首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Eukaryotes have developed an elaborate series of interactions with bacteria that enter their bodies and/or cells. Genome evolution of symbiotic and parasitic bacteria multiplying inside eukaryotic cells results in both convergent and divergent changes. The genome sequences of the symbiotic bacteria of aphids, Buchnera aphidicola, and the parasitic bacteria of body louse and humans, Rickettsia prowazekii, provide insights into these processes. Convergent genome characteristics include reduction in genome sizes and lowered G+C content values. Divergent evolution was recorded for amino acid and cell wall biosynthetic genes. The presence of pseudogenes in both genomes provides examples of recent gene inactivation events and offers clues to the process of genome deterioration and host-cell adaptation.  相似文献   

3.
4.
5.
The first genome sequence of an intracellular bacterial symbiont of a eukaryotic cell has been determined. The Buchnera genome shares features with the genomes of both intracellular pathogenic bacteria and eukaryotic organelles, and it may represent an intermediate between the two.  相似文献   

6.
Aphids are sap-feeding insects that host a range of bacterial endosymbionts including the obligate, nutritional mutualist Buchnera plus several bacteria that are not required for host survival. Among the latter, 'Candidatus Regiella insecticola' and 'Candidatus Hamiltonella defensa' are found in pea aphids and other hosts and have been shown to protect aphids from natural enemies. We have sequenced almost the entire genome of R. insecticola (2.07 Mbp) and compared it with the recently published genome of H.?defensa (2.11 Mbp). Despite being sister species the two genomes are highly rearranged and the genomes only have ~55% of genes in common. The functions encoded by the shared genes imply that the bacteria have similar metabolic capabilities, including only two essential amino acid biosynthetic pathways and active uptake mechanisms for the remaining eight, and similar capacities for host cell toxicity and invasion (type 3 secretion systems and RTX toxins). These observations, combined with high sequence divergence of orthologues, strongly suggest an ancient divergence after establishment of a symbiotic lifestyle. The divergence in gene sets and in genome architecture implies a history of rampant recombination and gene inactivation and the ongoing integration of mobile DNA (insertion sequence elements, prophage and plasmids).  相似文献   

7.
蚜虫与其胞内共生细菌的相互作用   总被引:5,自引:0,他引:5  
苗雪霞  丁德诚 《生命科学》2003,15(4):242-247
蚜虫—巴克纳氏菌之间是一种典型的互利共生关系,两者相互依存,缺少一方,另一方便不能生存。研究表明,共生细菌能为寄主蚜虫提供必需氨基酸和维生索,并对寄主具有一些非营养功能,如促进蚜虫传播循环性病毒等。寄主蚜虫则是为共生菌提供一个合适的生存场所,并对共生菌的生长和繁殖进行调控。现代分子生物学技术从基因水平证明了蚜虫与共生菌的相互依赖性。  相似文献   

8.
9.
Buchnera strains from most aphid subfamilies studied to date have been found to carry the leucine gene cluster (leuA, -B, -C, and -D) on a plasmid, an organization unique among bacteria. Here, however, we demonstrate a classical chromosomal location of the cluster in Buchnera sp. strain PSY from the aphid Pemphigus spyrothecae (subfamily Pemphiginae). The genes that flank leuABCD in Buchnera sp. strain PSY appear to be adjacent in the genome of Buchnera sp. strain APS, a strain carrying a leucine plasmid. We propose that the presence of a leucine plasmid predates the diversification of symbiotic Buchnera and that the chromosomal location observed in Buchnera sp. strain PSY arose by a transfer of the leucine genes from a plasmid to the chromosome.  相似文献   

10.
The advent of full genome sequences provides exceptionally rich data sets to explore molecular and evolutionary mechanisms that shape divergence among and within genomes. In this study, we use multivariate analysis to determine the processes driving genome-wide patterns of amino usage in the obligate endosymbiont Buchnera and its close free-living relative Escherichia coli. In the AT-rich Buchnera genome, the primary source of variation in amino acid usage differentiates high- and low-expression genes. Amino acids of high-expression Buchnera genes are generally less aromatic and use relatively GC-rich codons, suggesting that selection against aromatic amino acids and against amino acids with AT-rich codons is stronger in high-expression genes. Selection to maintain hydrophobic amino acids in integral membrane proteins is a primary factor driving protein evolution in E. coli but is a secondary factor in Buchnera. In E. coli, gene expression is a secondary force driving amino acid usage, and a correlation with tRNA abundance suggests that translational selection contributes to this effect. Although this and previous studies demonstrate that AT mutational bias and genetic drift influence amino acid usage in Buchnera, this genome-wide analysis argues that selection is sufficient to affect the amino acid content of proteins with different expression and hydropathy levels.  相似文献   

