首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glutaryl-7-aminocephalosporanic acid acylase (GA), an industrially relevant enzyme, has been immobilized onto very different supports, including glyoxyl agarose, heterofunctional epoxy Sepabeads, glutaraldehyde and cyanogen bromide (CNBr) activated supports. Immobilization onto amino-epoxy Sepabeads rendered the most thermo stable preparation of GA, with a half-life time eight times higher than the soluble enzyme, keeping 80% of the enzyme activity. Several parameters that affect the enzyme-support interaction (pH and incubation time) were studied. It was found that after immobilization onto amino-epoxy Sepabeads, incubation at alkaline pH and low temperature exerted dramatic stabilizing effects, increasing the half-life time of the derivative 130 times with respect to the soluble enzyme, while keeping unaltered its intrinsic activity. The loading capacity of the amino-epoxy Sepabeads proved to be very good with a maximum load of 62 mg of protein per g of support with 85 IU/g at 25 degrees C and 200 IU/g at 37 degrees C which makes it a biocatalyst of possible industrial application.  相似文献   

2.
Earthworm fibrinolytic enzyme III-1 (EFE-III-1) was prepared to couple with cross-linking agarose activated by 1,'-Carbonyl- diimidazole (CDI) in this study. Although the activity of the immobilized protease decreased to approximately 64% of the native enzyme, the activity of EFE-III-1 coupled with the resin activated by CDI was higher than that activated by cyanogen bromide (CNBr). The immobilized protease was experimentally demonstrated to hydrolyze IgG, albumin and creatine kinase, besides fibrin(ogen) and plasmin(ogen), suggesting that EFE had a broad substrate specificity.  相似文献   

3.
The attachment of enzymes, through their amino groups, to CNBr activated agarose gels has been tested as an immobilization stabilization system. By using this system, the development of a strategy to immobilize enzymes through multipoint covalent attachment has been studied. We have prepared different staphylococcal nuclease-Agarose derivatives by using Sepharose 2B gels previously activated with CNBr. Activity and stability of the derivatives obtained were very dependent on the degree of activation of the support. The most stable derivatives, prepared with the most activated supports, were 700 fold more stable than the soluble enzyme in irreversible thermal inactivation experiments, at 40d`C. In contrast, a significant loss of catalytic activity (kcat decreases down to 40%) was associated with the increase in stability. Colorimetric titration of amine groups in the stabilized derivatives suggested that enzyme-support multipoint attachment was the main reason for the observed stabilizing effect.

Index Entries: micrococcal nuclease immobilization enzyme stabilization enzyme-support multipoint attachment  相似文献   

4.
An immobilized enzyme reactor has been developed to remove heparin, the anticoagulant that is required in all extracorporeal devices for patients undergoing open-heart surgery or kidney dialysis. The device uses the enzyme heparinase (EC 4.2.2.7), which is covalently linked to agarose with cyanogen bromide. A critical parameter in the development of a model for the degradation of heparin catalyzed by immobilized heparinase is the radial concentration profile of the enzyme within the agarose matrix. Experimental determinations of bound enzyme con centrations have been conducted previously for several enzyme systems using radioactive or fluorescent labels. For the development of the heparinase reactor it is necessary to use catalytically but not electrophoretically pure enzyme, and thus it is not possible to use the labeling techniques. To obtain information about the bound enzyme distribution, an experimental study of the intrinsic binding kinetics of heparinase to cyanogen bromide-activated agarose was conducted. The binding reaction was studied as a function of both the concentration of heparinase and the gel-reactive group. At conditions of functional group excess, the binding kinetics were pseudo first order in heparinase concentration with a rate constant equal to 0.12 C(c[triple chemical bond]n) (h(-1)), where C(c[triple chemical bond]n) is the gel-reactive group concentration. The reactive group concentration remained constant within the 2-4-h experiments. Competitive binding between heparinase and the protein contaminants was unimportant. A model was formulated for the immobilization procedure based on the diffusion of heparinase within the porous network and the binding kinetics as determined above. The model predicted the immobilization of heparinase to be kinetically controlled and the enzyme to distribute uniformly within the agarose matrix. These experimental techniques could be applied to predict the immobilized enzyme distribution for different enzyme systems that are not electrophoretically pure.  相似文献   

