首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Electrophysiological experiments indicate that olfactory receptors of the channel catfish, Ictalurus punctatus, contain different receptor sites for the acidic (A), basic (B), and neutral amino acids; further, at least two partially interacting neutral sites exist, one for the hydrophilic neutral amino acids containing short side chains (SCN), and the second for the hydrophobic amino acids containing long side chains (LCN). The extent of cross-adaptation was determined by comparing the electro-olfactogram (EOG) responses to 20 "test" amino acids during continuous bathing of the olfactory mucosa with water only (control) to those during each of the eight "adapting" amino acid regimes. Both the adapting and test amino acids were adjusted in concentrations to provide approximately equal response magnitudes in the unadapted state. Under all eight adapting regimes, the test EOG responses were reduced from those obtained in the unadapted state, but substantial quantitative differences resulted, depending upon the molecular structure of the adapting stimulus. Analyses of the patterns of EOG responses to the test stimuli identified and characterized the respective "transduction processes," a term used to describe membrane events initiated by a particular subset of amino acid stimuli that are intricately linked to the origin of the olfactory receptor potential. Only when the stimulus compounds interact with different transduction processes are the stimuli assumed to bind to different membrane "sites." Four relatively independent L-alpha-amino acid transduction processes (and thus at least four binding sites) identified in this report include: (a) the A process for aspartic and glutamic acids; (b) the B process for arginine and lysine; (c) the SCN process for glycine, alanine, serine, glutamine, and possibly cysteine; (d) the LCN process for methionine, ethionine, valine, norvaline, leucine, norleucine, glutamic acid-gamma-methyl ester, histidine, phenylalanine, and also possibly cysteine. The specificities of these olfactory transduction processes in the catfish are similar to those for the biochemically determined receptor sites for amino acids in other species of fishes and to amino acid transport specificities in tissues of a variety of organisms.  相似文献   

2.
The specific signal transduction pathway(s) involved in the induction of the expression of the MHC class II molecule, la, on macrophages by interferon-γ (IFN-γ) is unclear. In this paper, we assessed the role of several signal transduction pathways including calcium mobilization, phospholipase C, protein kinase C and cyclic nucleotide-dependent protein kinase, and the tyrosine kinase pathways. IFN-γ was unable to mobilize intracellular calcium, unlike platelet-activating factor, which stimulated a threefold increase in cytosolic Ca2+ concentration in macrophages. Inhibition of the phospholipase C pathway by U73122 or ET-180CH3 and of phosphatidic acid phosphohydrolase by propranolol did not suppress IFN-γ-induced la expression. In addition, inhibition of protein kinase C by calphostin C or cyclic nucleotide-dependent protein kinase by HA1004 did not suppress la expression. However, IFN-γ-induced la expression was significantly suppressed when the tyrosine kinase pathway was inhibited with herbimycin A and genestein. In addition, those two inhibitors suppressed tyrosine phosphorylation of several proteins in macrophages that may or may not be involved in the induction of la expression. Thus, IFN-γ used only the tyrosine kinase signaling pathway, but not the phospholipid/Ca2+ signaling pathways, to induce la expression in macrophages. © 1996 Wiley-Liss, Inc.  相似文献   

3.
4.
Sharks and rays are highly sensitive to chemical stimuli in their natural environment but several hypotheses predict that hammerhead sharks, with their expanded head and enlarged olfactory epithelium, have particularly acute olfactory systems. We used the electro-olfactogram (EOG) technique to compare the relative response of the scalloped hammerhead shark (Sphyrna lewini) olfactory epithelium to 20 proteinogenic amino acids and determine the sensitivity for 6 amino acids. At micromolar concentrations, cysteine evoked the greatest EOG response which was approximately twice as large as that of alanine. The weakest response was obtained for proline followed by aspartic acid and isoleucine. The olfactory epithelium showed adaptation to sequential stimulation, and recovery was related to the inter-stimulus time period. Estimated EOG response thresholds were in the sub-nanomolar range for both alanine (9.2 × 10−11 M) and cysteine (8.4 × 10−10 M) and in the micromolar range for proline and serine. These thresholds from 10−10 to 10−6 M for the scalloped hammerhead shark are comparable or lower than those reported for other teleost and elasmobranch species. Future work should focus on binary and more complex compounds to test for competition and cross-adaptation for different classes of peripheral receptors, and their responses to molecules found in biologically relevant stimuli.  相似文献   

