首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A comparison of fractionation methods for forms of phosphorus in soils   总被引:2,自引:0,他引:2  
We used l6 soils to compare the Hedley method for soil phosphorus fractionation to an alternative method recently developed by Ruttenberg to differentiate among P fractions in marine sediments. For forms of labile and Fe-bound P in soils, these methods were poorly correlated, with the Hedley fractionation showing a greater ability to discriminate among variations in plant-available P. For Ca-bound P, total organic P, and total P, the methods were well correlated (r2 = 0.93, 0.48, 0.74, respectively), although the sum of P measured in the Ruttenberg extractions is only 45% of the total P recovered by the Hedley fractionation. The Hedley fractionation seems superior when an index of plant-available phosphorus and a separation of organic and inorganic forms is needed, whereas the Ruttenberg method allows a separation of CaCO3-bound P from apatite-P, which is potentially useful in calcareous soils.  相似文献   

2.
Johnson AH  Frizano J  Vann DR 《Oecologia》2003,135(4):487-499
Forest ecologists and biogeochemists have used a variety of extraction techniques to assess labile vs. non-labile soil P pools in chronosequences, the balance between biological vs. geochemical control of P transformations across a wide range of soil orders, the role of plants with either N-fixing or mycorrhizal symbionts in controlling soil P fractions, and to make inferences about plant-available P. Currently, variants of the sequential extraction procedure developed by M. J. Hedley and co-workers afford the greatest discrimination among labile and non-labile organic and inorganic P pools. Results of recent studies that used this technique to evaluate P fractions in forest soils indicate the following: (1) in intact, highly weathered forest soils of the humid tropics, Hedley-labile P values are several times larger than extractable P values resulting from mildly acidic extracting solutions which were commonly used in the past 2 decades; (2) pools of Hedley-labile P are several times larger than the annual forest P requirement and P required from the soil annually in both temperate and tropical forests; (3) long-term trends in non-labile P pools during pedogenesis are adequately represented by the Walker and Syers' model of changes in P fractionation during soil development. However, to better represent trends in pools that can supply plant-available P across forest soils of different age and weathering status, the paradigm should be modified; and (4) across a wide range of tropical and temperate forest soils, organic matter content is an important determinant of Hedley-labile P.  相似文献   

3.
Individual trees are known to influence soil chemical properties, creating spatial patterns that vary with distance from the stem. The influence of trees on soil chemical properties is commonly viewed as the agronomic basis for low-input agroforestry and shifting cultivation practices, and as an important source of spatial heterogeneity in forest soils. Few studies, however, have examined the persistence of the effects of trees on soil after the pathways responsible for the effects are removed. Here, we present evidence from a Mexican dry forest indicating that stem-related patterns of soil nutrients do persist following slash-and-burn removal of trees and two years of cropping. Pre-disturbance concentrations of resin extractable phosphorus (P), bicarbonate extractable P, NaOH extractable P, total P, total nitrogen (N) and carbon (C), KCl extractable nitrate (NO3 -), and net N mineralization and nitrification rates were higher in stem than dripline soils under two canopy dominant species of large-stemmed trees with contrasting morphologies and phenologies (Caesalpinia eriostachys Benth. and Forchhammeria pallida Liebm.). These stem effects persisted through slash burning and a first growing season for labile inorganic and organic P, NaOH inorganic P, and plant-available P, and through a second growing season for labile organic P, NaOH organic P, and plant-available P. While stem effects for extractable NO3 -, net nitrification rates, total N and C disappeared after felling and slash burning, these stem effects returned after the first growing season. These results support the view that tree-influenced patterns of soil nutrients do persist after tree death, and that trees contribute to the long-term spatial heterogeneity of forest soils. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
Summary A study has been made of the influence of waterlogging on the distribution of trace metals between the various reservoirs in which they are held in a soil. Selective extractants have been used to remove metals held in 4 ways: soil solution and exchangeable; specifically adsorbed by inorganic sites; adsorbed or chelated by organic sites; adsorbed onto oxide surfaces.Waterlogging over a period of 16 weeks resulted in the release of both manganese and iron from the organic — and oxide — bound reservoirs to the soluble, exchangeable and inorganic reservoirs. Addition of both 1% dried grass (as an actively decomposing organic material) and 1% CaCO3 to the soil resulted in an acceleration of the metal redistribution.For manganese, selective extraction methods accounted for the distribution of all the metal in the reservoirs studied. In the case of iron however, there appeared to be some release from a reservoir not being extracted.  相似文献   

5.

