首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 4.3 kb XbaI restriction fragment of DNA from Clostridium sordellii G12 hybridized with a synthetic oligonucleotide representing the N-terminus of the sialidase protein secreted by C. sordellii. This cloned fragment was shown to encode only part of the sialidase protein. The sialidase gene of C. sordellii was completed by a 0.7 kb RsaI restriction fragment overlapping one end of the XbaI fragment. After combining the two fragments and transformation of Escherichia coli, a clone that expressed sialidase was obtained. The nucleotide sequence of the sialidase gene of C. sordellii G12 was determined. The sequence of the 18 N-terminal amino acids of the purified extracellular enzyme perfectly matched the predicted amino acid sequence near the beginning of the structural gene. The amino acid sequence derived from the complete gene corresponds to a protein with a molecular mass of 44,735 Da. Upstream from the putative ATG initiation codon, ribosomal-binding site and promoter-like consensus sequences were found. The encoded protein has a leader sequence of 27 amino acids. The enzyme expressed in E. coli has similar properties to the enzyme isolated from C. sordellii, except for small differences in size and isoelectric point. Significant homology (70%) was found with a sialidase gene from C. perfringens.  相似文献   

2.
Pasteurella multocida is a mucosal pathogen that colonizes the respiratory system of susceptible hosts. Most isolates of P. multocida produce sialidase activity, which may contribute to colonization of the respiratory tract or the production of lesions in an active infection. We have cloned and sequenced a sialidase gene, nanH, from a fowl cholera isolate of P. multocida. Sequence analysis of NanH revealed that it exhibited significant amino acid sequence homology with many microbial sialidases. Insertional inactivation of nanH resulted in a mutant strain that was not deficient in sialidase production. However, this mutant exhibited reduced enzyme activity and growth rate on 2-3' sialyl lactose compared to the wild type. Subsequently, we demonstrated the presence of two sialidases by cloning another sialidase gene that differed from nanH in DNA sequence and substrate specificity. NanB demonstrated activity on both 2-3' and 2-6' sialyl lactose, while NanH demonstrated activity only on 2-3' sialyl lactose. Neither enzyme liberated sialic acid from colominic acid (2-8' sialyl lactose). Recombinant E. coli containing the sialidase genes were able to utilize several sialoconjugants when they were provided as sole carbon sources in minimal medium. These data suggest that sialidases have a nutritional function and may contribute to the ability of P. multocida to colonize and persist on vertebrate mucosal surfaces.  相似文献   

3.
Several mammalian sialidases have been cloned so far and here we describe the identification and expression of a new member of the human sialidase gene family. The NEU4 gene, identified by searching sequence databases for entries showing homologies to the human cytosolic sialidase NEU2, maps in 2q37 and encodes a 484-residue protein. The polypeptide contains all the typical sialidase amino acid motifs and, apart from an amino acid stretch that appears unique among mammalian sialidases, shows a high degree of homology for NEU2 and the plasma membrane-associated (NEU3) sialidases. RNA dot-blot analysis showed a low but wide expression pattern, with the highest level in liver. Transient transfection in COS7 cells allowed the detection of a sialidase activity toward the artificial substrate 4MU-NeuAc in the acidic range of pH. Immunofluorescence staining and Western blot analysis demonstrated the association of NEU4 with the inner cell membranes.  相似文献   

4.
Sialidase (EC 3.2.1.18) catalyzes the release of sialic acid from sialo-oligosaccharides, gangliosides, or sialo-glycoproteins. In this investigation, we cloned a novel cDNA for mouse brain sialidase and expressed the cDNA in COS-7 cells. This 1,699 bp cDNA codes for a 41.6 kDa protein consisting of 372 deduced amino acid residues. In COS-7 cells transiently transfected with the cDNA, a 250-fold increase was observed in specific activity toward 2'-(4-methylumbelliferyl)-alpha-D-N-acetylneuraminic acid. Similarity searches of the nonredundant GenBank peptide sequence database by the PSI-BLAST program identified rat, hamster, human, and bacterial sialidases homologous to this mouse brain sialidase. Amino acid sequence identities to rat and hamster sialidases (84% and 77%, respectively) suggest that this form of sialidase is conserved in rodents. Sequence identities to human and mouse lysosomal sialidases (30% and 28%, respectively) indicate that the mouse brain sialidase is distinct from the lysosomal enzyme. Mouse brain sialidase has two amino acid sequence motifs common to bacterial sialidases: the 'F/YRIP' motif and the 'Asp-box' motif. The 'F/YRIP' motif is present near the N terminus while two 'Asp-box' motifs are present downstream.  相似文献   

