首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using solid phase systems, the kinetics of binding of monoclonal antibody (LRB 45, IgG2b,kappa) to apoC-I and apoC-I on lipoproteins were investigated. At 25 degrees C, the association constant of LRB 45 antibody to apoC-I (3.56 X 10(6) M-1 X sec-1) was almost three times slower than the association constant LRB 45 antibody to lipoproteins (10.4 X 10(6) M-1 X sec-1). However, the dissociation constant of apoC-I from LRB 45 antibody (0.865 X 10(-4) sec-1) was also slower than the dissociation constant of lipoprotein from antibody (1.5 X 10(-4) sec-1). Thus, the calculated affinity constant (association constant/dissociation constant) of LRB 45 antibody for apoC-I was approximately half of that for lipoproteins (4.12 X 10(10) M-1 vs. 6.92 X 10(10) M-1). The intrinsic affinity constants for antibody binding to apoC-I and apoC-I on lipoproteins were determined by Scatchard analysis. The intrinsic affinity constant of antibody bound to apoC-I was estimated to be 5.49 X 10(10) M-1 whereas that of antibody binding to lipoproteins was 30 to 200 times less. Furthermore, ascites fluid from LRB 45 cell lines could immunoprecipitate serum lipoproteins. Thus, it is concluded that there is multiple binding of antibody to apoC-I on lipoproteins. This binding appears to increase the calculated affinity constant (avidity) for antibody-antigen interaction.  相似文献   

2.
The kinetics of the reversible binding of cyanide by the ferric cytochrome c' from Chromatium vinosum have been studied over the pH range 6.9-9.6. The reaction is extremely slow at neutral pH compared to the reactions of other high-spin ferric heme proteins with cyanide. The observed bimolecular rate constant at pH 7.0 is 2.25 X 10(-3) M-1 s-1, which is approximately 10(7)-fold slower than that for peroxidases, approximately 10(5)-fold slower than those for hemoglobin and myoglobin, and approximately 10(2)-fold to approximately 10(3)-fold slower than that recently reported for the Glycera dibranchiata hemoglobin, which has anomalously slow cyanide rate constants of 4.91 X 10(-1), 3.02 X 10(-1), and 1.82 M-1 s-1 for components II, III, and IV, respectively [Mintorovitch, J., & Satterlee, J. D. (1988) Biochemistry 27, 8045-8050; Mintorovitch, J., Van Pelt, D., & Satterlee, J. D. (1989) Biochemistry 28, 6099-6104]. The unusual ligand binding property of this cytochrome c' is proposed to be associated with a severely hindered heme coordination site. Cyanide binding is also characterized by a nonlinear cyanide concentration dependence of the observed rate constant at higher pH values, which is interpreted as involving a change in the rate-determining step associated with the formation of an intermediate complex between the cytochrome c' and cyanide prior to coordination. The pH dependence of both the binding constant for the formation of the intermediate complex and the association rate constant for the subsequent coordination to the heme can be attributed to the ionization of HCN, where cyanide ion binding is the predominant process.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The effect of Mg2+ on the binding of adenylates to isolated chloroplast coupling factor 1 (CF1) was studied using CD spectrometry and ultrafiltration. At adenylate concentrations smaller than 100 muM, one mole of CF1 binds three moles of ATP (or ADP) regardless of the presence of Mg2+. In the presence of Mg2+, the first two ATP's bind to CF1 independently with the same binding constant of 2.5 X 10(-1) muM-1, then the third ATP binds with a much higher affinity of 10 muM-1. In the absence of Mg2+, the first ATP binds to CF1 with a binding constant of 2.5 X 10(-1) muM-1 then the other two ATP's bind less easily with the same binding constant of 4.0 X 10(-2) muM-1. The binding mode of ADP to CF1 is quite similar to that of ATP. In the presence of Mg2+, the binding constants of the first two ADP's are both 7.6 X 10(-2) muM-1, that of the third ADP being 4.0 muM-1. In the absence of Mg2+, the binding constant of the first ADP is 7.6 X 10(-2) muM-1, the constants of the other two ADP's both being 4.0 X 10(-2) muM-1. AMP caused a negligible change in CD.  相似文献   