5.
Plasminogen was immobilized on agarose using either a commercially available substituted gel, or the cyanogen bromide (CNBr) activation procedure as a means of coupling the protein to agarose. Coupling the zymogen to the gel followed by its activation with urokinase yielded an immobilized plasmin. The immobilized enzymes have esterase, amidase and protease activity towards lysine and arginine esters, lysine anilide and casein, respectively. They activate plasminogen by a linear non-autocatalytic process. Both enzyme preparations are stable for extended periods of time in the absence of any stabilizing agents, and are not denatured by high salt concentrations or detergents.  相似文献   

6.
《Process Biochemistry》2014,49(9):1511-1515
Lecitase Ultra has been covalently immobilized on cyanogen bromide cross-linked 4% agarose (CNBr) beads, maintaining 70% of the initial activity. The activity of the immobilized enzyme was improved in the presence of Triton X-100, sodium dodecyl sulfate (SDS), and cetyltrimethyl ammonium bromide (CTAB) (e.g., up to 800% when using CTAB). However, CTAB and Triton X-100 presented a negative effect on enzyme stability even at low concentrations, and SDS cannot be used for a long time at 1% concentration. To maintain the hyperactivated conformation of the enzyme in the absence of detergent, ionic polymers were added during incubation of the immobilized enzyme in the presence of detergents. Coating the immobilized enzyme with polyethylenimine in aqueous buffer (PEI) produced a 3-fold increase in enzyme activity. However, in the presence of 0.1% SDS (v/v), this coating produced a 50-fold increase in enzyme activity. Using PEI and 0.01% (v/v) CTAB, the Lecitase activity decreased to 10%. Using irreversible inhibitors, it could be shown that the PEI/SDS-CNBr-Lecitase preparation allowed its catalytic Ser to be more accessible to the reaction medium than the unmodified CNBr-Lecitase.  相似文献   

7.
alpha-Chymotrypsin was immobilized with a high coupling yield (up to 80%) to tresyl chloride activated Sepharose CL-4B.The immobilized enzyme was tested for its ability to synthesize soluble peptides from N-acetylated amino acid esters as acyl donors and amino acid amides as acceptor amines in water-water-miscible organic solvent mixtures. It was found that the yield of peptide increased with increasing concentration of organic cosolvent. Almost complete synthesis (97%) of Ac-Phe-Ala-NH(2) was obtained from Ac-Phe-OMe using a sixfold excess of Ala-NH(2). The rate of peptide formation in aqueous-organic solvent mixtures was good. Thus, 0.1M peptide was formed in less than 2 h in 50 vol% DMF with 0.1 mg immobilized chymotrypsin/mL reaction mixture. The immobilized enzyme distinguished between the L and D configurations of acceptor amino acid amides even in high concentration of nonaqueous component (90% 1,4-butanediol). The effect of temperature was studied. It was found that both the yield of peptide and the stability of immobilized enzyme increased when the temperature was lowered. Experiments could be performed at subzero temperatures in the aqueous-organic solvent mixtures resulting in very high yield of peptide. After three weeks continuous operation at 4 degrees C in 50% DMF, the immobilized enzyme retained 66%of its original synthetic activity. The activity of the immobilized enzyme was better conserved with a preparation made from agarose with a higher tresyl group content compared to a preparation made from a lower activated agarose, indicating that multiple point of attachment has a favorable effect on the stability of the enzyme in aqueous-organic solvent mixtures. The major advantage of using water-miscible instead of water-immiscible organic solvents to promote peptide syntheses appears to be the increased solubility of substrates and products, making continuous operation possible.  相似文献   

8.
The immobilization of heparinase to tresyl-chloride-activated cellulose hollow fibers for the removal of heparin from the bloodstream was examined. Whole blood can be circulated through cellulose hollow fibers without hemolysis and the tresyl chloride chemistry provides a strong linkage which limits the release of the enzyme from the support. The tresylation and immobilization methods were modified and optimized to improve the heparinase activity retained by cellulose. Pretreatment of the hollow fibers with 0.05/V sodium hydroxide increased the degree of tresylation and the immobilization yield by a factor of five. The use of triethylamine as the organic base in the tresyl chloride activation resulted in threefold greater activity retention by the support than when pyridine was used. Together, sodium hydroxide pretreatment and triethylamine enhanced the activity retained by cellulose to 26.2 +/- 7.0% of that bound to the support. The activity retention was also a function of the technique used for immobilization. The best results were achieved when the enzyme was applied to the activated fibers once every 12 to 24 h for a total of four times. The active enzyme loading on the fibers was 0.3 mg heparin degraded/h cm(2) when 4.5 mug protein/cm(2) was bound to the fibers.  相似文献   

