首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigated the binding characteristics of a (+)-enantiomer of radioiodinated 2-[4-(4-iodophenyl)piperidino]cyclohexanol [(+)-[125I]pIV], radioiodinated at the para-position of the 4-phenylpiperidine moiety, to sigma receptors (sigma-1, sigma-2) and to vesicular acetylcholine transporters (VAChT) in membranes of the rat brain and liver. In competitive inhibition studies, (+)-pIV (Ki=1.30 nM) had more than 10 times higher affinity to the sigma-1 (sigma-1) receptor than (+)-pentazocine (Ki=19.9 nM) or haloperidol (Ki=13.5 nM) known as sigma ligands. Also, the binding affinity of (+)-pIV for the sigma-1 receptor (Ki=1.30 nM), was about 16 times higher than the sigma-2 (sigma-2) receptor (Ki=20.4 nM). (+)-pIV (Ki=1260 nM) had a much lower affinity for VAChT than (-)-vesamicol (Ki=13.0 nM) or (-)-pIV (Ki=412 nM). (+)-[125I]pIV had low affinity for the dopamine, serotonin, adrenaline, and acetylcholine receptors. Furthermore, in a saturation binding study, (+)-[125I]pIV exhibited a K) of 6.96 nM with a Bmax of 799 fmol/mg of protein. These results showed that (+)-pIV binds to the sigma-1 receptor with greater affinity than sigma receptor ligands such as (+)-pentazocine or haloperidol, and that radioiodinated (+)-pIV is suitable as radiotracer for sigma-1 receptor studies in vitro.  相似文献   

2.
Shiba K  Yano T  Sato W  Mori H  Tonami N 《Life sciences》2002,71(13):1591-1598
We investigated the binding characteristics of optical isomers of three iodovesamicol analogs to vesicular acetylcholine transporters (VAChT) and to sigma receptors (sigma-1, sigma-2) in rat brains. In competitive inhibition studies, (-)-enantiomers [(-)-ortho-iodovesamicol ((-)-oIV), (-)-meta-iodovesamicol ((-)-mIV), (-)-vesamicol] displayed a higher affinity for VAChT than (+)-enantiomer [(+)-oIV, (+)-mIV, (+)-vesamicol]. (-)-oIV and (-)-mIV showed the same high affinity for VAChT as (-)-vesamicol. For sigma receptors(sigma-1, sigma-2), (-)-oIV (Ki = 62.2 nM (to sigma-1) and 554 nM(to sigma-2)) showed a lower affinity than (-)-mIV (Ki = 4.5 nM (to sigma-1) and 42.9 nM (to sigma-2)). Furthermore, in a saturation binding study, (-)-[125I]-oIV exhibited a Kd of 17.4 +/- 5.1 nM with a maximum number of binding sites, Bmax, of 559 +/- 51 fmol/ mg of protein. These results showed that (-)-oIV binds to vesicular acetylcholine transporters (VAChT) more selectively than (-)-mIV, previously reported as a VAChT mapping agent, and may be suitable for VAChT imaging studies.  相似文献   

3.
Activation of the sigma-1 receptor (Sig-1R) improves functional recovery in models of experimental stroke and is known to modulate microglia function. The present study was conducted to investigate if Sig-1R activation after experimental stroke affects mediators of the inflammatory response in the ischemic hemisphere. Male Wistar rats were subjected to transient occlusion of the middle cerebral artery (MCAO) and injected with the specific Sig-1R agonist 1-(3,4-dimethoxyphenethyl)-4-(3-phenylpropyl)piperazine dihydrochloride (SA4503) or saline for 5 days starting on day 2 after MCAO. Treatment did not affect the increased levels of the pro-inflammatory cytokines interleukin 1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), interleukin 4 (IL-4), interleukin 5 (IL-5), and interleukin 13 (IL-13) in the infarct core and peri-infarct area after MCAO. In addition, treatment with SA4503 did not affect elevated levels of nitrite, TNF-α and IL-1β observed in primary cultures of microglia exposed to combined Hypoxia/Aglycemia, while the unspecific sigma receptor ligand 1,3-di-o-tolylguanidine (DTG) significantly decreased the production of nitrite and levels of TNF-α. Analysis of the ischemic hemisphere also revealed increased levels of ionized calcium binding adaptor molecule 1 (Iba1) levels in the infarct core of SA4503 treated animals. However, no difference in Iba1 immunoreactivity was detected in the infarct core. Also, levels of the proliferation marker proliferating cell nuclear antigen (PCNA) and OX-42 were not increased in the infarct core in rats treated with SA4503. Together, our results suggest that sigma-1 receptor activation affects Iba1 expression in microglia/macrophages of the ischemic hemisphere after experimental stroke but does not affect post-stroke inflammatory mediators.  相似文献   

