However, the relationship between Mib function and the retinoid pathway during the generation of late-born motor neurons remains unclear. We investigated the differentiation of neural progenitors into motor neurons by inhibition of Notch signaling and administration of RA to Tg[hsp70-Mib:EGFP] embryos. The number of motor neurons in the ventral spinal cord increased or decreased depending on the temporal inhibition of Mib-mediated Notch signaling. Inhibition of the retinoid pathway by citral treatment had a synergistic effect with overexpression of Mib:EGFP on the generation of ectopic motor neurons. Additionally, the proteolytic fragment of Mib was detected in differentiated P19 cells following treatment with RA. Our observations imply that the function of Mib may be attenuated by the retinoid pathway, and that Mib-mediated Notch signaling and the retinoid pathway play critical roles in the spatiotemporal differentiation of motor neurons.  相似文献   

4.
5.
Mib1 and Mib2 ubiquitin ligases are very similar in their domain construction. They partake in the Notch signaling pathway by ubiquitinating the Notch receptors Delta and Jagged prior to endocytosis. We have created a targeted mutation of Mib2 and show that its phenotype is a variable penetrance, failure to close the cranial neural tube. The penetrance depends on the genetic background but it appears that Mib2 is not completely essential in mouse development.  相似文献   

6.
The zebrafish gene, mind bomb (mib), encodes a protein that positively regulates of the Delta-mediated Notch signaling. It interacts with the intracellular domain of Delta to promote its ubiquitination and endocytosis. In our search for the mouse homologue of zebrafish mind bomb, we cloned two homologues in the mouse genome: a mouse orthologue (mouse mib1) and a paralogue, named mind bomb-2 (mib2), which is evolutionarily conserved from Drosophila to human. Both Mib1 and Mib2 have an E3 ubiquitin ligase activity in their C-terminal RING domain and interact with Xenopus Delta (XD) via their N-terminal region. Mib2 is also able to ligate ubiquitin to XD and shift the membrane localization of Delta to intracellular vesicles. Importantly, Mib2 rescues both the neuronal and vascular defects in the zebrafish mib(ta52b) mutants. In contrast to the functional similarities between Mib1 and Mib2, mib2 is highly expressed in adult tissues, but almost not at all in embryos, whereas mib1 is abundantly expressed in both embryos and adult tissues. These data suggest that Mib2 has functional similarities to Mib1, but might have distinct roles in Notch signaling as an E3 ubiquitin ligase.  相似文献   

7.
Mutations in Drosophila neuralized (Dneur) result in a variety of developmental defects that closely resemble those of Notch mutants and other Notch pathway mutants. However, mice with disrupted neur1 do not show any aberrant cell fate specifications in neurogenesis and somitogenesis. Thus, we speculated that other vertebrate neur homolog(s) might compensate for loss of the neur gene. Here, we report the paralog of mouse Neur1, named Neuralized-2 (Neur2), which is a ubiquitin-protein isopeptide ligase (E3) that interacts with and ubiquitinates Delta. Both murine Neur1 and Neur2 have similar degrees of homology to DNeur, and neur2 is expressed in patterns similar to those of neur1 in embryos, suggesting potential functional redundancy. Interestingly, two distinct classes of E3 ligases, Mind bomb-1 (Mib1) and Neur2, have cooperative but distinct roles in Delta endocytosis to Hrs-positive vesicles, i.e. Mib1 functions in the initial step of Delta endocytosis, and Neur2 is required for targeting endocytosed Delta to Hrs-positive vesicles. Thus, our study provides a new insight into how distinct E3 ligases work together in the endocytic pathways for Notch signaling.  相似文献   

