首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In ripening banana (Musa acuminata L. [AAA group, Cavandish subgroup] cv. Valery) fruit, the steady state concentration of the glycolytic regulator fructose 2,6-bisphosphate (Fru 2,6-P2) underwent a transient increase 2 to 3 hours before the respiratory rise, but coincident with the increase in ethylene synthesis. Fru 2,6-P2 concentration subsequently decreased, but increased again approximately one day after initiation of the respiratory climacteric. This second rise in Fru 2,6-P2 continued as ripening proceeded, reaching approximately five times preclimacteric concentration. Pyrophosphate-dependent phosphofructokinase glycolytic activity exhibited a transitory rise during the early stages of the respiratory climacteric, then declined slightly with further ripening. Cytosolic fructose 1,6-bisphosphatase activity did not change appreciably during ripening. The activity of ATP-dependent phosphofructokinase increased approximately 1.6-fold concurrent with the respiratory rise. A balance in the simultaneous glycolytic and gluconeogenic carbon flow in ripening banana fruit appears to be maintained through changes in substrate levels, relative activities of glycolytic enzymes and steady state levels of Fru 2,6-P2.  相似文献   

2.
Fruit of soursop, Annona muricata L., showed increased CO2 production 2 days after harvest, preceding the respiratory increase that coincided with autocatalytic ethylene evolution and other ripening phenomena. Experiments to alter gas exchange patterns of postharvest fruit parts and tissue cylinders had little success.

The respiratory quotient of tissue discs was near unity throughout development. 2,4-Dinitrophenol uncoupled respiration more effectively than carbonylcyanide m-chlorophenylhydrazone; 0.4 millimolar KCN stimulated, 4 millimolar salicylhydroxamic acid slightly inhibited, and their combination strongly inhibited respiration, as did 10 millimolar NaN3. Tricarboxylic acid cycle members and ascorbate were more effective substrates than sugars, but acetate and glutarate strongly inhibited.

Disc respiration showed the same early peak as whole fruit respiration; this peak is thus an inherent characteristic of postharvest development and cannot be ascribed to differences between ovaries of the aggregatetype fruit. The capacity of the respiratory apparatus did not change during this preclimacteric peak, but the contents of rate-limiting malate and citrate increased after harvest.

It is concluded that the preclimacteric rise in CO2 evolution reflects increased mitochondrial respiration because of enhanced supply of carboxylates as a substrate, probably induced by detachment from the tree. The second rise corresponds with the respiration during ripening of other climacteric fruits.

  相似文献   

3.
During ripening of bananas (Musa spp. [AAA group, Cavendish subgroup]), there is a massive conversion of starch to sucrose. Also during ripening there is a rise in respiration known as the respiratory climacteric. In this study changes in carbohydrate content, activities of starch and sucrose metabolizing enzymes, and respiration were measured to assess their potential interrelationships. Sucrose phosphate synthase activity increased dramatically during the first 4 days after initiation of ripening by ethylene treatment. Starch concentration decreased and sucrose concentration increased during this time period. Developmental changes in sucrose phosphate synthase activity were measured with limiting substrate (plus Pi) and saturating substrate concentrations. Activities were not parallel under the two assay conditions, providing tentative evidence that kinetically different forms of the enzyme may exist at different stages of ripening. Sucrose accumulation rate was most highly correlated with sucrose phosphate synthase activity assayed with limiting substrate concentrations (plus Pi). The cumulative amount of CO2 respired during ripening was positively correlated with sugar accumulation (R2 = 0.97). From this linear regression it was calculated that a constant 0.605 millimoles of CO2 was evolved per mole of sucrose formed throughout ripening. Using this quantity, the percentage of the total respiratory ATP produced which was required for the conversion of starch to sucrose was calculated assuming different models for carbon export from the amyloplast. The results suggest that sucrose biosynthesis during ripening constitutes a significant sink for respiratory ATP.  相似文献   

4.
The respiration of fresh slices of preclimacteric avocado (Persea americana Mill. var. Hass) and banana (Musa cavendishii var. Valery) fruits is stimulated by cyanide and antimycin. The respiration is sensitive to m-chlorobenzhydroxamic acid in the presence of cyanide but much less so in the presence of antimycin. In the absence of cyanide the contribution of the cyanide-resistant pathway to the coupled preclimacteric respiration is zero. In uncoupled slices, by contrast, the alternate path is engaged and utilized fully in avocado, and extensively in banana. Midclimacteric and peak climacteric slices are also cyanide-resistant and, in the presence of cyanide, sensitive to m-chlorobenzhydroxamic acid. In the absence of uncoupler there is no contribution by the alternate path in either tissue. In uncoupled midclimacteric avocado slices the alternate path is fully engaged. Midclimacteric banana slices, however, do not respond to uncouplers, and the alternate path is not engaged. Avocado and banana slices at the climacteric peak neither respond to uncouplers nor utilize the alternate path in the presence or absence of uncoupler.