4.
A Ca2+-sensitive electrode was used for determination of the binding strength of Ca2+ to bovine alpha-lactalbumin in 60 mM Tris buffer (pH 7.8-8.5) in the presence of various concentrations of NaCl. The dependence of the apparent binding constant on the concentration of NaCl was consistent with competitive binding of Ca2+ and Na+, and the binding constants of Ca2+ and Na+ were found to be 2.2 (+/- 0.5) X 10(7) M-1 and 99 (+/- 33) M-1, respectively, at 37 degrees C and pH 8.0. The temperature dependence of the binding constant of Ca2+ was examined between 30 and 45 degrees C; extrapolation of the dependence led to a binding constant of approximately 1 X 10(8) M-1 at pH 8.4 and 25 degrees C. The electrostatic contribution and conformational effect of the protein were also taken into consideration, and the intrinsic binding constant of Ca2+ to native alpha-lactalbumin was calculated to be (1.2-1.5) X 10(10) M-1 at 37 degrees C and pH 8.0.  相似文献   

5.
Anionic sites of rat epididymal spermatozoa were measured at pH 7.4 using tritiated polycationized ferritin. The spermatozoa from the caput region had 1.25 +/- 0.06 X 10(6) anionic sites per cell and a binding constant of 1.26 +/- 0.01 X 10(6) M-1. Spermatozoa from the cauda region had 1.50 +/- 0.09 X 10(6) anionic sites per cell and a binding constant of 4.84 +/- 0.82 X 10(6) M-1. The values were mean +/- s.d. The anionic sites were partly sensitive to treatments with neuraminidase, trypsin and Triton X-100.  相似文献   

6.
Human blood platelets possess specific binding sites for C1q   总被引:3,自引:0,他引:3  
Although platelet interactions with C1q are implied by the inhibitory effect of C1q on collagen-induced platelet aggregation, specific receptors have not as yet been identified. To address the question of platelet receptors for free C1q, direct radioligand binding studies were performed by using human blood platelets and purified, 125I-labeled C1q, and a monoclonal antibody (II1/D1) (IgM, lambda) directed against C1q receptors on peripheral blood leukocytes. Washed platelets bound both purified 125I-labeled C1q and II1/D1 in a specific and saturable manner under physiologic ionic strength conditions. At equilibrium, approximately 4000 molecules of C1q bound per platelet with an apparent dissociation constant of 3.5 X 10(-7) M. Maximum C1q binding was achieved in 5 min and correlated well with inhibition of collagen-induced platelet aggregation. Equilibrium binding of 125I-labeled II1/D1 to washed platelets required an incubation period of 15 to 30 min and II1/D1 concentrations approaching 50 micrograms/ml. Approximately 2000 molecules of II1/D1 bound per platelet, with an apparent dissociation constant of 2.8 X 10(-8) M. II1/D1 binding could be inhibited by the collagenous tail of C1q (c-C1q), suggesting that platelet receptors for these ligands are either the same or in close proximity. The data demonstrate that human blood platelets possess specific and saturable binding sites for free C1q that may function as collagen receptors, and may antigenically resemble C1q receptors on peripheral blood leukocytes.  相似文献   