5.
Expression of a novel human sialidase encoded by the NEU2 gene   总被引:1,自引:0,他引:1  
Monti E  Preti A  Nesti C  Ballabio A  Borsani G 《Glycobiology》1999,9(12):1313-1321
Sialidases (E.C.3.2.1.18) belong to a group of glycohydrolytic enzymes, widely distributed in nature, which remove sialic acid residues from glycoproteins and glycolipids. All of the sialidase so far characterized at the molecular level share an Asp block, repeated three to five times in the primary structure, and an F/YRIP sequence motif which is part of the active site. Using a sequence homology-based approach, we previously identified a human gene, named NEU2, mapping to chromosome 2q37. NEU2 encoded protein is a polypeptide of 380 amino acids with two Asp block consensuses and the YRIP sequence in the amino terminal part of the primary structure. Here we demonstrate that NEU2 encodes a functional sialidase. NEU2 was expressed in COS7 cells, giving rise to a dramatic increase in the sialidase activity measured in cell extracts with the artificial substrate 4-MU-NANA. Using a rabbit polyclonal antiserum, on Western blots a protein band with a molecular weight of about 42 kDa was detectable, and its cytosolic localization was demonstrated with cell fractionation experiments. These results were confirmed using immunohistochemical techniques. NEU2 expression in E.coli cells allowed purification of the recombinant protein. As already observed in the enzyme expressed in COS7 cells, NEU2 pH optimum corresponds to 5.6 and the polypeptide showed a K(m)for 4-MU-NANA of 0.07 mM. In addition, based on the detectable similarities between the NEU2 amino acid sequence and bacterial sialidases, a prediction of the three-dimensional structure of the enzyme was carried out using a protein homology modeling approach.  相似文献   

6.
Summary An oligonucleotide mixture corresponding to the codons for conserved and repeated amino acid sequences of bacterial sialidases (Roggentin et al. 1989) was used to clone a 4.3 kb PstI restriction fragment of Clostridium septicum DNA in Escherichia coli. The complete nucleotide sequence of the sialidase gene was determined from this fragment. The derived amino acid sequence corresponds to a protein of 110000 Da. The ribosomal binding site and promoter-like consensus sequences were identified upstream from the putative ATG initiation codon. The molecular and immunological properties of the sialidase expressed by E. coli are similar to those of the sialidase as isolated from C. septicum. The newly synthesized protein is assumed to include a leader peptide of 26 amino acids. On sequence alignment, the sialidases from C. septicum, C. sordellii and C. perfringens show significant homologies. As in other bacterial sialidases, conserved amino acid sequences occur at four positions in the protein. Aside from the consensus sequences, only poor homology to other bacterial and viral sialidases was found. The consensus sequence could be identified even in other, non-sialidase proteins, indicating a common function or the evolutionary relatedness of these proteins.  相似文献   

7.
Properties of sialidase isolated from Actinomyces viscosus DSM 43798   总被引:1,自引:0,他引:1  
The cell-bound sialidase of Actinomyces viscosus DSM 43798 was solubilized by mechanical cell disruption and lysozyme treatment. The enzyme was enriched 30,000-fold by cation-exchange chromatography, gel-filtration, and FPLC ion-exchange chromatography, thus obtaining 10 micrograms sialidase protein from 26 g wet cells with a specific activity of 680 U/mg protein. Since sialidase activity was also found in the culture medium, this enzyme was isolated as well, requiring the additional application of FPLC gel-filtration. Both sialidase preparations were apparently homogenous on SDS-PAGE and have similar properties. The substrate specificity of the A. viscosus sialidase was tested with 16 sialoglycoconjugates: The enzyme showed a higher activity with serum glycoproteins than with gangliosides, mucins or sialyllactoses. 4-O-Acetylated N-acetylneuraminic acid was not cleaved from equine submandibular gland mucins or serum glycoproteins in contrast to N-acetyl- and N-glycoloylneuraminic acid. 9-O-Acetyl-N-acetylneuraminic acid was released from bovine submandibular gland mucin, as confirmed by TLC. The sialidase hydrolyses alpha(2----6)-linkages more rapidly than alpha(2----8)- and alpha(2----3)-bonds. Cations, except Hg2+, or chelating agents have no influence on enzyme activity. The sialidase has a relatively high molecular mass of 150 kDa, but consists of only one unit. The enzyme is labile towards freezing and thawing, but can be stored at 4 degrees C in 0.1 M acetate buffer, pH 5.  相似文献   