4.
New 1-[omega-(2,3-dihydro-1H-inden-1-yl)- and (2,3-dihydro-5-methoxy-1H-inden-1-yl)alkyl]- and 1-[omega-(1,2,3,4-tetrahydronaphthalen-1-yl)- and (6-methoxy- or 6-fluoro-1,2,3,4-tetrahydronaphthalen-1-yl)alkyl] derivatives of 3,3-dimethylpiperidine were synthesized, as homologous compounds of an existing series of sigma ligands, in order to carry out sigma receptor subtypes structure-affinity relationships. The new compounds and some of their related analogues, already reported, were tested in new multireceptorial radioligand binding assays. As reference compounds, the known sigma(1) ligands SA 4503, BD 1008 and NE 100 were also prepared and tested. All reported compounds showed high sigma(1) affinity assayed by (+)-[(3)H]-pentazocine on guinea-pig brain (apparent K(i)=1.75-72.2 nM) and moderate or low sigma(2) affinity by [(3)H]-DTG on rat liver, in contrast with previous results. One tertiary amine function spaced by a five-membered chain from a phenyl group is the structural feature shared by the most active compounds 26 and 43 and some reference sigma(1) ligands. The reported sigma(1) ligands, including reference compounds, also demonstrated a high affinity towards EBP (Delta(8)-Delta(7) sterol isomerase) site (apparent K(i)=0.48-14.8 nM) and some of them (37 and 44) were good ligands at L-type Ca(++) channel. 1-[4-(2,3-Dihydro-1H-inden-1-yl)butyl]-3,3-dimethylpiperidine (26) was the best mixed sigma(1) and EBP ligand (apparent K(i)=1.75 and 1.54 nM, respectively) with a good selectivity versus sigma(2) receptor (138- and 157-fold, respectively).  相似文献   

5.
A series of 1-phenyl-2-cyclopropylmethylamines structurally related to (+)- and (-)-MPCB were synthesized and their binding affinities for sigma1, sigma2, opioid and dopamine (D2) receptors were evaluated. Substitution of the cis-N-normetazocine with different aminic moieties provided compounds with high affinity and selectivity for sigma binding sites with respect to opioid and dopamine (D2) receptors. The observed increase in sigma2 affinity as compared to the parent (+)-MPCB, supports the idea that the particular stereochemistry of (+)-cis-N-normetazocine affects sigma1 selectivity but does not affect sigma1 affinity. The (+/-)-cis isomers of methyl 2-[(1-adamantylamino)methyl]-1-phenylcyclopropane-1-carboxyl ate (18) displayed a higher affinity and selectivity for the sigma1 and sigma2 receptor subtypes compared to the (+/-)-trans 19. Interestingly, the enantiomer (-)-cis 18 displayed a preference for sigma1 receptor subtype whereas the (+)-cis 18 did for sigma2. These results prompt us to synthesize compounds with modification of nitrogen and carboxyl groups. The compounds obtained showed high affinities and selectivity for sigma sites. Moreover, modifications of carboxyl groups provided compounds with the highest affinities in the series. In particular, compound 25 with reverse-type ester showed a Ki of 0.6 and 4.05 nM for sigma1 and sigma2 binding sites, respectively.  相似文献   