The maximal capacities of the cytochrome and alternate paths, Vcyt and Valt, respectively, have been estimated in slices from preclimacteric and climacteric avocado fruit and found to remain unchanged. The total respiratory capacity in preclimacteric and climacteric slices exceeds the respiratory rise which attends fruit ripening. In banana Valt decreases slightly with ripening.

The aging of thin preclimacteric avocado slices in moist air results in ripening with an accompanying climacteric rise. In this case the alternate path is fully engaged at the climacteric peak, and the respiration represents the total potential respiratory capacity present in preclimacteric tissue. The respiratory climacteric in intact avocado and banana fruits is cytochrome path-mediated, whereas the respiratory climacteric of ripened thin avocado slices comprises the alternate as well as the cytochrome path. The ripening of intact fruits is seemingly independent of the nature of the electron transport path.

Uncouplers are thought to stimulate glycolysis to the point where the glycolytic flux exceeds the oxidative capacity of the cytochrome path, with the result that the alternate path is engaged.

  相似文献   

5.
Cell wall enzymes at different stages of fruit development were compared between the normal Rutgers and the isogenic nonripening rin tomato. In Rutgers, a detectable increase in polygalacturonase (PG) activity was observed 6 days prior to the respiratory climacteric (43 days postanthesis). The maximum increase in PG activity occurred after C2H2 and CO2 production reached their peak. However, in the rin tomato, no change in PG activity was noted up to 100 days postanthesis. Cellulase activity increased in Rutgers fruits prior to the respiratory climacteric and continued to increase thereafter. Similar changes in cellulase activity were also observed in the nonclimacteric rin fruits. Short term ethylene treatment (2 days) of 36-day-old rin fruits increased cellulase activity, but had no effect on PG activity. Detectable changes in other parameters of ripening, such as chlorophyll loss and softening, also occurred prior to the respiratory climacteric. These results suggest that the failure of rin fruits to ripen is related to their low PG activity during maturity as compared with normal fruits.  相似文献   

6.
Tomato and pear fruit underwent shifts in respiratory metabolism (CO2 evolution) when ripened at reduced relative humidity (15 to 25% R.H.). A bimodal respiratory spectrum was observed with fruit ripened at low relative humidity; concomitantly, a number of the ripening indices were observed to quantitatively (mainly intensification) and perhaps qualitatively differ from fruit ripened at 80 to 90% R.H. The results suggest that the additional climacteric respiratory burst is coupled to metabolic changes associated with ripening and illustrate the dramatic influence water vapor deficit can have on physiological processes such as ripening.  相似文献   

7.
Avocado (Persea americana Mill. cv Hass) discs (3 mm thick) ripened in approximately 72 hours when maintained in a flow of moist air and resembled ripe fruit in texture and taste. Ethylene evolution by discs of early and midseason fruit was characterized by two distinct components, viz. wound ethylene, peaking at approximately 18 hours, and climacteric ethylene, rising to a peak at approximately 72 hours. A commensurate respiratory stimulation accompanied each ethylene peak. Aminoethoxyvinyl glycine (AVG) given consecutively, at once and at 24 hours following disc preparation, prevented wound and climacteric respiration peaks, virtually all ethylene production, and ripening. When AVG was administered for the first 24 hours only, respiratory stimulation and softening (ripening) were retarded by at least a day. When AVG was added solely after the first 24 hours, ripening proceeded as in untreated discs, although climacteric ethylene and respiration were diminished. Propylene given together with AVG led to ripening under all circumstances. 2,5-Norbornadiene given continuously stimulated wound ethylene production, and it inhibited climacteric ethylene evolution, the augmentation of ethylene-forming enzyme activity normally associated with climacteric ethylene, and ripening. 2,5-Norbornadiene given at 24 hours fully inhibited ripening. When intact fruit were pulsed with ethylene for 24 hours before discs were prepared therefrom, the respiration rate, ethylene-forming enzyme activity buildup, and rate of ethylene production were all subsequently enhanced. The evidence suggests that ethylene is involved in all phases of disc ripening. In this view, wound ethylene in discs accelerates events that normally take place over an extended period throughout the lag phase in intact fruit, and climacteric ethylene serves the same ripening function in discs and intact fruit alike.  相似文献   