11.
The symbiotic association between aphids (Homoptera) and Buchnera aphidicola (Gammaproteobacteria) started about 100 to 200 million years ago. As a consequence of this relationship, the bacterial genome has undergone a prominent size reduction. The downsize genome process starts when the bacterium enters the host and will probably end with its extinction and replacement by another healthier bacterium or with the establishment of metabolic complementation between two or more bacteria. Nowadays, several complete genomes of Buchnera aphidicola from four different aphid species (Acyrthosiphon pisum, Schizaphis graminum, Baizongia pistacea, and Cinara cedri) have been fully sequenced. C. cedri belongs to the subfamily Lachninae and harbors two coprimary bacteria that fulfill the metabolic needs of the whole consortium: B. aphidicola with the smallest genome reported so far and "Candidatus Serratia symbiotica." In addition, Cinara tujafilina, another member of the subfamily Lachninae, closely related to C. cedri, also harbors "Ca. Serratia symbiotica" but with a different phylogenetic status than the one from C. cedri. In this study, we present the complete genome sequence of B. aphidicola from C. tujafilina and the phylogenetic analysis and comparative genomics with the other Buchnera genomes. Furthermore, the gene repertoire of the last common ancestor has been inferred, and the evolutionary history of the metabolic losses that occurred in the different lineages has been analyzed. Although stochastic gene loss plays a role in the genome reduction process, it is also clear that metabolism, as a functional constraint, is also a powerful evolutionary force in insect endosymbionts.  相似文献   

12.
13.
Obligate intracellular bacteria commonly have much reduced genome sizes compared to their nearest free-living relatives. One reason for this is reductive evolution: the loss of genes rendered non-essential due to the intracellular habitat. This can occur because of the presence of orthologous genes in the host, combined with the ability of the bacteria to import the protein or metabolite products of the host genes. In this article we take a look at three such bacteria whose genomes have been fully sequenced. Buchnera is an endosymbiont of the pea aphid, Acyrthosiphon pisum, the relationship between these two organisms being so essential that neither can reproduce in the absence of the other. Rickettsia prowazekii is the causative agent of louse-borne typhus in humans and Mycobacterium leprae infection of humans leads to leprosy. Both of these human pathogens have fastidious growth requirements, which has made them very difficult to study.  相似文献   

14.
A major limitation on ability to reconstruct bacterial evolution is the lack of dated ancestors that might be used to evaluate and calibrate molecular clocks. Vertically transmitted symbionts that have cospeciated with animal hosts offer a firm basis for calibrating sequence evolution in bacteria, since fossils of the hosts can be used to date divergence events. Sequences for a functionally diverse set of genes have been obtained for bacterial endosymbionts (Buchnera) from two pairs of aphid host species, each pair diverging 50-70 MYA. Using these dates and estimated numbers of Buchnera generations per year, we calculated rates of base substitution for neutral and selected sites of protein-coding genes and overall rates for rRNA genes. Buchnera shows homogeneity among loci with regard to synonymous rate. The Buchnera synonymous rate is about twice that for low-codon-bias genes of Escherichia coli-Salmonella typhimurium on an absolute timescale, and fourfold higher on a generational timescale. Nonsynonymous substitutions show a greater rate disparity in favor of Buchnera, a result consistent with a genomewide decrease in selection efficiency in Buchnera. Ratios of synonymous to nonsynonymous substitutions differ for the two pairs of Buchnera, indicating that selection efficiency varies among lineages. Like numerous other intracellular bacteria, such as Rickettsia and Wolbachia, Buchnera has accumulated amino acids with codons rich in A or T. Phylogenetic reconstruction of amino acid replacements indicates that replacements yielding increased A + T predominated early in the evolution of Buchnera, with the trend slowing or stopping during the last 50 Myr. This suggests that base composition in Buchnera has approached a limit enforced by selective constraint acting on protein function.  相似文献   

15.
Many insects are nutritionally dependent on symbiotic microorganisms that have tiny genomes and are housed in specialized host cells called bacteriocytes. The obligate symbiosis between the pea aphid Acyrthosiphon pisum and the γ-proteobacterium Buchnera aphidicola (only 584 predicted proteins) is particularly amenable for molecular analysis because the genomes of both partners have been sequenced. To better define the symbiotic relationship between this aphid and Buchnera, we used large-scale, high accuracy tandem mass spectrometry (nanoLC-LTQ-Orbtrap) to identify aphid and Buchnera proteins in the whole aphid body, purified bacteriocytes, isolated Buchnera cells and the residual bacteriocyte fraction. More than 1900 aphid and 400 Buchnera proteins were identified. All enzymes in amino acid metabolism annotated in the Buchnera genome were detected, reflecting the high (68%) coverage of the proteome and supporting the core function of Buchnera in the aphid symbiosis. Transporters mediating the transport of predicted metabolites were present in the bacteriocyte. Label-free spectral counting combined with hierarchical clustering, allowed to define the quantitative distribution of a subset of these proteins across both symbiotic partners, yielding no evidence for the selective transfer of protein among the partners in either direction. This is the first quantitative proteome analysis of bacteriocyte symbiosis, providing a wealth of information about molecular function of both the host cell and bacterial symbiont.  相似文献   