6.
A simple, achiral monoamine sigma-1 (sigma1) receptor selective ligand (sigma2Ki/sigma1Ki>2000) is described, which could replace the chiral (+)-pentazocine or dextrallorphan as a sigma1 masking agent in sigma2 binding assays.  相似文献   

7.
The synthesis and pharmacology of 15 1-deoxy-delta8-THC analogues, several of which have high affinity for the CB2 receptor, are described. The deoxy cannabinoids include 1-deoxy-11-hydroxy-delta8-THC (5), 1-deoxy-delta8-THC (6), 1-deoxy-3-butyl-delta8-THC (7), 1-deoxy-3-hexyl-delta8-THC (8) and a series of 3-(1',1'-dimethylalkyl)-1-deoxy-delta8-THC analogues (2, n = 0-4, 6, 7, where n = the number of carbon atoms in the side chain-2). Three derivatives (17-19) of deoxynabilone (16) were also prepared. The affinities of each compound for the CB1 and CB2 receptors were determined employing previously described procedures. Five of the 3-(1',1'-dimethylalkyl)-1-deoxy-delta8-THC analogues (2, n = 1-5) have high affinity (Ki = < 20 nM) for the CB2 receptor. Four of them (2, n = 1-4) also have little affinity for the CB1 receptor (Ki = > 295 nM). 3-(1',1'-Dimethylbutyl)-1-deoxy-delta8-THC (2, n = 2) has very high affinity for the CB2 receptor (Ki = 3.4 +/- 1.0 nM) and little affinity for the CB1 receptor (Ki = 677 +/- 132 nM).  相似文献   

8.
New benzimidazole-4-carboxamides 1-16 and -carboxylates 17-26 were synthesized and evaluated for binding affinity at serotonergic 5-HT4 and 5-HT3 receptors in the CNS. Most of the synthesized compounds exhibited moderate-to-very high affinity (in many cases subnanomolar) for the 5-HT4 binding site and no significant affinity for the 5-HT3 receptor. SAR observations and structural analyses (molecular modeling, INSIGHT II) indicated that the presence of a voluminous substituent in the basic nitrogen atom of the amino moiety and a distance of ca. 8.0 A from this nitrogen to the aromatic ring are of great importance for high affinity and selectivity for 5-HT4 receptors. These results confirm our recently proposed model for recognition by the 5-HT4 binding site. Amides 12-15 and esters 24 and 25 bound at central 5-HT4 sites with very high affinity (Ki = 0.11-2.9 nM) and excellent selectivity over serotonin 5-HT3, 5-HT2A, and 5-HT1A receptors (Ki > 1000-10,000 nM). Analogues 12 (Ki(5-HT4) = 0.32 nM), 13 (Ki(5-HT4) = 0.11 nM), 14 (Ki(5-HT4) = 0.29 nM) and 15 (Ki(5-HT4) = 0.54 nM) were pharmacologically characterized as selective 5-HT4 antagonists in the isolated guinea pig ileum (pA2 = 7.6, 7.9, 8.2 and 7.9, respectively), with a potency comparable to the 5-HT4 receptor antagonist RS 39604 (pA2 = 8.2). The benzimidazole-4-carboxylic acid derivatives described in this paper represent a novel class of potent and selective 5-HT4 receptor antagonists. In particular, compounds 12-15 could be interesting pharmacological tools for the understanding of the role of 5-HT4 receptors.  相似文献   