9.
The stability of NAD(H) immobilized to a crosslinked agarose support (Sepharose(R)-4B) was examined in buffer solutions at a pH of 7.0 and 8.5. Specifically, this study investigated particle attrition and ligand leakage rates from a cyanogen bromide activated agarose support. Particle attrition did not occur under the experimental conditions. Ligand leakage rates were found to be first order in immobilized ligand concentration with two labile populations of ligand. The two-population model is consistent with the cyanogen bromide coupling chemistry, which results in both an isourea and imidocarbonate ligand linkage. The rate of ligand leakage was found to occur over a time scale of days, with first order rate constants ranging from 0.007 to 0.15 d(-1), depending on solution pH. (c) 1997 John Wiley & Sons, Inc.  相似文献   

10.
The alcohol dehydrogenase (ADH) from Baker's yeast is very active but extremely unstable under several different conditions. Mild immobilization methods such as one-point attachment to agarose activated with cyanogen bromide groups or ionic adsorption to agarose activated with charged groups allow high activity recoveries (80–100%) but do not promote protein stabilization. In contrast, immobilization methods that force the enzyme to be covalently attached at multiple points on the support fully inactivate the enzyme. Herein, we propose an interesting solution to address the dichotomy between activity and stability. We have developed a protocol in which the enzyme is immobilized on agarose activated with glyoxyl groups in the presence of acetyl cysteine, which results in the recovery of 25% of the enzyme activity but increases the thermal stability of the soluble enzyme 50-fold. However, this immobilization technique does not stabilize the enzyme quaternary structure. Hence, a post-immobilization technique using functionalized polymers has been used to cross-link all enzyme subunits. In this method, polycationic polymers (polyethylenimine) cross-link the quaternary structure with a negligible effect on catalytic activity, which results in a derivative that is 5-fold more stable than non-cross-linked derivatives under very dilute and acidic conditions that highly favor subunit dissociation. Therefore, the stability was increased 500-fold for this optimal derivative compared to diluted soluble enzyme, although the relative expressed activity was low (25%). However, the low expressed activity may be overcome by designing immobilized biocatalysts with high volumetric activities.  相似文献   

11.
An approach is presented for the stable covalent immobilization of proteins with a high retention of biological activity. First, chemical modification studies were used to establish enzyme structural and functional properties relevant to the covalent immobilization of an enzyme to agarose based supports. Heparinase was used as a model enzyme in this set of studies. Amine modifications result in 75-100% activity loss, but the effect is moderated by a reduction in the degree of derivatization. N-hydroxysuccinimide, 1,1,1-trifluoroethanesulfonic acid, and epoxide activated agarose were utilized to determine the effect of amine reactive supports on immobilized enzyme activity retention. Cysteine modifications resulted in 25-50% loss in activity, but free cysteines were inaccessible to either immobilized bromoacetyl or p-chloromercuribenzoyl groups. Amine reactive coupling chemistries were therefore utilized for the covalent immobilization of heparinase. Second, to ensure maximal stability of the immobile protein-support linkage, the identification and subsequent elimination of the principal sources of protein detachment were systematically investigated. By using high-performance liquid chromatography (HPLC), electrophoresis, and radiolabeling techniques, the relative contributions of four potential detachment mechanisms-support degradation, proteolytic degradation, desorption of noncovalently bound protein, and bond solvolysis-were quantified. The mechanisms of lysozyme, bovine serum albumin, and heparinase leakage from N-hydroxysuccinimide or 1,1,1-trifluoroethanesulfonic acid activated agarose were elucidated. By use of stringent postimmobilization support wash procedures, noncovalently bound protein loss. An effective postimmobilization washing procedure is presented for the removal of adsorbed protein and the complete elimination of immobilized protein loss.  相似文献   