8.
This review summarizes the recent research development on mammalian sialidase molecular cloning. Sialic acid–containing compounds are involved in several physiological processes, and sialidases, as glycohydrolytic enzymes that remove sialic acid residues, play a pivotal role as well. Sialidases hydrolyze the nonreducing, terminal sialic acid linkage in various natural substrates, such as glycoproteins, glycolipids, gangliosides, and polysaccharides. Mammalian sialidases are present in several tissues/organs and cells with a typical subcellular distribution: they are the lysosomal, the cytosolic, and the plasma membrane–associated sialidases. Starting in 1993, 12 different mammalian sialidases have been cloned and sequenced. A comparison of their amino acid sequences revealed the presence of highly conserved regions. These conserved regions are shared with viral and microbial sialidases that have been characterized at three-dimensional structural level, allowing us to perform the molecular modeling of the mammalian proteins and suggesting a monophyletic origin of the sialidase enzymes. Overall, the availability of the cDNA species encoding mammalian sialidases is an important step leading toward a comprehensive picture of the relationships between the structure and biological function of these enzymes.  相似文献   

9.
The Salmonella typhimurium LT2 sialidase (neuraminidase, EC 3.2.1.18) structural gene, nanH, has been cloned and sialidase overproduced from multicopy plasmids in Escherichia coli. Sialidase expression was regulated positively by cAMP. In contrast, certain Tn1000 insertions located upstream of nanH coding sequences reduced sialidase activity. A nanH chromosomal insertion mutation constructed by marker exchange demonstrated a single sialidase gene copy in S. typhimurium LT2. The complete nucleotide sequence of nanH, encoding a 41,300 dalton polypeptide, was determined and the derived primary structure was similar to sialidases from Clostridium perfringens, Clostridium sordellii, Bacteroides fragilis, and Trypanosoma cruzi. Comparative sequence analysis, including codon usage and secondary structure predictions, indicated that the S. typhimurium and clostridial sialidases are homologous, strongly suggestive of an interspecies gene transfer event. At least two primary sequence motifs of the bacterial enzymes were detected in influenza A virus sialidases. The predicted secondary structure of the bacterial enzymes was strikingly similar to viral sialidase. From the population distribution of nanH detected within a collection of salmonellae, it was apparent that S. typhimurium obtained its nanH copy most recently from Salmonella arizonae. S. typhimurium LT2 is thus a genetic mosaic that differs from other strains of even the same serotype by nanH plus potentially additional characters linked to nanH. These results have relevance to the evolution and function of sialidases in pathogenic microbes, and to the origin of the sialic acids.  相似文献   

10.
Penicillin G acylase was purified from the cultured filtrate of Arthrobacter viscosus 8895GU and was found to consist of two distinct subunits with apparent molecular weights of 24,000 (alpha) and 60,000 (beta). The partial N-terminal amino acid sequences of the alpha and beta subunits were determined with a protein gas phase sequencer, and a 29-base oligonucleotide corresponding to the partial amino acid sequence of the alpha subunit was synthesized. An Escherichia coli transformant having the penicillin G acylase gene was isolated from an A. viscosus gene library by hybridization with the 29-base probe. The resulting positive clone was further screened by the Serratia marcescens overlay technique. E. coli carrying a plasmid designated pHYM-1 was found to produce penicillin G acylase in the cells. This plasmid had an 8.0-kilobase pair DNA fragment inserted in the EcoRI site of pACYC184.  相似文献   

11.
Penicillin G acylase was purified from the cultured filtrate of Arthrobacter viscosus 8895GU and was found to consist of two distinct subunits with apparent molecular weights of 24,000 (alpha) and 60,000 (beta). The partial N-terminal amino acid sequences of the alpha and beta subunits were determined with a protein gas phase sequencer, and a 29-base oligonucleotide corresponding to the partial amino acid sequence of the alpha subunit was synthesized. An Escherichia coli transformant having the penicillin G acylase gene was isolated from an A. viscosus gene library by hybridization with the 29-base probe. The resulting positive clone was further screened by the Serratia marcescens overlay technique. E. coli carrying a plasmid designated pHYM-1 was found to produce penicillin G acylase in the cells. This plasmid had an 8.0-kilobase pair DNA fragment inserted in the EcoRI site of pACYC184.  相似文献   