9.
The DM1/sigma 1 site binds dextromethorphan (DM) and sigma receptor ligands. The broad binding specificity of this site and its peculiar subcellular distribution prompted us to explore the possibility that this site is a member of the cytochrome P-450 superfamily of enzymes. We tested the effects of the liver microsomal monooxygenase inhibitor SKF 525-A (Proadifen), and other P-450 substrates on the binding of [3H]dextromethorphan, [3H]3-(-3-Hydroxyphenyl)-N-(1-propyl)piperidine and (+)-[3H]1,3-Di-o-tolyl-guanidine ([3H]DTG) to the guinea pig brain. SKF 525-A, l-lobeline and GBR-12909 inhibited the binding of the three labeled ligands with nM affinity. Each drug has identical nM Ki values for the high-affinity site labeled by the three ligands. This indicated that they displaced the labeled ligands from the common DM1/sigma 1 site. Debrisoquine and sparteine, prototypical substrates for liver debrisoquine 4-hydroxylase, displayed Ki values of 9-13 and 3-4 microM respectively against the three labeled ligands. These results, the broad specificity of the DM1/sigma 1 binding site, and its peculiar subcellular distribution, raises the possibility that this binding site is a member of the cytochrome P-450 superfamily of isozymes, rather than a neurotransmitter receptor. These findings may have important implications for the understanding of the therapeutic, side effects and toxicity of several neurotropic drugs.  相似文献   

10.
Data acquired to date show that some sigma receptor ligands reveal "antidepressant-like" activity in the forced swim test in mice and rats. Moreover, our preliminary results suggested that joint administration of sigma receptor ligands and amantadine (AMA, a glutamatergic/NMDA receptor antagonist) caused a positive interaction in the Porsolt test in rats, as had already been observed in the case of co-treatment with clinically active antidepressants and AMA. The aim of the present study was to examine the effect of combined administration of sigma1 or sigma2 receptor agonists, SA4503 or siramesine, respectively, and AMA or memantine (MEM) (uncompetitive NMDA receptor antagonist). SA4503 or siramesine given jointly with MEM (as well as with AMA) decreased the immobility time in rats. The effect of SA4503 and AMA co-administration was antagonized by progesterone, a sigma1 receptor antagonistic neurosteroid. Combined treatment with siramesine and AMA was modified by neither progesterone nor BD1047 (a novel sigma antagonist with preferential affinity for sigma1 sites); but it was counteracted by sulpiride and prazosin (a dopamine D2- and an alpha1-adrenergic receptor antagonist, respectively). The "antidepressant-like" effect induced by siramesine and MEM was not antagonized by progesterone, but was attenuated by BD1047, sulpiride and prazosin. The obtained results give support to the hypothesis that sigma (particularly sigma1) receptors may be one of the possible mechanisms by which drugs induce antidepressant-like activity in the forced swim test, and that this effect may be enhanced by NMDA receptor antagonists. Combined treatment with sigma ligands and AMA or MEM (applied in the clinic) may be an alternative to the treatment of antidepressant-resistant depressive patients in the future.  相似文献   

11.
M Klein  J M Musacchio 《Life sciences》1990,47(18):1625-1634
Computer-assisted analysis of self- and cross-displacement studies between dextromethorphan (DM) and (+)-3-(3-hydroxyphenyl)-N-(1-propyl) piperidine ((+)-3-PPP) demonstrated in the rat brain the existence of two high-affinity and one low-affinity binding site for each ligand. One high-affinity site is the common DM1/sigma 1 site, the affinity of which is allosterically increased 4 to 5-fold by 10 microM ropizine. The Kd values of the DM1/sigma 1 for DM and (+)-3-PPP are 17 and 11 nM respectively. DM binds to the second high-affinity site (R2) with a Kd of 15 nM; this site has low affinity for (+)-3-PPP. Conversely, (+)-3-PPP binds with high affinity (Kd 53 nM) to another site (R3), that has low-affinity for DM. The Bmax of the common DM1/sigma 1 site in the rat is about ten times smaller than that in the guinea pig. Thus, extreme caution should be exercised in extrapolating from one species to another. Since DM and most sigma ligands bind to more than one site, not all of which are shared, it is important not to attribute the complex pharmacological effects of these ligands to a single hypothetical receptor.  相似文献   