Aims

The study aimed to find soil parameters that are best related to Se plant uptake for low Se soils with predominantly organic Se, and to explore the mechanisms that control Se bioavailability in the soils under study.

Methods

A pot experiment using nineteen soil samples taken from different fields of arable land (potato fields) in the Netherlands was conducted on summer wheat (Triticum aestivum L.). Selenium in wheat shoots and soil parameters, including basic soil properties, C:N ratio, inorganic selenite content, and Se and organic C in different soil extractions (0.01 M CaCl2, 0.43 M HNO3, hot water, ammonium oxalate, aqua regia) were analysed. Regression analysis was performed to identify soil parameters that determine Se content in wheat shoots.

Results

The regression model shows that Se:DOC ratio in 0.01 M CaCl2 soil extraction explained about 88 % of the variability of Se uptake in wheat shoots. Selenium uptake increased with Se:DOC ratio in CaCl2 extraction, which can be interpreted as a measure of the content of soluble Se-rich organic molecules. Selenium:DOC ratio in CaCl2 extraction and Se uptake increased towards higher soil pH and lower soil C:N ratio. The soil C:N ratio is also negatively correlated to Se:organic C ratio in other extractions (0.43 M HNO3, hot water, ammonium oxalate, aqua regia), indicating that at low soil C:N ratio soil organic matter is richer in Se. Contrarily, the soil pH is positively and strongly correlated to Se:organic C ratio in CaCl2 and hot water extractions, but only weakly correlated to Se:organic C ratio in other extractions.

Conclusions

Selenium-rich dissolved organic matter is the source of bioavailable Se in low Se soils with predominantly organic Se. The soil pH and quality of soil organic matter (i.e. soil C:N ratio) are the main soil properties determining Se bioavailability in these soil types.
  相似文献   

6.
Climate and environmental changes are having profound impacts on Arctic river basins, but the biogeochemical response remains poorly understood. To examine the effect of ice formation on temporal variations in composition and fluxes of carbon and nutrient species, monthly water and particulate samples collected from the lower Yukon River between July 2004 and September 2005 were measured for concentrations of organic and inorganic C, N, and P, dissolved silicate (Si(OH)4), and stable isotope composition (δD and δ18O). All organic carbon and nutrient species had the highest concentration during spring freshet and the lowest during the winter season under the ice, indicating dominant sources from snowmelt and flushing of soils in the drainage basin. In contrast, inorganic species such as dissolved inorganic carbon (DIC) and Si(OH)4 had the highest concentrations in winter and the lowest during spring freshet, suggesting dilution during snowmelt and sources from groundwater and leaching/weathering of mineral layer. The contrasting relation with discharge between organic, such as dissolved organic carbon (DOC), and inorganic, such as DIC and Si(OH)4, indicates hydrological control of solute concentration but different sources and transport mechanisms for organic and inorganic carbon and nutrient species. Concentration of DOC also shows an inter-annual variability with higher DOC in 2005 (higher stream flow) than 2004 (lower stream flow). Average inorganic N/P molar ratio was 110?±?124, with up to 442 under the ice and 38–70 during the ice-open season. While dissolved organic matter had a higher C/N ratio under the ice (45–62), the particulate C/N ratio was lower during winter (21–26) and spring freshet (19). Apparent fractionation factors of C, N, P, Si and δD and δ18O between ice and river water varied considerably, with high values for inorganic species such as DIC and Si(OH)4 (45 and 9550, respectively) but lower values for DOC (4.7). River ice formation may result in fractionation of inorganic and organic solutes and the repartitioning of seasonal flux of carbon and nutrient species. Annual export flux from the Yukon River basin was 1.6?×?1012 g-DOC, 4.4?×?1012 g-DIC, and 0.89?×?1012 g-POC during 2004–2005. Flux estimation without spring freshet sampling results in considerable underestimation for organic species but significant overestimation for inorganic species regardless of the flux estimation methods used. Without time-series sampling that includes frozen season, an over- or under-estimation in carbon and nutrient fluxes will occur depending on chemical species. Large differences in carbon export fluxes between studies and sampling years indicate that intensive sampling together with long-term observations are needed to determine the response of the Yukon River to a changing climate.  相似文献   