8.
The relationship of respiration and growth of seed, pericarp tissue and whole fruit of snap beans (Phaseolus vulgaris L.) was studied. The whole fruit exhibited an apparent climacteric type of respiration pattern. This pattern resulted from an increase in CO2 production by the enlarging seed followed by a rapid decrease in CO2 evolution by the pericarp tissue, and the pattern was not associated with any concomitant increase in ethylene production. Therefore, the apparent climacteric respiration pattern of a developing bean fruit is not comparable to the phenomenon that occurs in other ripening fruits.  相似文献   

9.
Bown AW 《Plant physiology》1982,70(3):803-810
Aerated and stirred suspensions of mechanically isolated Asparagus sprengeri Regel mesophyll cells were used to investigate the roles of respiration and photosynthesis in net H+ efflux. Rates varied between 0.12 and 1.99 nanomoles H+ per 106 cells per minute or 3 and 40 nanomoles H+ per milligram chlorophyll per minute. The mean rate of H+ efflux was 10% greater in the dark. 3-(3,4-Dichlorophenyl)-l,l-dimethylurea, an inhibitor of noncyclic photophosphorylation, did not inhibit H+ efflux from illuminated cells. Bubbling with N2 or addition of oligomycin, an inhibitor of mitochondrial ATP production, resulted in rapid and virtually complete inhibition of H+ efflux in light or dark. In the absence of aeration, H+ efflux came to a halt but resumed with aeration or illumination. When aeration was switched to CO2-free air, rates of H+ efflux were reduced 43% in the dark and 57% in the light. Oligomycin eliminated dark CO2 fixation but not photosynthetic CO2 fixation. It is suggested that H+ efflux is dependent on respiration and dark CO2 fixation, but independent of photosynthesis.  相似文献   

10.
Upon initiation of ripening in avocado fruit (Persea americana Mill. cv Hass) with 10 microliters/liter ethylene, polysome prevalence and associated poly(A)+ mRNA increase approximately 3-fold early in the respiratory climacteric and drop off to preclimacteric levels at the peak of the respiratory climacteric. The increase in poly(A)+ mRNA on polysomes early in the respiratory climacteric constitutes a generic increase in constitutive mRNAs. New gene expression associated with ripening is minimal but evident after 10 hours of ethylene treatment and continues to increase relative to constitutive gene expression throughout the climacteric. The respiratory climacteric can be temporally separated into two phases. The first phase is associated with a general increase in protein synthesis, whereas the second phase reflects new gene expression and accumulation of corresponding proteins which may be responsible for softening and other ripening characteristics. A major new message on polysomes that arises concomitantly with the respiratory climacteric codes for an in vitro translation product of 53 kilodaltons which is immunoprecipitated by antiserum against avocado fruit cellulase.

Cyanide at 500 microliters/liter fails to affect the change in polysome prevalance or new gene expression associated with the ethylene-evoked climacteric in avocado fruit. Treatment of fruit with 500 microliters/liter cyanide alone initiates a respiratory increase within 4 hours, ethylene biosynthesis within 18 hours, and new gene expression akin to that educed by ethylene within 20 hours of exposure to cyanide.

  相似文献   

11.
The association of the level of ACC and the ethylene concentration in ripening apple fruit (Malus sylvestris Mill, var. Ben Davis) was studied. Preclimacteric apple contained small amounts of ACC and ethylene. With the onset of the climacteric and a concomitant decrease in flesh firmness, the level of ACC and ethylene concentration both increased markedly. During the postclimacteric period, ethylene concentration started to decline, but the level of ACC continued to increase. Ethylene production and loss of flesh firmness of fruits during ripening were greatly suppressed by treatments with low O2 (O2 1–3%, CO2 O%) or high CO2 (CO2 20–30%, O2 15–20%) at the preclimacteric stage. However, after 4 weeks an accumulation of ACC was observed in treated fruits when control fruit was at the postclimacteric stage. Treatment of fruit with either low O2 or high CO2 at the climacteric stage resulted in a decrease of ethylene production. However, the ACC level in fruit treated with low O2 was much higher than both control and high CO2 treated fruit; it appears that low O2 inhibits only the conversion of ACC to ethylene, resulting in an accumulation of ACC. Since CO2 inhibits ethylene production but does not result in an accumulation of ACC, it appears that high CO2 inhibits both the conversion of ACC to ethylene and the formation of ACC.  相似文献   