12.
Sigma receptors once considered as a class of opioid receptors are now regarded as unique orphan receptors, distinguished by the ability to bind various pharmacological agents such as the progesterone (steroid), haloperidol (anti-psychotic), and drugs of abuse such as cocaine and methamphetamine. The sigma-1 receptor is a 223 amino acid protein, proposed to have two transmembrane segments. We have developed a scheme for the purification of the guinea pig sigma-1 receptor following overexpression in Escherichia coli as a maltose binding protein (MBP) fusion and extraction with Triton X-100. Affinity chromatography using an amylose column and Ni2+ affinity column was used to purify the sigma-1 receptor. The sigma-1 receptor purified by this method is a 26 kDa polypeptide as assessed by SDS-PAGE, binds sigma ligands with high affinity and can be specifically photoaffinity labeled with the sigma-1 receptor photoprobe, [125I]-iodoazidococaine. Ligand binding using [3H]-(+)-pentazocine indicated that approximately half of the purified protein in Triton X-100 bound to radioligand. The MBP-sigma-1 receptor and the sigma-1 receptor in 0.5% triton were maximally stable for approximately two weeks at -20 degrees C in buffer containing 30% glycerol.  相似文献   

13.
Enantiomeric separation of the racemic 4-{3-(4-chlorophenyl)-3-hydroxypyrrolidin-1-yl}-1-(4-fluorophenyl)butan-1-one, a pyrrolidine analog of haloperidol, {(+/-)-SYA 09}, and subsequent binding studies revealed that most of the binding affinity at dopamine and serotonin receptors resides in the (+)-isomer {(+)-SYA 09} or the eutomer. Further pharmacological evaluation of the eutomer revealed that it has a higher affinity for the dopamine D4 (DAD4) receptor subtype (Ki = 3.6 nM) than for the DAD2 subtype (Ki = 51.1 nM) with a ratio of 14.2 (D2Ki/D4Ki ratio = 14.2). In an animal model of antipsychotic efficacy, the (+)-SYA 09 was efficacious with an ED50 value of 1.6 mg/kg, i.p., and at twice this value, (+)-SYA 09 did not induce significant catalepsy in rats.  相似文献   

14.
Our goal was to synthesize new stereospecific benzovesamicol analogues, which could potentially be used as SPECT or PET radioligands for the vesicular acetylcholine transporter (VAChT). This paper describes the chemical synthesis, resolution and determination of binding affinity for four enantiomeric pairs of derivatives. Their intrinsic affinities were determined by competition against binding of [3H]vesamicol to human VAChT. Of the eight enantiomers, (E)-(R,R)-5-AOIBV [(R,R)-3], and (R,R)-5-FPOBV [(R,R)-4] displayed the highest binding affinities for VAChT (Kd=0.45 and 0.77 nM, respectively), which indicated that an elongation of the chain from 5-idodo as in the case of 5-iodobenzovesamicol (5-IBVM), to a 5-(E)-3-iodoallyloxy or 5-fluoropropoxy substituent, as in 5-AOIBV and 5-FPOBV, respectively, was very well tolerated at the vesamicol binding site. The enantiomer (R,R)-4-MAIBV [(R,R)-16], which retains the basic structure of (-)-5-IBVM but possess an additional aminomethyl substituent in the 4-position of the piperidine ring, displayed lower binding affinity (Kd=8.8 nM). Nevertheless, the result suggests that substitution at this position may be an interesting alternative to investigate for development of new benzovesamicol analogues. As expected, the corresponding (S,S) enantiomers displayed lower Kd values, they were approximately 10-fold lower in the case of (S,S)-5-FPOBV (Kd=8.4 nM) and (E)-(S,S)-5-AOIBV (Kd=4.3 nM). (R,R)-3, and (R,R)-4 showed the same high affinity for VAChT as (-)-5-IBVM and may be suitable as imaging agents of cholinergic nerve terminals.  相似文献   