7.
Summary The extractive powers of different extraction procedures (Electro-Ultrafiltration, 0.01M CaCl2 and standard Dutch methods) were compared mutually for a limited number of nutrients in soil samples from 21 locations. The results showed that for almost all parameters under study (Na, K, Mg, Mn, P, N) the methods are interchangeable. Drawbacks of the EUF technique are lower reproducibility of the results, laboriousness and high cost. Moreover, the extraction of exchangeable forms of Mn and Mg with this technique was incomplete. Extraction with 0.01M CaCl2 seems recommendable due to the simplicity of the analytical procedure giving sufficient information for practical soil-analytical purposes.  相似文献   

8.
The effects of adding larch (Larix kaempferi) leaf litter and nitrogen (N) on microbial activity and phosphorus (P) fractions in forest soil were examined in a short-term (28-d) laboratory incubation study. The soil was analyzed using a modified Hedley sequential extraction procedure and an acid phosphatase assay. The addition of larch litter and N increased the acid phosphatase activity and decreased the labile P (H2O-P + NaHCO3-P) concentration. Compared with addition of larch litter only, addition of both inputs decreased the proportion of inorganic P (Pi) and increased that of organic P (Po) in the NaOH fraction, bound to aluminum and iron oxides. The results of nutrient (carbon, N, or P) addition indicated that acid phosphatase was synthesized to acquire P. This study suggests that, in this forest soil, P in the H2O-P + NaHCO3-P and in the NaOH-Pi fractions was available for soil microorganisms to decompose leaf litter and that increase in microbial activity eventually translated in an increase in the proportion of Po found in the NaOH fraction in this forest soil.  相似文献   

9.
Due to their boom and bust population dynamics and the enormous biomasses they can attain, jellyfish and ctenophores can have a large influence on the cycling of carbon (C), nitrogen (N) and phosphorus (P). This review initially summarises the biochemical composition of jellyfish, and compares and contrasts the mechanisms by which non-zooxanthellate and zooxanthellate jellyfish acquire and recycle C, N and P. The potential influence of elemental cycling by populations of jellyfish on phytoplankton and bacterioplankton production is then assessed. Non-zooxanthellate jellyfish acquire C, N and P predominantly through predation on zooplankton with smaller contributions from the uptake of dissolved organic matter. C, N and P are regenerated via excretion of inorganic (predominantly ammonium (NH4 +) and phosphate (PO4 3−)) and dissolved organic forms (e.g. dissolved free amino acids and dissolved primary amines). Inorganic nutrients excreted by jellyfish populations provide a small but significant proportion of the N and P required for primary production by phytoplankton. Excretion of dissolved organic matter may also support bacterioplankton production but few data are available. In contrast, zooxanthellate medusae derive most of their C from the translocation of photosynthetic products, exhibit no or minimal net release of N and P, and may actively compete with phytoplankton for dissolved inorganic nutrients. Decomposition of jellyfish blooms could result in a large release of inorganic and organic nutrients and the oxygen demand required to decompose their tissues could lead to localised hypoxic or anoxic conditions. Guest editors: K. A. Pitt & J. E. Purcell Jellyfish Blooms: Causes, Consequences, and Recent Advances  相似文献   