8.
9.
10.
11.
Functional involvement of the Notch pathway in osteoblastic differentiation has been previously investigated using the truncated intracellular domain, which mimics Notch signaling by interacting with the DNA-binding protein CBF-1. However, it is unclear whether Notch ligands Delta1 and Jagged1 also induce an identical cellular response in osteoblastic differentiation. We have shown that both Delta1 and Jagged1 were expressed concomitantly with Notch1 in maturating osteoblastic cells during bone regeneration and that overexpressed and immobilized recombinant Delta1 and Jagged1 alone did not alter the differentiated state of MC3T3-E1 and C2C12 cells. However, they augmented bone morphogenetic protein-2 (BMP2)-induced alkaline phosphatase activity and the expression of several differentiation markers, except for osteocalcin, and ultimately enhanced calcified nodule and in vivo ectopic bone formation of MC3T3-E1. In addition, both ligands transmitted signal through the CBF-1-dependent pathway and stimulated the expression of HES-1, a direct target of Notch pathway. To test the necessity of Notch signaling in BMP2-induced differentiation, Notch signaling was inhibited by the dominant negative extracellular domain of Notch1, specific inhibitor, or small interference RNA. These treatments decreased alkaline phosphatase activity as well as the expression of other differentiation markers and inhibited the promoter activity of Id-1, a target gene of the BMP pathway. These results indicate the functional redundancy between Delta1 and Jagged1 in osteoblastic differentiation whereby Delta1/Jagged1-activated Notch1 enhances BMP2-induced differentiation through the identical signaling pathway. Furthermore, our data also suggest that functional Notch signaling is essential not only for BMP2-induced osteoblast differentiation but also for BMP signaling itself.  相似文献   

12.
DSL proteins are transmembrane ligands of the Notch receptor. They associate with a RING (really interesting new gene) family E3 ubiquitin ligase, either Neuralized (Neur) or Mindbomb 1 (Mib1), as a prerequisite to signaling. Although Neur and Mib1 stimulate internalization of DSL ligands, it is not known how ubiquitylation contributes to signaling. We present a molecular dissection of the intracellular domain (ICD) of Drosophila melanogaster Delta (Dl), a prototype DSL protein. Using a cell-based assay, we detected ubiquitylation of Dl by both Neur and Mib1. The two enzymes use distinct docking sites and displayed different acceptor lysine preferences on the Dl ICD. We generated Dl variants that selectively perturb its interactions with Neur or Mib1 and analyzed their signaling activity in two in vivo contexts. We found an excellent correlation between the ability to undergo ubiquitylation and signaling. Therefore, ubiquitylation of the DSL ICD seems to be a necessary step in the activation of Notch.  相似文献   

13.
The vascular system is the first organ to form in the developing mammalian embryo. The Notch signaling pathway is an evolutionarily conserved signaling mechanism essential for proper embryonic development in almost all vertebrate organs. The analysis of targeted mouse mutants has demonstrated essential roles of the Notch signaling pathway in embryonic vascular development. However, Notch signaling-deficient mice have so far not been examined in detail in the head region. The bHLH genes Hes1 and Hes5 are essential effectors for Notch signaling, which regulate the maintenance of progenitor cells and the timing of their differentiation in various tissues and organs. Here, we report that endothelial-specific Hes1 and Hes5 mutant embryos exhibited defective vascular remodeling in the brain. In addition, arterial identity of endothelial cells was partially lost in the brain of these mutant mice. These data suggest that Hes1 and Hes5 regulate vascular remodeling and arterial fate specification of endothelial cells in the development of the brain. Hes1 and Hes5 represent critical transducers of Notch signals in brain vascular development.  相似文献   