5.
6.
The highest activity of cyclic nucleotide-dependent (cAMP--2 X 10(-5) M, GMP--2 X 10(-4) M) phosphorylation of synaptic membrane proteins in vitro is revealed at equimolar concentrations of ATP and Mg2+ (10(-3)M) and depends on the ratio of the ATP concentration, protein amount in the assay and the period of exposure. At concentrations exceeding 10(-3) M ATP inhibits cyclic nucleotide-dependent phosphorylation. Optimal concentrations of ATR and Mg2+ to provide basal phosphorylation are found to be equal to 10(-2) M. Possible role of cyclic nucleotide-dependent phosphorylation in synaptic transmission is discussed.  相似文献   

7.
Changes in guanosine cyclic 3′,5′-monophosphate associated with adenosine cyclic 3′,5′-monophosphate and folic acid addition in the presence of ATP have been examined in Dictyostelium discoideum. Preincubation with 1 mM ATP had no effect on the basal cyclic GMP level but increased the cycli GMP accumulation in response to cylci AMP (5·10−8 M) or folic acid (5·10−6 M) 40–50%. ATP could not be replaced by ADP of 5′-adenylyliminodiphosphate. Because ATP has no effect on cyclic AMP receptor binding these results indicate that structural membrane alterations (e.g. membrane phosphorylation) may control the transduction of a chemotactic signal.  相似文献   

8.
Dopamine and urodilatin promote natriuresis and diuresis through a common pathway that involves reversible deactivation of renal Na+, K+-ATPase. We have reported that urodilatin enhances dopamine uptake in outer renal cortex through the natriuretic peptide type A receptor. Moreover, urodilatin enhances dopamine-induced inhibition of Na+, K+-ATPase activity. The objective of the present work was to investigate the intracellular signals involved in urodilatin effects on dopamine uptake in renal cortex of kidney rats. We show that urodilatin-elicited increase in 3H-dopamine was blunted by methylene blue (10 μM), a non-specific guanylate cyclase inhibitor, and by phorbol-12-myristate-13-acetate (1 μM), a particulate guanylate cyclase inhibitor, but not by 1H-[1,2,4]-Oxadiazolo-[4,3-a]-quinoxalin-1-one (10 μM), a specific soluble guanylate cyclase inhibitor; therefore the involvement of particulate guanylate cyclase on urodilatin mediated dopamine uptake was confirmed. Cyclic guanosine monophosphate and proteinkinase G were also implicated in the signaling pathway, since urodilatin effects were mimicked by the analog 125 μM 8-Br-cGMP and blocked by the proteinkinase G-specific inhibitor, KT-5823 (1 μM). In conclusion, urodilatin increases dopamine uptake in renal cortex stimulating natriuretic peptide type A receptor, which signals through particulate guanylate cyclase activation, cyclic guanosine monophosphate generation, and proteinkinase G activation. Dopamine and urodilatin may achieve their effects through a common pathway that involves deactivation of renal Na+, K+-ATPase, reinforcing their natriuretic and diuretic properties.  相似文献   