15.
Sigma-1 receptor imaging probes for determining the expression levels are desirable for diagnoses of various diseases and companion diagnoses of therapeutic agents targeting the sigma-1 receptor. In this study, we aimed to develop probes with higher affinity for the sigma-1 receptor. For this purpose, we synthesized and evaluated compounds, namely, vesamicol derivatives, in which alkyl chains of varying chain length were introduced between a piperazine ring and a benzene ring. The binding affinity of the vesamicol derivatives for the sigma-1 receptor tended to increase depending on the length of the alkyl chain between the benzene ring and the piperazine ring. The sigma-1 receptor of 2-(4-(3-phenylpropyl)piperazin-1-yl)cyclohexan-1-ol (5) (Ki?=?5.8?nM) exhibited the highest binding affinity; therefore, we introduced radioiodine into the benzene ring in 5. The radioiodine labeled probe [125I]2-(4-(3-(4-iodophenyl)propyl)piperazin-1-yl)cyclohexan-1-ol ([125I]10) showed high accumulation in the sigma-1 receptor expressing DU-145 cells both in vitro and in vivo. Co-injection of [125I]10 with an excess level of a sigma receptor ligand, haloperidol, resulted in a significant decrease in the tumor accumulation in vitro and in vivo, indicating sigma receptor-mediated tumor uptake. These results provide useful information for developing sigma-1 receptor imaging probes.  相似文献   

16.
Starting with the proteinogenic amino acid (S)-serine a series of chiral nonracemic (piperazin-2-yl)methanols 3 with various N-4 substituents is described. The key step in the synthesis of 3 is the reaction of the chloroacetamide 5 with various primary amines to yield the diastereomeric bicyclic piperazinediones cis-6 and trans-6. The scope and limitation of this transformation is thoroughly investigated. The alpha1- and sigma2-receptor affinities of the piperazines 3 are determined in receptor binding studies with guinea pig brain and rat liver membrane preparations using [3H]-labeled (+)-pentazocine and ditolylguanidine, respectively. It was found, that an additional phenyl residue in the N-4 substituent is favorable to high sigma1-receptor affinity. In this series the p-methoxybenzyl substituted piperazine 3d reveals the highest sigma1-receptor affinity (Ki=12.4 nM) with selectivity toward sigma2-, NMDA-, kappa-opioid, and mu-opioid receptors.  相似文献   

17.
Mardon K  Kassiou M  Donald A 《Life sciences》1999,65(23):PL 281-PL 286
To study the effect of diabetes mellitus on the density of sigma receptors, in vitro binding experiments were conducted in whole brain homogenate membranes of 5-week and 10-week control rats and streptozotocin (STZ)-induced diabetic rats. sigma-1 Receptors were labelled with [3H](+)-pentazocine while sigma-2 receptors were labelled with [3H] 1,3-di-o-tolylguanidine (DTG) in the presence of 0.5 microM (+)-pentazocine to mask sigma-1 sites. Non-specific binding was determined in the presence of 20 microM haloperidol. Scatchard analysis revealed a 27% (p<0.01) decreased in sigma-1 receptor density and a 33% (p<0.01) decreased in sigma-2 receptor density in whole brain of 10-week STZ-diabetic rats. No statistically significant difference was found in the sigma receptor content of 5-week STZ-diabetic rats. These results provide evidence that neuronal sigma receptors are reduced in 10-week STZ-diabetic rats and suggest that changes in sigma receptors may play a role in diabetes related abnormalities. Further evaluation is required to determine whether changes observed in the brain are homogeneous for either or both sigma receptor subtypes as well as potential links between other CNS receptor changes previously observed in STZ-induced diabetic rats.  相似文献   

18.
Herein is described a new class of selective sigma1 ligands consisting of tetrahydroisoquinoline-hydantoin (Tic-hydantoin) derivatives. Compound 1a has high affinity (IC50 = 16 nM) for sigma1 receptor and is selective in a large panel of therapeutic targets. This study presents structural changes on the side chain of the Tic-hydantoin core. Analogs of higher affinity could be identified (IC50 approximately 2-3 nM).  相似文献   

19.