14.
15.
Notch signaling regulates cell fate decisions in a variety of adult and embryonic tissues, and represents a characteristic feature of exocrine pancreatic cancer. In developing mouse pancreas, targeted inactivation of Notch pathway components has defined a role for Notch in regulating early endocrine differentiation, but has been less informative with respect to a possible role for Notch in regulating subsequent exocrine differentiation events. Here, we show that activated Notch and Notch target genes actively repress completion of an acinar cell differentiation program in developing mouse and zebrafish pancreas. In developing mouse pancreas, the Notch target gene Hes1 is co-expressed with Ptf1-P48 in exocrine precursor cells, but not in differentiated amylase-positive acinar cells. Using lentiviral delivery systems to induce ectopic Notch pathway activation in explant cultures of E10.5 mouse dorsal pancreatic buds, we found that both Hes1 and Notch1-IC repress acinar cell differentiation, but not Ptf1-P48 expression, in a cell-autonomous manner. Ectopic Notch activation also delays acinar cell differentiation in developing zebrafish pancreas. Further evidence of a role for endogenous Notch in regulating exocrine pancreatic differentiation was provided by examination of zebrafish embryos with homozygous mindbomb mutations, in which Notch signaling is disrupted. mindbomb-deficient embryos display accelerated differentiation of exocrine pancreas relative to wild-type clutchmate controls. A similar phenotype was induced by expression of a dominant-negative Suppressor of Hairless [Su(H)] construct, confirming that Notch actively represses acinar cell differentiation during zebrafish pancreatic development. Using transient transfection assays involving a Ptf1-responsive reporter gene, we further demonstrate that Notch and Notch/Su(H) target genes directly inhibit Ptf1 activity, independent of changes in expression of Ptf1 component proteins. These results define a normal inhibitory role for Notch in the regulation of exocrine pancreatic differentiation.  相似文献   

16.
Notch signaling regulates numerous developmental processes, often acting either to promote one cell fate over another or else to inhibit differentiation altogether. In the embryonic pancreas, Notch and its target gene Hes1 are thought to inhibit endocrine and exocrine specification. Although differentiated cells appear to downregulate Hes1, it is unknown whether Hes1 expression marks multipotent progenitors, or else lineage-restricted precursors. Moreover, although rare cells of the adult pancreas express Hes1, it is unknown whether these represent a specialized progenitor-like population. To address these issues, we developed a mouse Hes1(CreERT2) knock-in allele to inducibly mark Hes1(+) cells and their descendants. We find that Hes1 expression in the early embryonic pancreas identifies multipotent, Notch-responsive progenitors, differentiation of which is blocked by activated Notch. In later embryogenesis, Hes1 marks exocrine-restricted progenitors, in which activated Notch promotes ductal differentiation. In the adult pancreas, Hes1 expression persists in rare differentiated cells, particularly terminal duct or centroacinar cells. Although we find that Hes1(+) cells in the resting or injured pancreas do not behave as adult stem cells for insulin-producing beta (β)-cells, Hes1 expression does identify stem cells throughout the small and large intestine. Together, these studies clarify the roles of Notch and Hes1 in the developing and adult pancreas, and open new avenues to study Notch signaling in this and other tissues.  相似文献   

17.
The Notch signaling pathway is important for cell fate decisions in embryonic development and adult life. Defining the functional importance of the Notch pathway in these contexts requires the elucidation of essential signal transduction components that have not been fully characterized. Here, we show that Rabconnectin-3B is required for the Notch pathway in mammalian cells. siRNA-mediated silencing of Rabconnectin-3B in mammalian cells attenuated Notch signaling and disrupted the activation and nuclear accumulation of the Notch target Hes1. Rabconnectin-3B knockdown also disrupted V-ATPase activity in mammalian cells, consistent with previous observations in Drosophila. Pharmacological inhibition of the V-ATPase complex significantly reduced Notch signaling in mammalian cells. Finally, Rabconnectin-3B knockdown phenocopied functional disruption of Notch signaling during osteoclast differentiation. Collectively, these findings define an important role for Rabconnectin-3 and V-ATPase activity in the Notch signaling pathway in mammalian cells.  相似文献   