9.
以云南省瑞丽市勐秀林场扦插种植的薇甘菊为试材,采用液相色谱串联质谱(LC-MS/MS)技术对花芽未分化期和花序原基分化期花芽中的生长素(IAA)、赤霉素(GA)、脱落酸(ABA)、反式玉米素(tZ)、异戊烯腺嘌呤(IP)、1-氨基环丙烷羧酸(ACC)、茉莉酸(JA)和水杨酸(SA)含量进行定量分析,同时基于转录组基因功能注释数据对内源激素合成、代谢及信号转导途径相关基因进行表达分析,以探讨不同内源激素对薇甘菊花芽形成的调控作用,以及内源激素合成和信号转导途径相关基因调控薇甘菊花芽分化的机制,为后期通过外源激素调控薇甘菊内源激素水平的方式来控制薇甘菊的有性繁殖提供理论和技术支持。结果表明:(1)薇甘菊未分化期花芽中GA15、GA19、GA20、GA24、IAA、ABA和ETH含量低于花序原基分化期,而未分化期花芽中两种细胞分裂素tZ和IP含量显著高于花序原基分化期。(2)基于RNA-seq测序结果,在薇甘菊两个花芽分化时期共获得7 116个差异表达基因(DEGs),其中上调3 907个,下调3 209个。(3)在内源激素合成方面,参与GA15、GA19、GA20、GA24、IAA、ABA和ACC合成的大量DEGs在花序原基分化期上调表达,这与它们在薇甘菊花序原基分化期的高含量趋势相一致;参与IAA合成的YUCCA基因家族和ACC合成的ACS基因在花序原基分化期的高表达也可能参与促进薇甘菊花芽分化。(4)在植物激素转导途径中,在花序原基分化期,生长素信号转导途径通过AUX/IAA(gene-E3N88_07743)的下调表达和ARF(gene-E3N88_41119)的上调表达,乙烯信号转导途径通过ERF(gene-E3N88_41547)的上调表达,赤霉素信号转导途径通过GID1(gene-E3N88_19448)基因的上调表达,细胞分裂素信号转导途径通过B-ARR(gene-E3N88_28086)和A-RRR(gene-E3N88_40764)基因的下调表达,脱落酸途径通过AREB(gene-E3N88_18558)基因的上调表达,茉莉酸信号转导途径通过JAZ(gene-E3N88_05628)的上调表达和MYC2(gene-E3N88_32405)的下调表达来调控薇甘菊花芽分化。研究发现,高水平的GA15、GA19、GA20、GA24、IAA、ABA和ACC有利于薇甘菊的花芽分化;薇甘菊在花芽分化过程中通过改变不同种类内源激素合成、代谢基因的表达来调控激素浓度,而激素又通过信号转导途径引起下游基因的表达,进而调控薇甘菊的花芽分化。  相似文献   

10.
Vertebrate photoreceptor cells contain a soluble phosphoprotein, phosducin, which complexes with the beta, gamma subunits of the GTP-binding protein, transducin. Light-induced changes in cyclic nucleotide levels modulate the phosphorylation of phosducin by protein kinase A. The complete amino acid sequence of purified phosducin from bovine retinas was determined by Edman degradation from overlapping polypeptides derived from enzymatic digestion by trypsin and Staphylococcus aureus V8 protease or from chemical degradation by cyanogen bromide. Excluding the unidentified group which blocks the NH2 terminus, phosducin contains 245 amino acids with a calculated molecular weight of 28,185 and isoelectric point of pH 4.5. Phosducin is enriched with acidic and sulfur-containing amino acids, having 32 glutamic acid, 16 aspartic acid, 9 methionine, and 5 cysteine residues. It also contains 24 serine and 8 threonine residues, of which only serine 73 is located within a consensus phosphorylation sequence (-RKMS(P)QV-) for cyclic nucleotide-dependent protein kinase. Secondary structure analysis predicts the presence of 62% alpha-helix, 22% beta-sheet, and 16% random coil, with eight turns. Computer-aided searches of protein data banks revealed no apparent homology to any sequenced protein except that coded by a MEKA cDNA clone (Kuo, C-H., Akiyama, M., and Miki, N. (1989) Mol. Brain Res. 6, 1-10) which deviates from the confirmed phosducin sequence in the last 15 amino acids. Sequence analysis of a cDNA clone for bovine retinal phosducin confirmed that the MEKA clone deviation resulted from an unidentified cDNA guanosine nucleotide, a shifted reading frame and a premature stop codon.  相似文献   

11.
12.
13.
Nicotiana tabacum L. (cv. Petit Havana SR1) were grown under ultraviolet-B (UV-B, 290–320 nm) irradiation, and soluble proteins were extracted from the leaves. Two-dimensional electrophoresis revealed that a minimum of 12 polypeptides were induced by UV-B. Polypeptides which were so abundant as to be detectable by Coomassie brilliant blue staining were then subjected to N-terminal amino acid sequence analyses. Two of the polypeptides were identified as a 23 kDa protein of PS II and 6 as a pathogenesis-related protein 5 (PR-5). Immunoblotting demonstrated that other PR proteins, PR-1 and PR-3 were also induced by UV-B. Salicylic acid (SA), which is an important component of signal transduction that leads to the expression of PR proteins and exhibition of acquired resistance to pathogens, increased in response to exposure to UV-B. In addition, the activity of phenylalanine ammonialyase, which catalyzes the synthesis from phenylalanine of trans-cinnamic acid, the endogenous precursor of SA, was transiently increased by UV-B irradiation. These results suggest that UV-B activates the signal transduction pathway, which is a common step in pathogen infection. Received 8 May 2000/ Accepted in revised form 29 August 2000  相似文献   