Background

Selective serotonin reuptake inhibitors (SSRIs) have been widely used and are a major therapeutic advance in psychopharmacology. However, their pharmacology is quite heterogeneous. The SSRI fluvoxamine, with sigma-1 receptor agonism, is shown to potentiate nerve-growth factor (NGF)-induced neurite outgrowth in PC 12 cells. However, the precise cellular and molecular mechanisms underlying potentiation by fluvoxamine are not fully understood. In this study, we examined the roles of cellular signaling pathways in the potentiation of NGF-induced neurite outgrowth by fluvoxamine and sigma-1 receptor agonists.

Methods and Findings

The effects of three SSRIs (fluvoxamine, sertraline, paroxetine) and three sigma-1 receptor agonists (SA4503, 4-phenyl-1-(4-phenylbutyl) piperidine (PPBP), and dehydroepiandrosterone (DHEA)-sulfate) on NGF-induced neurite outgrowth in PC12 cells were examined. Also examined were the effects of the sigma-1 receptor antagonist NE-100, inositol 1,4,5-triphosphate (IP3) receptor antagonist, and specific inhibitors of signaling pathways in the potentiation of NGF-induced neurite outgrowth by selective sigma-1 receptor agonist SA4503. Fluvoxamine (but not sertraline or paroxetine) and the sigma-1 receptor agonists SA4503, PPBP, and DHEA-sulfate significantly potentiated NGF-induced neurite outgrowth in PC12 cells in a concentration-dependent manner. The potentiation by fluvoxamine and the three sigma-1 receptor agonists was blocked by co-administration of the selective sigma-1 receptor antagonist NE-100, suggesting that sigma-1 receptors play a role in blocking the enhancement of NGF-induced neurite outgrowth. Moreover, the potentiation by SA4503 was blocked by co-administration of the IP3 receptor antagonist xestospongin C. In addition, the specific inhibitors of phospholipase C (PLC-γ), phosphatidylinositol 3-kinase (PI3K), p38MAPK, c-Jun N-terminal kinase (JNK), and the Ras/Raf/mitogen-activated protein kinase (MAPK) signaling pathways blocked the potentiation of NGF-induced neurite outgrowth by SA4503.

Conclusion

These findings suggest that stimulation of sigma-1 receptors and subsequent interaction with IP3 receptors, PLC-γ, PI3K, p38MAPK, JNK, and the Ras/Raf/MAPK signaling pathways are involved in the mechanisms of action of sigma-1 receptor agonists such as fluvoxamine and SA4503.  相似文献   

20.
A series of vesamicol analogues, o-iodo-trans-decalinvesamicol (OIDV) or o-bromo-trans-decalinvesamicol (OBDV), were synthesized and their affinities to vesicular acetylcholine transporter (VAChT) and σ receptors (σ-1, σ-2) were evaluated by in vitro binding assays using rat cerebral or liver membranes. OIDV and OBDV showed greater binding affinity to VAChT (K(i)=20.5±5.6 and 13.8±1.2nM, respectively) than did vesamicol (K(i)=33.9±18.1nM) with low affinity to σ receptors. A saturation binding assay in rat cerebral membranes revealed that [(125)I]OIDV had a single high affinity binding site with a K(d) value of 1.73nM and a B(max) value of 164.4fmol/mg protein. [(125)I]OIDV revealed little competition with inhibitors, which possessed specific affinity to each σ (σ-1 and σ-2), serotonin (5-HT(1A) and 5-HT(2A)), noradrenaline, and muscarinic acetylcholine receptors. In addition, BBB penetration of [(125)I]OIDV was verified in in vivo. The results of the binding studies indicated that OIDV and OBDV had great potential to be VAChT imaging probes with high affinity and selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号