7.
Escherichia coli DNA photolyase (photoreactivating enzyme) is a flavoprotein. The enzyme binds to DNA containing pyrimidine dimers in a light-independent step and, upon illumination with 300-600 nm radiation, catalyzes the photosensitized cleavage of the cyclobutane ring thus restoring the integrity of the DNA. We have studied the binding reaction using the techniques of nitrocellulose filter binding and flash photolysis. The enzyme binds to dimer-containing DNA with an association rate constant k1 estimated by two different methods to be 1.4 X 10(6) to 4.2 X 10(6) M-1 S-1. The dissociation of the enzyme from dimer-containing DNA displays biphasic kinetics; for the rapidly dissociating class of complexes k2 = 2-3 X 10(-2) S-1, while for the more slowly dissociating class k2 = 1.3 X 10(-3) to 6 X 10(-4) S-1. The equilibrium association constant KA, as determined by the nitrocellulose filter binding assay and the flash photolysis assay, was 4.7 X 10(7) to 6 X 10(7) M-1, in reasonable agreement with the values predicted from k1 and k2. From the dependence of the association constant on ionic strength we conclude that the enzyme contacts no more than two phosphodiester bonds upon binding; this strongly suggests that the pyrimidine dimer is the main structural determinant of specific photolyase-DNA interaction and that nonspecific ionic interactions do not contribute significantly to substrate binding.  相似文献   

8.
Adult rat testis contains a specific, high-affinity, low-capacity binding protein for 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) with properties similar to 1,25-(OH)2D3 receptors in other tissues. The receptor sediments at 3.5 +/- 0.2 S20,w in high-salt sucrose density gradients, but aggregates in low-salt gradients. Binding of 1,25-(OH)2D3 was abolished by trypsin, but not by DNase or RNase. Binding was also heavily reduced by the sulfhydryl alkylating agent, N-ethylmaleimide, and by the mercurial reagent, mersalyl, showing that free, reduced SH-groups are necessary for hormone-binding activity. The receptor shows high affinity for 1,25-(OH)2D3 (Kd = 3 X 10(-11) M), but low capacity (Nmax = 8 fmol/mg protein) and is specific for 1,25-(OH)2D3 (Affinity: 1,25-(OH)2D3 greater than 1,24(R),25-(OH)3D3 greater than 25-OH-D3 greater than 1 alpha-OH-D3 greater than 24(R),25-(OH)2D3 much greater than 17 beta-estradiol, testosterone, dexamethasone, R5020, progesterone). With 0.6 nM [3H]1,25-(OH)2D3 and at 0 degrees C, maximum specific binding was achieved after 4 h, and the occupied receptors were stable for more than 24 h. The dissociation of hormone-receptor complexes was temperature-dependent and very slow at low temperature (t1/2 (0 degrees C) much greater than 48 h). At 0 degrees C, the second order association rate constant and the pseudo-first order dissociation rate constant were 2.7 X 10(7) M-1 min-1 and 2 X 10(-5) min-1, respectively. Receptors for 1,25-(OH)2D3 are present in similar amounts in isolated seminiferous tubules and interstitial tissue of adult rats. No specific binding of [3H]1,25-(OH)2D3 could be detected in cultured immature Sertoli cells, cultured immature peritubular (myoid) cells or crude germ cells.  相似文献   

9.
Specific dexametasone (D) and cortisol (F) receptors have been found both in liver and Zajdela hepatoma. Rat liver cytosol receptors are characterized by the association constant (Kas) = 3,8 X 10(8) M-1 for D and 0,57 X 10(8) M-1 for F as well as by a number of binding sites (NBS)=4,9 X 10(-13) moles/mg protein and 4,06 X 10(-13) moles/mg protein, respectively. The receptors show stric specificity to glucocorticoids. Cytosol glucocorticoid-receptor complexes from liver and hepatoma sediment at 6-7S, when centrifuged in the buffer of a low ionic strength, and at 3-4S in the buffer of a high ionic strength (0,4 M KCl). The properties of cytosol receptors in the course of in vivo hepatoma growth were found to be gradually altering: Kas for D dropped whereas that for F increased; the NBS is decreased 3-4 fold as compared to normal liver cytosol--which may partially be accounted for by the unresponsiveness of the tumour to the hormones.  相似文献   