18.
Presenilin (PS) in association with nicastrin (NICA) forms a gamma-secretase complex that plays a crucial role in facilitating intramembranous processing of Notch, a signaling receptor that is essential for neuronal fate specification and differentiation. Loss of function studies have implicated a role for PS1 in regulating neuronal differentiation in association with the down-regulation of Notch signaling during neurogenesis. By using a system for stable, as well as tetracycline-inducible expression of interfering RNAs (RNAi), we studied the functions of PS1 during neuronal differentiation in the murine pluripotent p19 embryonic carcinoma cell line. After retinoic acid (RA) treatment and in the absence of doxycycline, neuronal progenitor cells in the p19 clone were found to extend their processes towards the neighboring colony to form network-like connections, as revealed by neuron-specific microtubule-associated protein 2 staining and laser scanning confocal microscopy. However, doxycycline-induced expression of PS1 small interfering RNA (siRNA) in the p19 clone resulted in a severe defect in the formation of network-like connections. Expression of the NICA and Notch down-stream effector genes Hes1 and Hes5 was unaffected in p19 cells expressing doxycycline-induced PS1 siRNA. In contrast to PS1, constitutive inactivation of NICA by siRNA in p19 cells resulted in premature and partial differentiation without RA treatment. In these NICA siRNA-expressing p19 cells the expression of the Notch1 down-stream effector Hes1 gene was substantially reduced. After RA treatment the NICA siRNA clone failed to differentiate completely into networks of neurons. These results taken together provide direct evidence that PS1 and NICA may participate in neuronal differentiation during neurogenesis in vitro.  相似文献   

19.
Oscillations in notch signaling regulate maintenance of neural progenitors   总被引:3,自引:0,他引:3  
Shimojo H  Ohtsuka T  Kageyama R 《Neuron》2008,58(1):52-64
Expression of the Notch effector gene Hes1 is required for maintenance of neural progenitors in the embryonic brain, but persistent and high levels of Hes1 expression inhibit proliferation and differentiation of these cells. Here, by using a real-time imaging method, we found that Hes1 expression dynamically oscillates in neural progenitors. Furthermore, sustained overexpression of Hes1 downregulates expression of proneural genes, Notch ligands, and cell cycle regulators, suggesting that their proper expression depends on Hes1 oscillation. Surprisingly, the proneural gene Neurogenin2 (Ngn2) and the Notch ligand Delta-like1 (Dll1) are also expressed in an oscillatory manner by neural progenitors, and inhibition of Notch signaling, a condition known to induce neuronal differentiation, leads to downregulation of Hes1 and sustained upregulation of Ngn2 and Dll1. These results suggest that Hes1 oscillation regulates Ngn2 and Dll1 oscillations, which in turn lead to maintenance of neural progenitors by mutual activation of Notch signaling.  相似文献   

20.
Ubiquitylation promotes endocytosis of the Notch ligands like Delta and Serrate and is essential for them to effectively activate Notch in a neighboring cell. The RING E3 ligase Mind bomb1 (Mib1) ubiquitylates DeltaD to facilitate Notch signaling in zebrafish. We have identified a domain in the intracellular part of the zebrafish Notch ligand DeltaD that is essential for effective interactions with Mib1. We show that elimination of the Mind bomb1 Interaction Domain (MID) or mutation of specific conserved motifs in this domain prevents effective Mib1-mediated ubiquitylation and internalization of DeltaD. Lateral inhibition mediated by Notch signaling regulates early neurogenesis in zebrafish. In this context, Notch activation suppresses neurogenesis, while loss of Notch-mediated lateral inhibition results in a neurogenic phenotype, where too many cells are allowed to become neurons. While Mib1-mediated endocytosis of DeltaD is essential for effective activation of Notch in a neighboring cell (in trans) it is not required for DeltaD to inhibit function of Notch receptors in the same cell (in cis). As a result, forms of DeltaD that have the MID can activate Notch in trans and suppress early neurogenesis when mRNA encoding it is ectopically expressed in zebrafish embryos. On the other hand, when the MID is eliminated/mutated in DeltaD, its ability to activate Notch in trans fails but ability to inhibit in cis is retained. As a result, ectopic expression of DeltaD lacking an effective MID results in a failure of Notch-mediated lateral inhibition and a neurogenic phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号