16.
The evolution of the endosymbiont Buchnera during its adaptation to intracellular life involved a massive reduction in its genome. By comparing the orthologous genes of Buchnera, Escherichia coli and Vibrio cholerae, we show that the minimal genome size of Buchnera arose from multiple events of gene disintegration dispersed over the whole genome. The elimination of the genes was a continuous process that began with gene inactivation and progressed until the DNA corresponding to the pseudogenes were completely deleted.  相似文献   

17.
Buchnera aphidicola is the endosymbiotic bacterium of the pea aphid. Due to its small genome size, Buchnera lacks many essential genes for autogenous life but obtains nutrients from the host. Although the Buchnera cell is nonmotile, it retains clusters of flagellar genes that lack the late genes necessary for motility, including the flagellin gene. In this study, we show that the flagellar genes are actually transcribed and translated and that the Buchnera cell surface is covered with hundreds of hook-basal-body (HBB) complexes. The abundance of HBB complexes suggests a role other than motility. We discuss the possibility that the HBB complex may serve as a protein transporter not only for the flagellar proteins but also for other proteins to maintain the symbiotic system.  相似文献   

18.
Endosymbiotic bacteria of aphids, Buchnera aphidicola, and tsetse flies, Wigglesworthia glossinidia, are descendents of free-living gamma-Proteobacteria. The acceleration of sequence evolution in the endosymbiont genomes is here estimated from a phylogenomic analysis of the gamma-Proteobacteria. The tree topologies associated with the most highly conserved genes suggest that the endosymbionts form a sister group with Escherichia coli, Salmonella sp., and Yersinia pestis. Our results indicate that deviant tree topologies result from high substitution rates and biased nucleotide patterns, rather than from lateral gene transfer, as previously suggested. A reinvestigation of the relative rate increase in the endosymbiont genomes reveals variability among genes that correlate with host-associated metabolic dependencies. The conclusion is that host-level selection has retarded both the loss of genes and the acceleration of sequence evolution in endocellular symbionts.  相似文献   

19.
Almost all aphids harbour an endosymbiotic bacterium, Buchnera aphidicola, in bacteriocytes. Buchnera synthesizes essential nutrients and supports growth and reproduction of the host. Over the long history of endosymbiosis, many essential genes have been lost from the Buchnera genome, resulting in drastic genome reduction and the inability to live outside the host cells. In turn, when deprived of Buchnera, the host aphid suffers retarded growth and sterility. Buchnera and the host aphid are often referred to as highly integrated almost inseparable mutualistic partners. However, we discovered that, even after complete elimination of Buchnera, infection with a facultative endosymbiotic gamma-proteobacterium called pea aphid secondary symbiont (PASS) enabled survival and reproduction of the pea aphid. In the Buchnera-free aphid, PASS infected the cytoplasms of bacteriocytes that normally harbour Buchnera, establishing a novel endosymbiotic system. These results indicate that PASS can compensate for the essential role of Buchnera by physiologically and cytologically taking over the symbiotic niche. By contrast, PASS negatively affected the growth and reproduction of normal host aphids by suppressing the essential symbiont Buchnera. These findings illuminate complex symbiont-symbiont and host-symbiont interactions in an endosymbiotic system, and suggest a possible evolutionary route to novel obligate endosymbiosis by way of facultative endosymbiotic associations.  相似文献   

20.
The gene-dense chromosomes of archaea and bacteria were long thought to be devoid of pseudogenes, but with the massive increase in available genome sequences, whole genome comparisons between closely related species have identified mutations that have rendered numerous genes inactive. Comparative analyses of sequenced archaeal genomes revealed numerous pseudogenes, which can constitute up to 8.6% of the annotated coding sequences in some genomes. The largest proportion of pseudogenes is created by gene truncations, followed by frameshift mutations. Within archaeal genomes, large numbers of pseudogenes contain more than one inactivating mutation, suggesting that pseudogenes are deleted from the genome more slowly in archaea than in bacteria. Although archaea seem to retain pseudogenes longer than do bacteria, most archaeal genomes have unique repertoires of pseudogenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号