12.
Glucagon was immobilized onto Sepharose matrices activated with CNBr or tresyl chloride, as a function of several parameters including pH of coupling, concentration of added polypeptide, and presence or absence of urea. The hormone was linked to the matrix through a single point per molecule, namely, the epsilon -amino group of Lys(12) when the coupling was carried out at alkaline pH, or the imidazole group of His(1) when the coupling was carried out at acidic pH. Glucagon immobilized at alkaline pH interacted specifically with soluble glucogon. The extent of self-association was similar to that of free glucagon, which exists in solution in a monomer-trimer equilibrium whose association constant is highly dependent on the characteristics of the buffer (pH, ionic strength, and nature of anions). The immobilized hormone proved to be suitable for the purification of the free one from a pancreatic extract. After a preliminary treatment with charcoal-dextran, the extract was percolated on a glucagon-Sepharose column under associating conditions (high concentrations of salting out anions and alkaline pH) and then, following a washing to remove extraneous compounds, the specifically bound hormone was eluted under dissociating conditions (low ionic strength). The subunit exchange chromatography of the extract gave a ca. 90% pure product. The overall recovery of the process was ca. 66%. The leakage of immobilized hormone was 40% in the case of CNBr activation of Sepharose and 15% in the case of tresyl chloride activation, after an eight-day treatment under working conditions.  相似文献   

13.
《Process Biochemistry》2010,45(1):107-113
First, the enzyme immobilized on cyanide bromide agarose beads (CNBr) (that did not involve all enzyme subunits in the immobilization) has been crosslinked with aldehyde-dextran. This preparation did not any longer release enzyme subunits and become fully stable at pH 4 and 25 °C.Then, the stabilities of many different enzyme preparations (enzyme immobilized on CNBr, that derivative further crosslinked with aldehyde-dextran, enzyme immobilized on highly activated amino-epoxy supports, GDH immobilized on supports having a few animo groups and many epoxy groups, GDH immobilized on glyoxyl-agarose beads at pH 7, and that preparation further incubated at pH 10, and finally the enzyme immobilized on this support directly at pH 10) were compared at pH 4 and high temperatures, conditions where both dissociation and distortion play a relevant role in the enzyme inactivation. The most stable preparation was that prepared at pH 7 and incubated at pH 10, followed by GDH immobilized on amino and epoxy supports and the third one was the enzyme immobilized on glyoxyl-agarose at pH 10.The incubation of all enzyme preparations in saturated guanidine solutions produced the full inactivation of all enzyme preparations. When not all enzyme subunits were immobilized, activity was not recovered at all. Among the other derivatives, only glyoxyl preparations (the most inert supports and those where a more intense multipoint covalent attachment were expected) gave significant reactivation when re-incubated in aqueous medium. After optimization of the reactivation conditions, the enzyme immobilized at pH 7 and later incubated at pH 10 recovered 100% of the enzyme activity.  相似文献   

14.
The use of clinical bioreactors will increase as more therapeutic proteins are being cloned, expressed, and produced at a reduced cost. The proposed use of an immobilized heparinase I reactor to make heparin anticoagulation a safer therapy is an example of how the specificity and high activity of an enzyme could be incorporated into a system to ultimately benefit a patient. However, the development of a safe and efficient bioreactor is important for the use of immobilized heparinase I and other therapeutic proteins designed for use in medical extracorporeal procedures. This study examined the possibility of using Taylor-Couette flow and "flow-induced" recirculation of the agarose beads as a way to fluidize agarose-bound heparinase in whole blood. Heparinase I was immobilized onto agarose beads via cyanogen bromide activation. A reactor based on Taylor-Couette flow was designed and modified with a tangential recirculation line. The reactor was tested for efficacy and safety in vitro in human blood. Visualization studies in water and 42% glycerol were used to determine the minimum rotation rate for efficient fluidization. The strategic placement of the recirculation line allowed recirculation of the agarose without the use of an external pump. The device removed 90% of the heparin activity within 2 min from 450 cc of human blood at a blood flow rate of 100 mL/min. Furthermore, the device maintained inlet and outlet clotting times of 269 +/- 10 and 235 +/- 6 s, respectively, demonstrating the potential for regional heparinization. Blood damage was a function of gel volume fraction and rotation rate of the inner cylinder. Hemolysis of the red cells is an important issue when Taylor vortices are combined with macroscopic solid particles such as agarose beads. A modified Taylor-Couette flow device was developed to treat whole blood and operational criteria were established to minimize hemolysis.  相似文献   

15.
The native dimeric form of enolase from pig muscle was immobilized on Sepharose 4B activated with cyanogen bromide. The amount of matrix-bound enolase, its specific activity and kinetic properties depend on the extent of gel activation with CNBr. Only on the Sepharose activated with small quantities of CNBr the amount of protein which remained after treatment with Gdn.HCl was about 50% of the initially bound enolase, indicating that the enzyme was bound covalently to the matrix through a single subunit. The matrix-bound monomers obtained in this way were inactive and were unable to reassociate to dimers on addition of free subunits. The matrix-bound monomers obtained after KBr treatment were inactive but retained the ability to reassociate into active dimers after addition of free subunits. The results indicate that single matrix-bound subunits of pig muscle enolase are enzymatically inactive and dimeric structure is essential for catalytic activity.  相似文献   