12.
Li Y  Cao H  Yu H  Chen Y  Lau K  Qu J  Thon V  Sugiarto G  Chen X 《Molecular bioSystems》2011,7(4):1060-1072
Aberrant expression of human sialidases has been shown to associate with various pathological conditions. Despite the effort in the sialidase inhibitor design, less attention has been paid to designing specific inhibitors against human sialidases and characterizing the substrate specificity of different sialidases regarding diverse terminal sialic acid forms and sialyl linkages. This is mainly due to the lack of sialoside probes and efficient screening methods, as well as limited access to human sialidases. A low cellular expression level of the human sialidase NEU2 hampers its functional and inhibitory studies. Here we report the successful cloning and expression of the human sialidase NEU2 in E. coli. About 11 mg of soluble active NEU2 was routinely obtained from 1 L of E. coli cell culture. Substrate specificity studies of the recombinant human NEU2 using twenty p-nitrophenol (pNP)-tagged α2-3- or α2-6-linked sialyl galactosides containing different terminal sialic acid forms including common N-acetylneuraminic acid (Neu5Ac), non-human N-glycolylneuraminic acid (Neu5Gc), 2-keto-3-deoxy-D-glycero-D-galacto-nonulosonic acid (Kdn), or their C5-derivatives in a microtiter plate-based high-throughput colorimetric assay identified a unique structural feature specifically recognized by the human NEU2 but not two bacterial sialidases. The results obtained from substrate specificity studies were used to guide the design of a sialidase inhibitor that was selective against human NEU2. The selectivity of the inhibitor was revealed by the comparison of sialidase crystal structures and inhibitor docking studies.  相似文献   

13.
Subclones containing the Salmonella typhimurium LT2 sialidase gene, nanH, were expressed in Escherichia coli from multicopy derivatives of pBR329. The cloned sialidase structural gene directed overproduction of sialidase polypeptide which was detected as the major soluble protein species in cell-free extracts. Overproduced enzyme was purified to near electrophoretic homogeneity after 65-fold enrichment using conventional preparative techniques. Unlike all previously investigated sialidases, S. typhimurium sialidase was positively charged (pI greater than or equal to 9.0). Km, Vmax, and turnover number of the purified sialidase, measured using 2'-(4-methylumbelliferyl)-alpha-D-N-acetylneuraminic acid (MUNeu5Ac), were 0.25 mM, 5,200 nmol min-1, and 2,700 s-1, respectively. These values are the highest yet reported for a sialidase. Sialidase was inhibited by 2-deoxy-2,3-didehydro-N-acetyl-neuraminic acid at unusually high concentrations (Ki = 0.38 mM), but not by 20 mM N-acetylneuraminic acid. Divalent cations were not required for activity. The pH optimum for hydrolysis of MUNeu5Ac was between 5.5 and 7.0 and depended on the assay buffer system. Substrate specificity measurements using natural sialoglycoconjugates showed a 260-fold kinetic preference for sialyl alpha 2----3 linkages when compared with alpha 2----6 bound sialic acids. The enzyme also efficiently cleaved residues from glycoproteins and gangliosides, but not from mucin or sialohomopolysaccharides. S. typhimurium sialidase is thus the first bacterial enzyme to be described with influenza A virus sialidase-like kinetic preference for sialyl alpha 2----3 linkages and to have a basic pI.  相似文献   

14.
Isolation of a neuraminidase gene from Actinomyces viscosus T14V.   总被引:3,自引:0,他引:3       下载免费PDF全文
A genomic library of Actinomyces viscosus T14V DNA in lambda gt11 was screened for expression of neuraminidase activities. Four recombinant clones were detected that gave blue fluorescence upon incubation with a fluorogenic substrate, 2'-(4-methylumbelliferyl)-alpha-D-N-acetylneuraminic acid. Of these, two were identical, and all of the neuraminidase-positive clones shared a common 3.4-kbp DNA region. Expression of the enzyme activities in Escherichia coli carrying the cloned DNA was independent of the lacZ promoter of the vector. Maxicell analysis revealed that the 3.4-kbp DNA insert directed synthesis of a protein with an apparent molecular mass of 100,000 Da. The protein from cell extracts of E. coli clones migrated as a single band that stained for enzyme activity after electrophoresis in a nondissociating polyacrylamide gel. Moreover, human erythrocytes incubated previously with cell lysates from neuraminidase-positive E. coli were hemagglutinated by Actinomyces spp. The enzyme expressed by E. coli was active on substrates containing alpha-2,3 and alpha-2,6 ketosidic linked sialyl residues. Similar substrate specificities were obtained for both the extracellular and cell-associated neuraminidases from A. viscosus T14V. The 3.4-kbp insert hybridized to DNA fragments in a Southern blot containing A. viscosus T14V chromosomal DNA that had been digested with various restriction endonucleases. Data from hybridization studies show that A. viscosus T14V contains a single copy of the neuraminidase gene.  相似文献   