10.
The kinetics of azide binding to chloroperoxidase have been studied at eight pH values ranging from 3.0 to 6.6 at 9.5 +/- 0.2 degrees C and ionic strength of 0.4 M in H2O. The same reaction was studied in D2O at pD 4.36. In addition, results were obtained on azide binding to horseradish peroxidase at pD 4.36 and pH 4.56. Typical relaxation times were in the range 10-40 microseconds. The value of kH/kD(on) for chloroperoxidase is 1.16, and kH/kD(off) is 1.7; corresponding values for horseradish peroxidase are 1.10 and 2.4. The H/D solvent isotope effects indicate proton transfer is partially rate controlling and is more important in the dissociation of azide from the enzyme-ligand complex. A mechanism is proposed in which hydrazoic acid binds to chloroperoxidase in a concerted process in which its proton is transferred to a distal basic group. Hydrogen bonding from the newly formed distal acid to the bound azide facilitates formation of hydrazoic acid as the leaving group in the dissociation process. The binding rate constant data, kon, can be fit to the equation kon = k3/(1 + KA/[H+]), where k3 = 7.6 X 10(7) M-1 S-1 and KA, the dissociation constant of hydrazoic acid, is 2.5 X 10(-5) M. The same mechanism probably is valid for the ligand binding to horseradish peroxidase.  相似文献   

11.
Binding of [125I]-alpha-bungarotoxin to rat brain was investigated. Picomole quantities of specific toxin binding sites per gram of fresh tissue were found in particulate preparations as well as detergent extracts of whole brain. The toxin-binding macromolecules can be solubilized in low concentrations of Triton X-100. Specific binding occurs to a single class of sites with a dissociation constant of 5.6 X 10(-11) M. The association rate constant in 10 mM sodium phosphate, pH 7.4, was determined to be 6.8 X 10(5) M-1 s-1; the half-life of the complex was found to be 5.1 h, corresponding to a dissociation rate constant of 3.8 X 10(-5) s-1. The binding macromolecules resemble peripheral nicotinic acetylcholine receptors in toxin binding kinetics, solubility, isoelectric point, and hydrodynamic properties.  相似文献   

12.
The binding of the excitatory amino acid antagonist DL-2-amino-4-phosphonobutanoic acid (DL-APB) to rat brain synaptic plasma membranes was characterized. As determined by Scatchard analysis, the binding was saturable and homogeneous with a Kd = 6.0 microM and Bmax = 380 pmol/mg of protein. The binding was dependent on the presence of Ca2+ and Cl- ions and was diminished upon freezing. The association rate constant was 6.8 X 10(-3) microM-1 min-1, and the dissociation rate constant was 2.0 X 10(-2) min-1. The L isomers of APB, glutamate, and aspartate were more potent as displacers of APB binding than the D isomers. Previously determined inhibition data obtained for APB-sensitive inputs to hippocampal granule cells are compared to the present displacement data in an attempt to identify this binding protein as the recognition site of the receptor mediating the APB-induced inhibition of synaptic transmission. With the exception of kynurenic acid, all compounds examined in both systems were more potent as displacers of APB binding than as inhibitors of synaptic transmission. This difference in potency was most pronounced for agonists at dentate granule cells. L-Glutamate, D-glutamate, and L-glutamate tetrazole were between 140- and 7500-fold more potent as displacers of DL-APB binding than as inhibitors of synaptic transmission. D-2-Amino-5-phosphonopentanoic acid and alpha-methyl-APB were between 10- and 20-fold more potent as displacers of binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
A J Dowding  Z W Hall 《Biochemistry》1987,26(20):6372-6381
We have isolated and characterized 12 monoclonal antibodies (mAbs) that block the binding of alpha-bungarotoxin (alpha-BuTx) to the acetylcholine receptor (AChR) of Torpedo californica. Two of the mAbs block alpha-BuTx binding completely; the other 10 inhibit only about 50% of the binding. The mAbs that partially inhibit alpha-BuTx binding can be divided into two groups by examination of the additive effect of pairs of mAbs on toxin binding, and by analysis of competition between mAbs for binding to the AChR. These two groups of mAbs, which we have termed A and B, appear to recognize different toxin-binding sites on the same receptor. A and B mAbs were used to determine the kinetic and pharmacological properties of the two sites. The site recognized by A mAbs binds alpha-BuTx with a forward rate constant of 0.98 X 10(5) M-1 s-1, d-tubocurarine (dTC) with a KD of (6.8 +/- 0.3) X 10(-8) M, and pancuronium with a KD of (1.9 +/- 1.0) X 10(-9) M. The site recognized by B mAbs binds alpha-BuTx with a forward rate constant of 9.3 X 10(5) M-1 s-1, dTC with a KD of (4.6 +/- 0.3) X 10(-6) M, and pancuronium with a KD of (9.3 +/- 0.8) X 10(-6) M. Binding of A and B mAbs to the AChR was variably inhibited by nicotinic cholinergic agonists and antagonists, and by alpha-conotoxin. The observed pattern of inhibition is consistent with the relative affinity of the two sites for antagonists as given above but also indicates that the mAbs recognize a diversity of epitopes within each site.  相似文献   