14.
Protein phosphatase 2C (PP2C) function in higher plants   总被引:18,自引:0,他引:18  
In the past few years, molecular cloning studies have revealed the primary structure of plant protein serine/threonine phosphatases. Two structurally distinct families, the PP1/PP2A family and the PP2C family, are present in plants as well as in animals. This review will focus on the plant PP2C family of protein phosphatases. Biochemical and molecular genetic studies in Arabidopsis have identified PP2C enzymes as key players in plant signal transduction processes. For instance, the ABI1/ABI2 PP2Cs are central components in abscisic acid (ABA) signal transduction. Arabidopsis mutants containing a single amino acid exchange in ABI1 or ABI2 show a reduced response to ABA. Another member of the PP2C family, kinase-associated protein phosphatase (KAPP), appears to be an important element in some receptor-like kinase (RLK) signalling pathways. Finally, an alfalfa PP2C acts as a negative regulator of a plant mitogen-activated protein kinase (MAPK) pathway. Thus, the plant PP2Cs function as regulators of various signal transduction pathways.  相似文献   

15.
Monocyte chemoattractant protein 1 (MCP-1) is an important mediator of monocyte/macrophage recruitment and activation at the sites of chronic inflammation and neoplasia. In the current study, the role of nitrogen monoxide (NO) in the activation of murine peritoneal macrophages to the tumoricidal state in response to in vitro MCP-1 treatment and the regulatory mechanisms involved therein were investigated. Murine peritoneal macrophages upon activation with MCP-1 showed a dose- and time-dependent production of NO together with increased tumoricidal activity against P815 mastocytoma cells. N-monomethyl- -arginine (L-NMMA), a specific inhibitor of the -arginine pathway, inhibited the MCP-1-induced NO secretion and generation of macrophage-mediated tumoricidal activity against P815 (NO-sensitive, TNF-resistant) cells but not the L929 (TNF-sensitive, NO-resistant) cells. These results indicated -arginine-dependent production of NO to be one of the effector mechanisms contributing to the tumoricidal activity of MCP-1-treated macrophages. Supporting this fact, expression of iNOS mRNA was also detected in the murine peritoneal macrophages upon treatment with MCP-1. Investigating the signal transduction pathway responsible for the NO production by the MCP-1-activated murine peritoneal macrophages, it was observed that the pharmacological inhibitors wortmannin, H-7 (1-(5-isoquinoline sulfonyl)-2-methyl piperazine dihydrochloride), and PD98059 blocked the MCP-1-induced NO production, suggesting the probable involvement of phosphoinositol-3-kinase, protein kinase C, and p42/44 MAPkinases in the above process. Various modulators of calcium and calmodulin (CaM) such as EGTA, nifedipine, TMB-8 (3,4,5-trimethoxybenzoic acid-8-(diethylamino)octyl ester), A23187, and W-7 (N-(6-aminohexyl)-5-chloro-1-napthalenesulfonamide) were also found to modulate the in vitro macrophage NO release in response to MCP-1. This observation indicated the regulatory role of calcium/CaM in the process of MCP-1-induced macrophage NO production. Similarly, the role of serine/threonine and protein tyrosine phosphatases in the above pathway was suggested using the specific inhibitors of these phosphatases, okadaic acid and sodium orthovanadate.  相似文献   

16.
Insulin receptor substrate-1 (IRS-1) plays a pivotal role in insulin signal transduction. It has been shown that the amino acids modulate insulin signaling at the level of IRS-1. Here we show that an amino acid unbalanced diet causes a reduction in serine phosphorylation as well as an elevation in insulin-induced tyrosine phosphorylation of IRS-1 in rat muscle. In fibroblasts and myotube cells, the effect of amino acid deprivation on IRS-1 phosphorylation was evident only when cells were pretreated with reagents causing hyperphosphorylation of serines of IRS-1. But, the target kinases of these reagents were not inactivated by amino acid deprivation, suggesting that amino acid deprivation activates serine/threonine phosphatase(s) of IRS-1. The phosphatases regulated by mammalian target of rapamycin do not appear to participate in the dephosphorylation either. These results suggest that amino acid deprivation dephosphorylates IRS-1 through unidentified serine/threonine phosphatases and thereby potentiates insulin signaling.  相似文献   