15.
A genomic library of Actinomyces viscosus T14V DNA in lambda gt11 was screened for expression of neuraminidase activities. Four recombinant clones were detected that gave blue fluorescence upon incubation with a fluorogenic substrate, 2'-(4-methylumbelliferyl)-alpha-D-N-acetylneuraminic acid. Of these, two were identical, and all of the neuraminidase-positive clones shared a common 3.4-kbp DNA region. Expression of the enzyme activities in Escherichia coli carrying the cloned DNA was independent of the lacZ promoter of the vector. Maxicell analysis revealed that the 3.4-kbp DNA insert directed synthesis of a protein with an apparent molecular mass of 100,000 Da. The protein from cell extracts of E. coli clones migrated as a single band that stained for enzyme activity after electrophoresis in a nondissociating polyacrylamide gel. Moreover, human erythrocytes incubated previously with cell lysates from neuraminidase-positive E. coli were hemagglutinated by Actinomyces spp. The enzyme expressed by E. coli was active on substrates containing alpha-2,3 and alpha-2,6 ketosidic linked sialyl residues. Similar substrate specificities were obtained for both the extracellular and cell-associated neuraminidases from A. viscosus T14V. The 3.4-kbp insert hybridized to DNA fragments in a Southern blot containing A. viscosus T14V chromosomal DNA that had been digested with various restriction endonucleases. Data from hybridization studies show that A. viscosus T14V contains a single copy of the neuraminidase gene.  相似文献   

16.
A gene encoding a putative sialidase was identified in the genome of the opportunistic fungal pathogen, Aspergillus fumigatus. Computational analysis showed that this protein has Asp box and FRIP domains, it was predicted to have an extracellular localization, and a mass of 42 kDa, all of which are characteristics of sialidases. Structural modeling predicted a canonical 6-bladed β-propeller structure with the model’s highly conserved catalytic residues aligning well with those of an experimentally determined sialidase structure. The gene encoding the putative Af sialidase was cloned and expressed in Escherichia coli. Enzymatic characterization found that the enzyme was able to cleave the synthetic sialic acid substrate, 4-methylumbelliferyl α-D-N-acetylneuraminic acid (MUN), and had a pH optimum of 3.5. Further kinetic characterization using 4-methylumbelliferyl α-D-N-acetylneuraminylgalactopyranoside revealed that Af sialidase preferred α2-3-linked sialic acids over the α2-6 isomers. No trans-sialidase activity was detected. qPCR studies showed that exposure to MEM plus human serum induced expression. Purified Af sialidase released sialic acid from diverse substrates such as mucin, fetuin, epithelial cell glycans and colominic acid, though A. fumigatus was unable to use either sialic acid or colominic acid as a sole source of carbon. Phylogenetic analysis revealed that the fungal sialidases were more closely related to those of bacteria than to sialidases from other eukaryotes.  相似文献   

17.
Trypanosoma cruzi expresses a trans-sialidase on its surface, which catalyzes the transfer of sialic acid from mammalian host glycans to its own surface glycoproteins. It has been proposed that the enzyme consists of three domains prior to a long C-terminal repeating sequence that is not required for enzyme activity. The first of these domains shares significant sequence identity with bacterial sialidases which catalyse the hydrolysis of sialic acid. Here we report the sequence of the N-terminal domains of the TS19y trans-sialidase gene, which was expressed in bacteria with the same specific activity as natural enzyme of T. cruzi. Various deletion mutants of TS19y, without the C-terminal tandem repeat, have been cloned and expressed and their trans-sialidase and sialidase activities measured. These experiments show that all three N-terminal domains are required for full trans-sialidase activity, though only the first is necessary for sialidase activity. Some transferase activity is observed, however, even with the shortest construct comprising the first N-terminal domain. Deletion mutants to probe the role of the N-terminal residues of the first domain suggest that the first 33 residues are also required for trans-sialidase activity, but not for sialidase activity. Molecular modelling of the first N-terminal domain of TS19y based on our structures of bacterial sialidases and site-directed mutations suggests the location of a galactose-binding site within this domain.  相似文献   