10.
The soil microbial carbon (C), nitrogen (N) and phosphorus (P) pools were quantified in the organic horizon of soils from an arctic/alpine low-altitude heath and a high-altitude fellfield by the fumigation-extraction method before and after factorial addition of sugar, NPK fertilizer and benomyl, a fungicide. In unamended soil, microbial C, N and P made up 3.3–3.6%, 6.1–7.3% and 34.7% of the total soil C, N and P content, respectively. The inorganic extractable N pool was below 0.1% and the inorganic extractable P content slightly less than 1% of the total soil pool sizes. Benomyl addition in spring and summer did not affect microbial C or nutrient content analysed in the autumn. Sugar amendments increased microbial C by 15 and 37% in the two soils, respectively, but did not affect the microbial nutrient content, whereas inorganic N and P either declined significantly or tended to decline. The increased microbial C indicates that the microbial biomass also increased but without a proportional enhancement of N and P uptake. NPK addition did not affect the amount of microbial C but almost doubled the microbial N pool and more than doubled the P pool. A separate study has shown that CO2 evolution increased by more than 50% after sugar amendment and by about 30% after NPK and NK additions to one of the soils. Hence, the microbial biomass did not increase in response to NPK addition, but the microbes immobilized large amounts of the added nutrients and, judging by the increased CO2 evolution, their activity increased. We conclude: (1) that microbial biomass production in these soils is stimulated by labile carbon and that the microbial activity is stimulated by both labile C and by nutrients (N); (2) that the microbial biomass is a strong sink for nutrients and that the microbial community probably can withdraw substantial amounts of nutrients from the inorganic, plant-available pool, at least periodically; (3) that temporary declines in microbial populations are likely to release a flush of inorganic nutrients to the soil, particularly P of which the microbial biomass contained more than one third of the total soil pool; and (4) that the mobilization-immobilization cycles of nutrients coupled to the population dynamics of soil organisms can be a significant regulating factor for the nutrient supply to the primary producers, which are usually strongly nutrient-limited in arctic ecosystems.  相似文献   

11.
Precipitation of Ca phosphates negatively affects recovery by plants of P fertilizer applied to calcareous soils, but organic matter slows the precipitation of poorly soluble Ca phosphates. To study the effect of high molecular weight organic compounds on the recovery of applied P, a mixture of humic and fulvic acids was applied to calcareous soils with different levels of salinity and Na saturation which were fertilized with 200 and 2000 mg P kg–1 as NH4H2PO4. Recovery was measured as the ratio of increment in Olsen P-to-applied P after 30, 60 and 150 days, and associated P forms were studied using sequential chemical fractionation and 31P NMR spectroscopy. Application of the humic-fulvic acid mixture (HFA) increased the amount of applied P recovered as Olsen P in all the soils except in one soil with the highest Na saturation. In soils with high Ca saturation and high Olsen P, recovery increased from < 15% in the absence of amendment to > 40% at a 5 g HFA kg–1 amendment rate (30 days incubation and 200 mg P kg–1 fertilizer rate). This is ascribed to inhibition of the precipitation of poorly soluble Ca phosphates, consistent with the sequential chemical extraction (reduction of the HCl extractable P) and P concentration in 0.01 M CaCl2 (1:10 soil:solution ratio) extracts. 31P NMR spectra revealed that in non-amended samples, most spectral shifts were due to poorly soluble P compounds (carbonate apatite); on the other hand, at the 5 g HFA kg–1 rate, significant amounts of amorphous Ca phosphate and dicalcium phosphate dihydrate (DCDP) were identified. The increase in the recovery of applied P due to HFA reveals a positive effect of the application of organic matter as soil amendments on the efficiency of P fertilizers and also explains that manures and other organic sources of P were more efficient increasing available P than inorganic P fertilizers in calcareous soils.  相似文献   