14.
The presence of a specific receptor for 1,25-dihydroxyvitamin D (1,25(OH)2D) was investigated in a cell line A7r5 derived from fetal aorta. 1,25(OH)2[3H]D3 binding to cytosol was saturated at 0.6-1 nM, and Scatchard analysis yielded dissociation constant and binding sites, (3.02 +/- 0.4) X 10(-11) M and 33.9 +/- 5.8 fmol/mg protein, respectively. Sucrose density gradient analysis revealed the sedimentation constant 3.2 S. Furthermore, the receptor protein had affinity for DNA-cellulose column and eluted with 0.2 M KCl. These data suggest that vascular smooth muscle cell may be a target tissue of vitamin D.  相似文献   

15.
Previous studies have suggested that the assembly of fibronectin into the extracellular matrix of cultured fibroblasts is mediated by specific matrix assembly receptors that recognize a binding site in the amino terminus of the fibronectin molecule (McKeown-Longo, P.J., and D.F. Mosher, 1985, J. Cell Biol., 100:364-374). In the presence of dexamethasone, human fibrosarcoma cells (HT-1080) acquired the ability to specifically bind exogenous plasma fibronectin and incorporate it into a detergent-insoluble extracellular matrix. Dexamethasone-induced fibronectin binding to HT-1080 cells was time dependent, dose dependent, and inhibited by cycloheximide. Saturation binding curves indicated that dexamethasone induced the appearance of 7.7 X 10(4) matrix assembly receptors per cell. The induced receptors exhibited a dissociation constant (KD) for soluble fibronectin of 5.0 X 10(-8) M. In parallel experiments, normal fibroblasts exhibited 4.1 X 10(5) receptors (KD = 5.3 X 10(-8) M) per cell. In the presence of cycloheximide, the induced fibronectin-binding activity on HT-1080 cells returned to uninduced levels within 12 h. In contrast, fibronectin-binding activity on normal fibroblasts was stable in the presence of cycloheximide for up to 54 h. The first-order rate constant (Kt = 2.07 X 10(-4) min-1) for the transfer of receptor-bound fibronectin to extracellular matrix was four- to fivefold less than that for normal fibroblasts (Kt = 1.32 X 10(-3) min-1). Lactoperoxidase-catalyzed iodination of HT-1080 monolayers indicated that a 48,000-mol-wt cell surface protein was enhanced with dexamethasone. The results from these experiments suggest that dexamethasone induces functional matrix assembly receptors on the surface of HT-1080 cells; however, the rate of incorporation of fibronectin into the matrix is much slower than that of normal fibroblasts.  相似文献   