12.
Little information is available on the variability of the dynamics of the actual and observed root respiration rate in relation to abiotic factors. In this study, we describe I) interactions between soil CO2 concentration, temperature, soil water content and root respiration, and II) the effect of short-term fluctuations of these three environmental factors on the relation between actual and observed root respiration rates. We designed an automated, open, gas-exchange system that allows continuous measurements on 12 chambers with intact roots in soil. By using three distinct chamber designs with each a different path for the air flow, we were able to measure root respiration over a 50-fold range of soil CO2 concentrations (400 to 25000 ppm) and to separate the effect of irrigation on observed vs. actual root respiration rate. All respiration measurements were made on one-year-old citrus seedlings in sterilized sandy soil with minimal organic material.Root respiration was strongly affected by diurnal fluctuations in temperature (Q10 = 2), which agrees well with the literature. In contrast to earlier findings for Douglas-fir (Qi et al., 1994), root respiration rates of citrus were not affected by soil CO2 concentrations (400 to 25000 ppm CO2; pH around 6). Soil CO2 was strongly affected by soil water content but not by respiration measurements, unless the air flow for root respiration measurements was directed through the soil. The latter method of measuring root respiration reduced soil CO2 concentration to that of incoming air. Irrigation caused a temporary reduction in CO2 diffusion, decreasing the observed respiration rates obtained by techniques that depended on diffusion. This apparent drop in respiration rate did not occur if the air flow was directed through the soil. Our dynamic data are used to indicate the optimal method of measuring root respiration in soil, in relation to the objectives and limitations of the experimental conditions.  相似文献   

13.
How does deep water rice solve its aeration problem   总被引:11,自引:0,他引:11       下载免费PDF全文
Raskin I  Kende H 《Plant physiology》1983,72(2):447-454
In partially flooded deep water rice (Oryza sativa L. cv Habiganj Aman II), continuous air layers trapped between the hydrophobic, corrugated surface of the leaf blades and the surrounding water constitute the major path of aeration. The conduction of gases through the internal air spaces of the leaf is negligible compared to the conduction of gases through the external air layers. The total volume of the air layers on both sides of a leaf blade is about 45% of the volume of the leaf blade itself. The size of the air layers around submerged leaf blades of cereals not adapted to conditions of partial flooding, e.g. of oats, barley, and wheat, is considerably smaller than that of rice. Gases move through the air layers not only by diffusion but also by mass flow. In darkness, air is drawn down from the atmosphere through the air layers along a pressure gradient created by solubilization of respiratory CO2 in the surrounding water. In light, photosynthetic O2 is expelled through the air layers to the atmosphere because the solubility of O2 in water is much lower than that of CO2. Air layers greatly increase the rate of photosynthetic carbon fixation by enlarging the surface of the gas-liquid interface available for CO2 uptake from the water. Air layers are vital for the survival of the partially submerged rice plant. When leaves are washed with a dilute solution of a surfactant (Triton X-100), no air layers are formed under water. Plants without air layers do not grow in response to submergence, and the submerged parts of the plant deteriorate as evident by rapid loss of chlorophyll and protein. Air layers provide a significant survival advantage even to completely submerged rice plants.  相似文献   

14.
Ethylene Production and Respiratory Behavior of the rin Tomato Mutant   总被引:17,自引:13,他引:4       下载免费PDF全文
Little or no change in ethylene or CO2 production occurred in rin tomato mutant fruits monitored for up to 120 days after harvest. Of the abnormally ripening tomatoes investigated, including “Never ripe” (Nr Y a h, Nr c l2 r), “Evergreen” (gf r) and “Green Flesh” (gf), only rin did not show a typical climacteric and ethylene rise.  相似文献   

15.
In ripening banana (Musa sp. [AAA group, Cavendish subgroup] cv Valery) fruit, the concentration of glycolytic intermediates increased in response to the rapid conversion of starch to sugars and CO2. Glucose 6-phosphate (G-6-P), fructose 6-phosphate (Fru 6-P), and pyruvate (Pyr) levels changed in synchrony, increasing to a maximum one day past the peak in ethylene synthesis and declining rapidly thereafter. Fructose 1,6-bisphosphate (Fru 1,6-P2) and phosphoenolpyruvate (PEP) levels underwent changes dissimilar to those of G 6-P, Fru 6-P, and Pyr, indicating that carbon was regulated at the PEP/Pyr and Fru 6-P/Fru 1,6-P2 interconversion sites. During the climacteric respiratory rise, gluconeogenic carbon flux increased 50- to 100-fold while glycolytic carbon flux increased only 4- to 5-fold. After the climacteric peak in CO2 production, gluconeogenic carbon flux dropped dramatically while glycolytic carbon flux remained elevated. The steady-state fructose 2,6-bisphosphate (Fru 2,6-P2) concentration decreased to ½ that of preclimacteric fruit during the period coinciding with the rapid increase in gluconeogenesis. Fru 2,6-P2 concentration increased thereafter as glycolytic carbon flux increased relative to gluconeogenic carbon flux. It appears likely that the initial increase in respiration in ripening banana fruit is due to the rapid influx of carbon into the cytosol as starch is degraded. As starch reserves are depleted and the levels of intermediates decline, the continued enhancement of respiration may, in part, be maintained by an increased steady-state Fru 2,6-P2 concentration acting to promote glycolytic carbon flux at the step responsible for the interconversion of Fru 6-P and Fru 1,6-P2.  相似文献   