12.
This study examined the concentration of organic and inorganicphosphorus in surface soils of a Boutelouagracilis-Bouteloua eriopoda grassland, and a Larreatridentata shrubland, in the northern Chihuahuan Desert, NewMexico, U.S.A. In this desert where the grassland vegetation has auniform spatial distribution and individual shrubs have a patchy spatialdistribution across the landscape, vegetation strongly influences thedistribution of soil nutrients. Most studies of soil phosphorusfractions in desert soils have focused primarily on inorganic Pfractions and have demonstrated the importance of geochemical controlson soil P cycling. The research presented here addressed the question ofwhether organic phosphorus, determined by the presence of differentvegetation types, also contributes to soil P cycling. Within soils ofsimilar age, topography, parent material, and climatic regime, sampleswere collected under and between vegetation and analyzed for P fractionsfollowing a modified sequential fractionation scheme. Most soilinorganic P was found in the HCl- and cHCl-extractable forms in both thegrassland and shrubland soils, indicating CaCO3 control overphosphorus availability. In contrast, most soil organic P was bound toAl and Fe minerals. Labile, plant-available P fractions summed to9.5% of total P in the grassland and 6.1% in theshrubland. Organic P comprised 13.3% of the total phosphorus poolin the grassland and 12.0% in the shrubland. Our results showthat the organic P pool may represent an important, yet oftenoverlooked, source of P in semiarid ecosystems.  相似文献   

13.
Incubation experiments were carried out to evaluate the feasibility of extracting phosphorus from soil by embedding iron oxide-impregnanted filter paper strips (Pi strips) in soils having a wide range in pH, texture, and extractable-P contents. Under flooded conditions, the amount of P extracted by the Pi strips increased with the period of submergence and embedding time of the Pi strips. Under unsaturated conditions, the Pi strips were found to extract P from soils over a wide range in moisture conditions; however, keeping the soil at moisture level between saturation and field capacity was found to result in maximal sorption of P by the strips. An embedding time of 16 h was found to be adequate.Phosphorus extracted by embedding Pi strips in soil columns for 16 h at field capacity moisture level correlated significantly with P extracted by shaking the soil with 0.01 M CaCl2 solution and a Pi strip for 16 h in the laboratory (r=0.94**). The P extracted by embedding Pi strips correlated best with Bray 1 P in acid soils (r=0.97**) and with Olsen P in alkaline and calcareous soils (r=0.96**). The results of the studies demonstrate the feasibility of developing a nondestructive method of monitoring changes in plant-available P in situ under field conditions.  相似文献   