16.
Receptors for the nerve growth factor protein (NGF) have been isolated from three cell types [embryonic chicken sensory neurons (dorsal root sensory ganglia; DRG), rat pheochromocytoma (PC12) and human neuroblastoma (LAN-1) cells] and have been shown to be similar with respect to equilibrium dissociation constants. The present results demonstrate that there are multiple molecular weight species for NGF receptors from DRG neurons and PC12 cells. NGF receptors can be isolated from DRG as four different molecular species of 228, 187, 125, and 112 kilodaltons, and PC12 cells as three molecular species of 203, 118, and 107 kilodaltons. The NGF receptors isolated from DRG show different pH-binding profiles for high- and low-affinity binding. High-affinity binding displays a bell-shaped pH profile with maximum binding between pH 7.0 and 7.9, whereas low-affinity binding is constant between pH 5.0 and 9.1, with a twofold greater binding at pH 3.6. At 22 degrees C, the association rate constant was found to be 9.5 +/- 1.0 X 10(6) M-1 s-1. Two dissociation rate constants were observed. The fast dissociating receptor has a dissociation rate constant of 3.0 +/- 1.5 X 10(-2) s-1, whereas the slow dissociating receptor constant was 2.4 +/- 1.0 X 10(-4) s-1. The equilibrium dissociation constants calculated from the ratio of dissociation to association rate constants are 2.5 X 109-11) M for the high-affinity receptor (type I) and 3.2 X 10(-9) M for the low-affinity receptor (type II). These values are the same as those determined by equilibrium experiments on the isolated receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The cardiac troponin (Tn) complex, consisting of a Ca2+-binding subunit (TnC), an inhibitory subunit (TnI), and a tropomyosin-binding subunit (TnT), has been reconstituted from purified troponin subunits isolated from bovine heart muscle. The Ca2+-binding properties of cardiac Tn were determined by equilibrium dialysis using either EGTA or EDTA to regulate the free Ca2+ concentration. Cardiac Tn binds 3 mol Ca2+/mol and contains two Ca2+-binding sites with a binding constant of 3 X 10(8) M-1 and one binding site with a binding constant of 2 X 10(6) M-1. In the presence of 4 mM MgC12, the binding constant of the sites of higher affinity is reduced to 3 X 10(7) M-1, while Ca2+ binding to the site at the lower affinity is unaffected. The two high affinity Ca2+-binding sites of cardiac Tn are analogous to the two Ca2+-Mg2+ sites of skeletal Tn, while the single low affinity site is similar to the two Ca2+-specific sites of skeletal Tn (Potter, J. D., and Gergely, J. (1975) J. Biol. Chem. 250, 4625-5633). The Ca2+-binding properties of the complex of TnC and TnI (1:1 molar ratio) were similar to those of Tn. Cardiac TnC also binds 3 mol of Ca2+/mol and contains two sites with a binding constant of 1 X 10(7) M-1 and a single site with a binding constant of 2 X 10(5) M-1. Assuming competition between Mg2+ and Ca2+ for the high affinity sites of TnC and Tn, the binding constants for Mg2+ were 0.7 and 3.0 X 10(3) M-1, respectively. The Ca2+ dependence of cardiac myofibrillar ATPase activity was similar to that of an actomyosin preparation regulated by the reconstituted troponin complex. Comparison by the Ca2+-binding properties of cardiac Tn and the cardiac myofibrillar ATPase activity as a function of [Ca2+] and at millimolar [Mg2+] suggests that activation of the ATPase occurs over the same range of [Ca2+] where the Ca2+-specific site of cardiac Tn binds Ca2+.  相似文献   