16.
Cellulase produced by fungus Trichoderma viride was immobilized on agarose beads (Sepharose 4B) activated by cyanogen bromide and also on activated agarose beads that contained spacer arm (activated CH-Sepharose 4B and Affi-Gel 15). The CMCase activity retained by immobilized cellulase on activated Sepharose containing the spacer tended to be higher than that immobilized without spacer, although the extent of protein immobilization was lower. Also, the higher substrate specificity for cellulase immobilized on beads with spacer was obtained for cellobiose, acid-swollen cellulose, or cellulose powder. The hydrolysis product from their substrates was mainly glucose.  相似文献   

17.
Summary Aspergillus niger cellulase was imobilized on cyanogen bromide activated dextran of varying molecular weights. The effect of different concentrations of cyanogen bromide used for the activation process was also studied. About 50% conjugation and 70% retention activity was achieved in the immobilized cellulase. The pH activity of immobilized enzyme was unchanged, but exhibited more stable activity at acidic pH than the free enzyme. Higher resistance to heat inactivation was also observed.  相似文献   

18.
Study was made of controlled fabrication and operation of immunoadsorbents exploiting beaded composites of agarose or kieselguhr-agarose. Materials were activated by cyanogen bromide and tresyl chloride, derivatised with human IgG antigens, and utilised in direct, one-step purifications of anti-huIgG monoclonal antibodies produced in serum-based cultures of murine hybridomas. The influence of solid phase composition, degrees of activation, concentration of immobilised antigen, capping chemistries, and mode of product desorption was studied in respect of purification performance. Maximum concentrations of immobilised huIgG could be achieved following activation of 50% available hydroxyl groups in both materials. Specific adsorption and desorption of monoclonal antibodies, expressed per mole of immobilised ligand, declined with increasing ligand concentrations. Control of activation and derivatisation of agarose solid phases enhanced the overall specification and performance of both homogeneous and composite fabricates. The large particle size of composites (150-1000 microns) restricted efficient performance in fixed bed contactors operated under non-equilibrium conditions. However, their physical nature recommended adsorptive operations with particulate feedstocks in fixed or fluidised beds, batch suspension contactors, or fast flow regimes adopted for cleaning and equilibration operations.  相似文献   

19.
Immobilization of d-amino acid oxidase was investigated by covalently binding the enzyme to cyanogen bromide activated polysaccharides. Among polysaccharides tested, Sepharose 6B was found to be the best carrier.

Some enzymatic properties of the immobilized enzyme were investigated and compared with those of the native enzyme. The optimum pH of the immobilized enzyme was shifted by 0.5 pH units to the acid side in comparison with that of the native enzyme. With regard to substrate specificity, heat stability and effect of temperature, no significant differences were observed between the immobilized and native enzymes.

The immobilized enzyme was conveniently used for a determination of d-amino acids and an analysis of optical purity of l-amino acids.  相似文献   

20.
A micromethod is described for the evaluation of immobilization of sialoglycoconjugates on insoluble supports. Ligands were radioactively labeled in their sialic acid moieties after mild periodate oxidation and borotritide reduction, or in the glycosylamino residue after borotritide reduction of the Schiff's base formed between reducing sialooligosaccharides and β-(p-aminophenyl)-ethylamine. Sephadex G-25, Sepharose 4B, and Cellulose MN 2100 were activated by CNBr or periodate oxidation. The hydrazido derivatives of these supports were prepared using both activation methods, and activated to azido-supports using nitrous acid. Controlled Pore Glass-glycophase activated by periodate oxidation was also studied. The investigation of conditions for the binding of the radioactive ligands was carried out in the microassay using 0.5-ml aliquots of the activated supports. The stability of the bound ligands in dependence on various parameters was investigated using the immobilized radioactive ligands. Multivalent linkages formed between ligand and support gave increased stability to release compared to monovalent attachment, for cyanogen bromide activation. The use of periodate activation yielded ligands with much greater stability even for monovalent linkages.The microassay was used successfully to predict conditions for the batchwise preparation of immobilized ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号