16.
17.
18.
The total metabolic cost of soybean (Glycine max L. Mer Clark) nodule nitrogen fixation was empirically separated into respiration associated with electron flow through nitrogenase and respiration associated with maintenance of nodule function.

Rates of CO2 evolution and H2 evolution from intact, nodulated root systems under Ar:O2 atmospheres decreased in parallel when plants were maintained in an extended dark period. While H2 evolution approached zero after 36 hours of darkness at 22°C, CO2 evolution rate remained at 38° of the rate measured in light. Of the remaining CO2 evolution, 62% was estimated to originate from the nodules and represents a measure of nodule maintenance respiration. The nodule maintenance requirement was temperature dependent and was estimated at 79 and 137 micromoles CO2 (per gram dry weight nodule) per hour at 22°C and 30°C, respectively.

The cost of N2 fixation in terms of CO2 evolved per electron pair utilized by nitrogenase was estimated from the slope of H2 evolution rate versus CO2 evolution rate. The cost was 2 moles CO2 evolved per mole H2 evolved and was independent of temperature.

In this symbiosis, nodule maintenance consumed 22% of total respiratory energy while the functioning of nitrogenase consumed a further 52%. The remaining respiratory energy was calculated to be associated with ammonia assimilation, transport of reduced N, and H2 evolution.

  相似文献   

19.
Effects of ethylene on potato tuber respiration   总被引:3,自引:0,他引:3       下载免费PDF全文
Reid MS  Pratt HK 《Plant physiology》1972,50(2):252-255
Treatment of potato tubers (Solanum tuberosum L.) with ethylene gas causes a rapid rise in their respiration rate, reaching 5 to 10 times the rate of untreated tubers over 30 hours of treatment and then falling slowly. The response shows a lag of 8 hours, and more than 24 hours of exposure is required for maximum effect; the temperature optimum is near 25 C. In sensitivity to low concentrations and dependence on temperature, the phenomenon is similar to the effect of ethylene on the respiration of climacteric and nonclimacteric fruits. Treated potato tubers returned to air recover their sensitivity to ethylene more slowly than do nonclimacteric fruits (e.g., mature green oranges). It is proposed that the respiratory rise characteristic of ripening in climacteric fruits and of the wound response in plant tissues is induced by a rise in endogenous tissue ethylene.  相似文献   

20.
There is potential for algal-derived biofuel to help alleviate part of the world’s dependency on petroleum based fuels. However, research must still be done on strain selection, induction of triacylglycerol (TAG) accumulation, and fundamental algal metabolic studies, along with large-scale culturing techniques, harvesting, and biofuel/biomass processing. Here, we have advanced the knowledge on Scenedesmus sp. strain WC-1 by monitoring growth, pH, and TAG accumulation on a 14:10 light–dark cycle with atmospheric air or 5% CO2 in air (v/v) aeration. Under ambient aeration, there was a loss of pH-induced TAG accumulation, presumably due to TAG consumption during the lower culture pH observed during dark hours (pH 9.4). Under 5% CO2 aeration, the growth rate nearly doubled from 0.78 to 1.53 d?1, but the pH was circumneutral (pH 6.9) and TAG accumulation was minimal. Experiments were also performed with 5% CO2 during the exponential growth phase, which was then switched to aeration with atmospheric air when nitrate was close to depletion. These tests were run with and without the addition of 50 mM sodium bicarbonate. Cultures without added bicarbonate showed decreased growth rates with the aeration change, but there was no immediate TAG accumulation. The cultures with bicarbonate added immediately ceased cellular replication and rapid TAG accumulation was observed, as monitored by Nile Red fluorescence which has previously been correlated by gas chromatography to cellular TAG levels. Sodium bicarbonate addition (25 mM final concentration) was also tested with the marine diatom Phaeodactylum tricornutum strain Pt-1 and this organism also accumulated TAG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号