14.
The Hedley fractionation procedure as modified by Tiessen and Moir (1993) was used to evaluate the amounts of P in several soil chemical pools in an old, unglaciated landscape at 600 m elevation in the Cordillera de Piuchué, Chile (42° 30′ S. 74° W). This is an area of primary forests which have escaped disturbance from forest harvesting, land clearing and the deposition of anthropogenic chemicals. Two study watersheds are conifer-dominated with moorland on wind-exposed ridgetops. In a third study watershed, vegetation is dominated by evergreen broadleaf trees. Soils are thin (ca. 40 cm) and have a high organic matter content. Across all communities, most of the soil P is in non-labile forms in organic combinations or in combination with secondary soil minerals. Little P was present in primary minerals. The remainder (ca. 20%) was in labile forms extractable with anion exchange resin or bicarbonate solution. From litterfall and allometric relationships, we estimated the annual P requirement of growing vegetation to be <1 kg ha-1 in the moorland and < 3 kg ha-1 in the conifer and mixed forests. This is substantially less than the standing pool of resin-extractable P (ca. 20 kg ha-1), which is considered to be P fraction most readily available to plants. Resin-extractable P was strongly correlated with soil carbon content ( R2 =0.72 − 0.87, p < 0.001) suggesting that soil organic matter is the likely proximate source of plant-available P. On a kg ha-1 basis, the most labile forms of P did not differ significantly across 3 of the 4 community types despite dramatic differences in species, live biomass and annual P requirement, suggesting little control of available P pools by forest vegetation type. On a more detailed level, resin-extractable P was strongly correlated with HCO3-extractable organic (and inorganic) P. This is consistent with other findings of P behavior in acid soils high in organic matter in which microbial transformations are key in regulating pools of plant-available P. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
Increased numbers of swine producers will be removing sludge from their anaerobic waste treatment lagoons in the next few years, due to sludge exceeding designed storage capacity. Information on availability of nitrogen (N) in the sludge is needed to improve application recommendations for crops. The objective of this study was to investigate possible effects of different companies and types of swine operations on the availability of N in sludge from their associated lagoons. A laboratory incubation study was conducted to quantify the availability of N (i.e. initial inorganic N plus the potentially mineralizable organic N) in the sludge. Nine sludge sources from lagoons of sow, nursery and finishing operations of three different swine companies were mixed with a loamy sand soil (200 mg total Kjeldahl N kg(-1) soil) and incubated at a water content of 0.19 g. water g(-1) dry soil and 25+/-2 degrees C for 12 weeks. Samples were taken at eight times over the 12-week period and analyzed for inorganic N (i.e. NH(4)-N and NO(3)-N) to determine mineralization of organic N in the sludge. Company and type of swine operation had no significant effects (P < 0.05) on the pattern of inorganic N accumulation over time. Thus, inorganic N accumulation from all sludge sources was fit to a first order equation [Nt = Ni + No (1-e(-kt)]. This relationship indicated that of the 200 mg of total sludge N added per kg soil, 23.5% was in the form of potentially mineralizable organic N (No) and 17.5% was in the form of inorganic N (Ni). The sum of these two pools (41%) represents an estimate of the proportion of total N in the applied sludge in plant available form after the 12 week incubation. While plant N availability coefficients were not measured in this study, the lack of significant company or type of swine operation effects on sludge N mineralization suggests that use of the same plant N availability coefficient for sludge from different types of lagoons is justifiable. The validity of this interpretation depends on the assumption that variation in other components of different sludge sources such as Cu and Zn does not differentially alter N uptake by the receiver crops.  相似文献   

16.
McBride  M.B.  Richards  B.K.  Steenhuis  T. 《Plant and Soil》2004,262(1-2):71-84
In order to assess the potential impact of long-term sewage sludge application on soil health, the equivalent of about 25 years of agronomic applications of low-metal (`EQ') sewage sludge products were made to greenhouse soil columns. After a 6-year period of `equilibration', during which time successive crops were grown with irrigation by simulated acid rain, the plant-available quantities of trace elements were estimated in the soils by extraction with 0.01 M CaCl2 at 90 °C, and measured directly by uptake into a crop of red clover (Trifolium pratense L.). Soil pH had a strong influence on the level of extractable and plant-available metals, and because the tested sludge products affected soil pH differently, pH was directly factored into the comparison of different sludge treatments with controls. CaCl2-extractable levels of several metals (Cu, Zn, Mo), sulfur and phosphorus were found to be higher in the soils amended with organic-rich sludge products than in the control soils. However, extractable Cd and Ni were not significantly elevated by the sludge amendments, presumably because of the low total loading of these metals. Copper, Zn and Mo applied in the form of sludge ash had low soil extractability, suggesting that these trace metals were trapped in high-temperature mineral phases formed during sludge incineration, and resisted subsequent weathering in the soil environment. Extractable soil metals in the alkaline-stabilized sludge treatment were also generally low. Phytotoxicity from the sludge metal loadings (Zn≤125, Cu≤135 kg/ha), was not clearly indicated as long as soil pH was maintained in the 6–7 range by lime amendment. Nevertheless, unexplained depressions in yield were noted with some of the sludge products applied, particularly the dewatered and composted materials. On limed soil columns, the most consistent effect of sludge product amendment on red clover composition was a marked increase in plant Mo.  相似文献   