18.
Pseudomonas aeruginosa encodes an enzyme (PA2794) that is annotated as a sialidase (or neuraminidase), as it possesses three bacterial neuraminidase repeats that are a signature of nonviral sialidases. A recent report showed that when the gene encoding this sialidase is knocked out, this led to a reduction in biofilm production in the lungs of mice, and it was suggested that the enzyme recognizes pseudaminic acid, a sialic acid analogue that decorates the flagella of Pseudomonas, Helicobacter, and Campylobacter species. Here, we present the crystal structure of the P. aeruginosa enzyme and show that it adopts a trimeric structure, partly held together by an immunoglobulin-like trimerization domain that is C-terminal to a classical β-propeller sialidase domain. The recombinant enzyme does not show any sialidase activity with the standard fluorogenic sialic-acid-based substrate. The proposed active site contains certain conserved features of a sialidase: a nucleophilic tyrosine with its associated glutamic acid, and two of the usual three arginines that interact with the carboxylic acid group of the substrate, but is missing the first arginine and the aspartic acid that acts as an acid/base in all sialidases studied to date. We show, by in silico docking, that the active site may accommodate pseudaminic acid but not sialic acid and that this is due, in part, to a phenylalanine in the hydrophobic pocket that selects for the alternative stereochemistry of pseudaminic acid at C5 compared to sialic acid. Mutation of this phenylalanine to an alanine converts the enzyme into a sialidase, albeit a poor one, which we confirm by kinetics and NMR, and this allowed us to probe the function of other amino acids. We propose that a histidine plays the role of the acid/base, whose state is altered through a charge-relay system involving a novel His-Tyr-Glu triad. The location of this relay system precludes the presence of one of the three arginines usually found in a sialidase active site.  相似文献   

19.
Wu S  Liu Y  Zhao G  Wang J  Sun W 《Biochimie》2006,88(3-4):237-244
A d-carbamoylase from Sinorhizobium morelens S-5 was purified and characterized. The enzyme was purified 189-fold to homogeneity with a yield of 19.1% by aqueous two-phase extraction and two steps of column chromatography. The enzyme is a homotetramer with a native molecular mass of 150 kDa and a subunit relative molecular mass of 38 kDa. The optimum pH and temperature of the enzyme were pH 7.0 and 60 degrees C, respectively. The enzyme showed high thermal and oxidative stability. It was found to have a K(m) of 3.76 mM and a V(max) of 383 U/mg for N-carbamoyl-d-p-hydroxyphenylglycine. The hyuC gene coding for this enzyme was cloned, and its nucleotide sequence was determined. The deduced amino acid sequence encoded by the hyuC gene exhibited high homology to the amino acid sequences of d-carbamoylase from other sources. The gene could be highly expressed in Escherichia coli, and the product was purified to homogeneity from the recombinant. Our results show that the enzyme has great potential for industrial application.  相似文献   

20.
The amylomaltase gene of the thermophilic bacterium Thermus aquaticus ATCC 33923 was cloned and sequenced. The open reading frame of this gene consisted of 1,503 nucleotides and encoded a polypeptide that was 500 amino acids long and had a calculated molecular mass of 57,221 Da. The deduced amino acid sequence of the amylomaltase exhibited a high level of homology with the amino acid sequence of potato disproportionating enzyme (D-enzyme) (41%) but a low level of homology with the amino acid sequence of the Escherichia coli amylomaltase (19%). The amylomaltase gene was overexpressed in E. coli, and the enzyme was purified. This enzyme exhibited maximum activity at 75 degrees C in a 10-min reaction with maltotriose and was stable at temperatures up to 85 degrees C. When the enzyme acted on amylose, it catalyzed an intramolecular transglycosylation (cyclization) reaction which produced cyclic alpha-1,4-glucan (cycloamylose), like potato D-enzyme. The yield of cycloamylose produced from synthetic amylose with an average molecular mass of 110 kDa was 84%. However, the minimum degree of polymerization (DP) of the cycloamylose produced by T. aquaticus enzyme was 22, whereas the minimum DP of the cycloamylose produced by potato D-enzyme was 17. The T. aquaticus enzyme also catalyzed intermolecular transglycosylation of maltooligosaccharides. A detailed analysis of the activity of T. aquaticus ATCC 33923 amylomaltase with maltooligosaccharides indicated that the catalytic properties of this enzyme differ from those of E. coli amylomaltase and the plant D-enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号