17.
Retinal rod photoreceptors of teleost fish elongate in the light and shorten in the dark. Rod cell elongation and shortening are both mediated by actin-dependent mechanisms that occur in the inner segment myoid and ellipsoid. The intracellular signaling pathways by which light and dark regulate the actin cytoskeleton in the inner segment are unknown. To investigate the intracellular signals that regulate teleost rod motility, we have been using mechanically isolated rod inner/outer segments (RIS-ROS) obtained from the retinas of green sunfish, Lepomis cyanellus. In culture, RIS-ROS retain the ability to elongate in response to light; myoids elongate 15-20 microns in length during 45 min of light culture. A pharmacological approach was taken to investigate the role of cyclic nucleotides, cyclic nucleotide-dependent kinases, and protein phosphatases in the regulation of RIS-ROS motility. Millimolar concentrations of cAMP and cGMP analogues were both found to inhibit light-induced myoid elongation and two cyclic nucleotide analogues, SpCAMPS and 8BrcGMP, promoted myoid shortening after RIS-ROS had elongated in response to light. The cyclic nucleotide- dependent kinase inhibitor, H8, mimicked light by promoting myoid elongation in the dark. The effects of H8 were dose dependent, with maximal elongation occurring at concentrations of approximately 100 microM. Similar to the effects of cyclic nucleotide analogues, the phosphatase inhibitor, okadaic acid (0.1-10 microM), inhibited light- induced elongation and promoted shortening. The results presented here suggest that RIS-ROS motility is regulated by protein phosphorylation: phosphorylation in the dark by cyclic nucleotide-dependent protein kinases promotes rod shortening, while dephosphorylation in the light promotes rod elongation.  相似文献   

18.
19.
Olfactory adaptation is a fundamental process for the functioning of the olfactory system, but the underlying mechanisms regulating its occurrence in intact olfactory sensory neurons (OSNs) are not fully understood. In this work, we have combined stochastic computational modeling and a systematic pharmacological study of different signaling pathways to investigate their impact during short-term adaptation (STA). We used odorant stimulation and electroolfactogram (EOG) recordings of the olfactory epithelium treated with pharmacological blockers to study the molecular mechanisms regulating the occurrence of adaptation in OSNs. EOG responses to paired-pulses of odorants showed that inhibition of phosphodiesterases (PDEs) and phosphatases enhanced the levels of STA in the olfactory epithelium, and this effect was mimicked by blocking vesicle exocytosis and reduced by blocking cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) and vesicle endocytosis. These results suggest that G-coupled receptors (GPCRs) cycling is involved with the occurrence of STA. To gain insights on the dynamical aspects of this process, we developed a stochastic computational model. The model consists of the olfactory transduction currents mediated by the cyclic nucleotide gated (CNG) channels and calcium ion (Ca2+)-activated chloride (CAC) channels, and the dynamics of their respective ligands, cAMP and Ca2+, and it simulates the EOG results obtained under different experimental conditions through changes in the amplitude and duration of cAMP and Ca2+ response, two second messengers implicated with STA occurrence. The model reproduced the experimental data for each pharmacological treatment and provided a mechanistic explanation for the action of GPCR cycling in the levels of second messengers modulating the levels of STA. All together, these experimental and theoretical results indicate the existence of a mechanism of regulation of STA by signaling pathways that control GPCR cycling and tune the levels of second messengers in OSNs, and not only by CNG channel desensitization as previously thought.  相似文献   

20.
Structural details of initiator proteins for DNA replication have provided clues to the molecular events in this process. EM reconstructions of the Drosophila melanogaster origin recognition complex (ORC) reveal nucleotide-dependent conformational changes in the core of the complex. All five AAA+ domains in ORC contain a conserved structural element that, in DnaA, promotes formation of a right-handed helix, indicating that helical AAA+ substructures may be a feature of all initiators. A DnaA helical pentamer can be docked into ORC, and the location of Orc5 uniquely positions this core. The results suggest that ATP-dependent conformational changes observed in ORC derive from reorientation of the AAA+ domains. By analogy to the DNA-wrapping activity of DnaA, we posit that ORC together with Cdc6 prepares origin DNA for helicase loading through mechanisms related to the established pathway of prokaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号