17.
Question: Can a simple measurement of nitrogen (N) availability be related to an ecologically relevant response, i.e. mean Ellenberg N indicator value (EN)? Location: UK (England, Wales and Scotland). Methods: Soil cores from a stratified sample of UK habitats were analysed for mineralizable N with a conventional incubation and a new flushing method, which uses a single mineral N extraction. Predictions of mean EN using mineralizable N and other soil measurements were assessed by fitting linear mixed‐effect models, using the Akaike information criterion (AIC) as a measure of model parsimony. Results: Mineralizable N measurements using the flushing method described a component of the variation in mean EN that was more orthogonal to bulk soil properties such as moisture content, total N/C ratio and pH than that described by conventionally measured mineralizable N. Mineralizable N as measured using the flushing method improved the accuracy of predictions obtained using only bulk soil measurements, and appeared in the best two‐term and three‐term models. Conclusions: Much of the variation in mean EN can be related to soil N/C ratio, pH or moisture content, but mineralizable N distinguishes variation in mean EN that is independent of these bulk soil properties. The new measure will be useful for studies of the exposure of plants to N, in particular when assessing N pollution effects on plant species composition.  相似文献   

18.
A new method allowing control of rhizosphere pH and mineral nutrition was applied to study depletion of various organic and inorganic phosphorus fractions extractable sequentially with 0.5M KHCO3 (pH 8.5), 0.1M NaOH and residual P extractable with 6M H2SO4 from the rhizosphere soil.Soil pH was affected about 2 mm from the root mat. Depletion zones of inorganic P (KHCO3-Pi) extractable with 0.5M KHCO3 extended up to about 4 mm but the depletion zones of all other P fractions were about 1 mm only. The root-induced decrease of soil pH from 6.7 to 5.5 increased the depletion of total P from all fractions by 20% and depletion of KHCO3-Pi and residual P by 34% and 43%, respectively. Depletion of organic P (KHCO3-Po) extractable with 0.5M KHCO3 was not affected by a change in rhizosphere pH. With constant or increased pH, depletion of inorganic P (NaOH-Pi) was 17% and organic P (NaOH-Po) was 22% higher than with decreased pH. Only 54–60% of total P withdrawn from all fractions was from KHCO3-Pi. Substantial amounts of KHCO3-Po and NaOH-Po were mineralized and withdrawn from the rhizosphere within 1 mm from the root mat, as 11–15% of total P withdrawn originated from the organic P fractions. A remaining 11–16% was derived from NaOH-Pi, and 15–18% from residual P fractions likely to be rather immobile. Thus, 40–46% of the P withdrawn near the root mat of rape originated from non-mobile P fractions normally not included in 0.5M NaHCO3 extraction used to obtain an index of plant-available soil P.  相似文献   

19.
The potentially mineralizable organic N of 33 different soils was estimated by a chemical test (hot extraction with 2N KCl) and the values compared with those previously obtained by a biological method (aerobic incubation in the laboratory). On average, the organic N solubilized by the chemical procedure was significantly lower than that mineralized by a two weeks aerobic incubation for all the soils as a whole. The same was true for soils developed over acid rocks and over sediments. However, the values obtained for the soils developed over limestone and basic rocks were similar by both methods. The values obtained by both methods were not significantly correlated neither when considering all soils together nor when considering different groups according to soil management or parent material. Significant correlations between both methods were only found when the soils were separated into two groups according to their organic N content: soils with less than 400 mg N 100 g–1 soil and soils with more than 400 mg N 100 g–1 soil. The organic N solubilized by the chemical procedure was significantly correlated with the hexosamine-N content; however, it was not correlated with the factors that control the biological mineralization of the organic N, except with the soluble Al content. Therefore, the chemical extraction did not seem to address the biologically active N pool in a selective way.  相似文献   

20.
Forms and cycling of phosphorus in prairie and boreal forest soils   总被引:3,自引:0,他引:3  
The distribution of soil P among inorganic and organic forms was examined in prairie and boreal forest soil profiles from Saskatchewan, Canada. A sequential extraction procedure was employed to separate P into labile and stable inorganic (Pi) and organic (Po) fractions. Profile depth, climate, vegetation, and cultivation all had a major influence on the distribution of P which is attributed to differing intensities of pedogenic processes such as weathering and leaching, and their relationship to P transformations in the soil environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号