18.
A variant of human transferrin with abnormal properties.   总被引:5,自引:0,他引:5       下载免费PDF全文
Normal human skin fibroblasts cultured in vitro exhibit specific binding sites for 125I-labelled transferrin. Kinetic studies revealed a rate constant for association (Kon) at 37 degrees C of 1.03 X 10(7) M-1 X min-1. The rate constant for dissociation (Koff) at 37 degrees C was 7.9 X 10(-2) X min-1. The dissociation constant (KD) was 5.1 X 10(-9) M as determined by Scatchard analysis of binding and analysis of rate constants. Fibroblasts were capable of binding 3.9 X 10(5) molecules of transferrin per cell. Binding of 125I-labelled diferric transferrin to cells was inhibited equally by either apo-transferrin or diferric transferrin, but no inhibition was evident with apo-lactoferrin, iron-saturated lactoferrin, or albumin. Preincubation of cells with saturating levels of diferric transferrin or apo-transferrin produced no significant change in receptor number or affinity. Preincubation of cells with ferric ammonium citrate caused a time- and dose-dependent decrease in transferrin binding. After preincubation with ferric ammonium citrate for 72 h, diferric transferrin binding was 37.7% of control, but no change in receptor affinity was apparent by Scatchard analysis. These results suggest that fibroblast transferrin receptor number is modulated by intracellular iron content and not by ligand-receptor binding.  相似文献   

19.
The nerve cord of the cockroach (Periplaneta americana) contains distinct saturable components of specific binding for the ligands N-[propionyl-3H]propionylated alpha-bungarotoxin and L-[benzilic-4,4'-3H]quinuclidinyl benzilate. N-[Propionyl-3H]propionylated alpha-bungarotoxin bound reversibly to homogenates with a Kd of 4.8 nM and Bmax of 910 fmol mg-1. The association rate constant (1.9 X 10(5) M-1 s-1) and dissociation rate constant (1.2 X 10(-4) s-1) yielded a Kd of 0.6 nM. Nicotinic ligands were found to displace toxin binding most effectively. The binding sites characterized in this way showed many similarities with the properties of the vertebrate neuronal alpha-bungarotoxin binding site. For a range of cholinergic ligands, inhibition constants calculated from toxin binding studies closely corresponded to their effectiveness in blocking the depolarizing response to acetylcholine recorded by electrophysiological methods from an identified cockroach motoneurone. The N-[propionyl-3H]propionylated alpha-bungarotoxin binding component therefore appears to be a constituent of a functional CNS acetylcholine receptor. Binding of L-[benzilic-4,4'-3H]quinuclidinyl benzilate was reversible with a Kd of 8 nM and Bmax of 138 fmol mg-1, determined from equilibrium binding experiments. The Kd calculated from the association rate constant (2.4 X 10(5) M-1 s-1) and dissociation rate constant (1.3 X 10(-4) s-1) was 1.9 nM. Muscarinic ligands were the most potent inhibitors of quinuclidinyl benzilate binding. The characteristics of this binding site resembled those of vertebrate CNS muscarinic cholinergic receptors. In contrast with vertebrate CNS, the nerve cord of Periplaneta americana contains more (approximately X 7) alpha-bungarotoxin binding sites than quinuclidinyl benzilate binding sites.  相似文献   

20.
Toxic shock syndrome toxin-1 (TSST-1) and staphylococcal enterotoxins (SE) A, B, and C were studied on binding to rabbit spleen cells. The toxins showed remarkable mitogenic effects on the cells. Among them, SEA and TSST-1 had much stronger mitogenic activities than SEB and SEC. Binding study showed that labeled TSST-1 and SEA bound considerably to cells, but that labeled SEB or SEC was not observed to bind at a detectable level under the same conditions as TSST-1 and SEA. Competitive binding analysis between toxins to cells proved that TSST-1 and SEA clearly competed with each other in binding. Scatchard plots for TSST-1 and SEA in binding were linear at the doses used. The Scatchard analysis for TSST-1 and SEA gave a dissociation constant of 2.5 X 10(-9) M and 7.6 X 10(-8) M and the number of binding sites per cell of 5.3 X 10(3) and 1.0 X 10(5), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号