首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The restriction endonuclease Alu I (recognition site AG/CT) produces chromosomal aberrations in isolated human peripheral lymphocytes in vitro. The aberrations are of the chromosome-type when the cells are treated in G1 and of the chromatid-type when the cells are treated in late S, early G2. Additional treatment with ammonium sulphate leads to higher aberration frequencies than treatment with Alu I alone.  相似文献   

2.
G Obe  A T Natarajan 《Mutation research》1985,152(2-3):205-210
Induction of chromosomal aberrations by the restriction endonuclease Alu I in Chinese hamster ovary cells (CHO) has been studied. Treatment of cell pellets with Alu I for a time as short as 1 min was found to induce significant increase in the frequency of chromosomal aberrations. Alu I was found to be effective both in trypsinized cells as well as in cells which were collected with a rubber policeman, indicating that trypsinization of cells is not a prerequisite for the entry of the enzyme into the cells. Treatment of cells with Alu I in the presence of 1-beta-D-arabinosylcytosine (ara C) led to an increase in the induced frequency of aberrations, most probably due to the inhibition of ligation of DNA-strand breaks by ara C.  相似文献   

3.
Heat treatment of CHO cells in the G1-phase of the cell cycle leads to chromatid-type aberrations in first posttreatment metaphases. Posttreatment of heat-treated cells with the alkylating agent trenimon leads to a synergistic effect on the production of chromatid-type exchanges. These results indicate that heat induces lesions which like the lesions produced by trenimon give rise to chromatid-type aberrations during the first posttreatment S-phase, and that these lesions can interact with each other to produce chromatid-type exchanges. Treatment of CHO cells in the G1-phase of the cell cycle with the restriction endonuclease Alu I induces chromosomal aberrations. Pretreatment of cells with heat leads to a reduction of Alu I induced chromosome-type aberrations. When cells are allowed to recover after heat treatment for 22 h, the aberration frequencies produced by Alu I are the same as in cells not treated with heat. These findings can be explained by assuming that heat-induced accumulation of accessory proteins in the chromatin protects the DNA from being cut by Alu I, and that the cells recovered from the heat-induced protein accumulation after 22 h.  相似文献   

4.
The frequencies of chromosomal aberrations induced by the restriction endonuclease Alu I (recognition site AG/CT) can be elevated to a similar extent by additional treatments with a single-strand-specific endonuclease from Neurospora crassa (EC 3.1.30.1), or with ammonium sulfate in which the Neurospora endonuclease is suspended. These data indicate that Alu I does not produce DNA single-strand breaks in the chromatin of living cells, which can be recognized by the Neurospora endonuclease. The salt may induce conformational changes in the chromatin which make more recognition sites available for Alu I. Experiments with recovery times between the treatments with Alu I and the salt indicate that Alu I can act in the nucleus for at least 40 min.  相似文献   

5.
The restriction endonuclease Alu I induces chromosomal aberrations and mutations in the hypoxanthine phosphoribosyltransferase (HPRT) locus as measured by 6-thioguanine resistance (TGr) in V79 hamster cells. Alu I does not induce mutations in the Na+/K+ ATPase locus as measured by ouabain resistance (OUAr). The data are interpreted to mean that most if not all Alu I-induced TGr mutations represent chromosomal aberrations.  相似文献   

6.
We now show that exposure of B16 melanoma cells to bromodeoxyuridine increases cell-substratum interactions concurrent with an increase in genome susceptibility to nucleases. Hypersensitive DNA was isolated after mild nicking of nuclei with DNase I followed by repair with DNA polymerase I in the presence of biotin-19-SS-dUTP and affinity chromatography on streptavidin-agarose. Dot blot studies showed that the hypersensitive DNA is enriched in c-myc sequences compared to total tumor genomic DNA, and hybridizes preferentially to the latter, compared to normal genomic DNA, particularly when prepared from BrdU-treated cells. Since hypersensitive DNA can hybridize with multiple Alu sequences in the genome, we postulate that one of the mechanisms for its differential reactivity may be by recognition of an unequal number of Alu repeats in normal and tumor genomic DNA.  相似文献   

7.
8.
The restriction endonuclease Alu I induces chromosomal aberrations in living Chinese hamster ovary (CHO) cells. Multiple fixation times reveal that the chromosome-breaking activity of Alu I is similar to that of ionizing radiation in that it is independent of the S-phase of the cell cycle. These results indicate that DNA double-strand breaks are the ultimate lesions for the production of chromosomal aberrations in all stages of the cell cycle.  相似文献   

9.
S Tuschy  G Obe 《Mutation research》1988,207(2):83-87
The restriction endonuclease Alu I induces chromosome-type aberrations in Chinese hamster ovary cells whose frequencies are considerably elevated in the presence of high concentrations of MgCl2, (NH4)2SO4, CaCl2 or NaCl. The most plausible explanation for these findings is that salt leads to partial dehistonization of the chromatin which makes more recognition sites available for Alu I.  相似文献   

10.
11.
Restriction endonucleases have been used to study the involvement of specific types of DNA damages in the production of chromosome aberrations. In this study restriction endonucleases were introduced into viable CHO cells using osmolytic shock of pinocytic vesicles. We compared two cohesive-end cutters, Msp I (CCGG-2-base overlap) and Sau3A I (GATC-4-base overlap) with two blunt-end cutters, Alu I (AGCT) and Rsa I (GTAC). All 4 enzymes were effective at inducing aberrations. The 4-base overlap cohesive-end cutter Sau3A I was approximately as effective as the blunt-end cutter Alu I. We present evidence that cutting frequency rather than cut end-structure is important in determining efficiency of aberration induction. There is over-dispersion of the distribution of dicentrics and rings among cells, and the data could be fitted to a Neyman Type A distribution, a modified Poisson, that indicates that there is a probability distribution both for the entry of the enzyme into a cell nucleus and for the induction of aberrations once the enzyme has entered a cell nucleus. In addition, we used Alu I to determine the sensitivity of cells to aberration induction in the different stages of the cell cycle. Alu I induced aberrations in all stages of the cycle, chromatid-type in S/G2 and chromosome-type in G1. In agreement with data of others, there were variations in sensitivity with cycle stage, and changes in the proportions of the different aberration classes for chromatid-type aberrations.  相似文献   

12.
13.
14.
Abstract A combined polymerase chain reaction and restriction endonuclease (RE) enzyme assay was developed to discriminate between Campylobacter coli and Campylobacter jejuni . Amplimers of the FlaA gene obtained by PCR were digested with Alu I and Hin fI to distinguish C. coli from C. jejuni . With Alu I digestion C. jejuni -specific bands were observed at 110, 140 and 160 bp and C. coli -specific bands at 293 and 147 bp. C. jejuni -specific bands of 349 and 109 bp were found by Hin fI digestion but Hin fI did not digest the Fla A amplimer of C. coli . This combined technique is fast and easy to perform, and distinguishes the two campylobacters unequivocally.  相似文献   

15.
Extensive digestion of Chinese hamster metaphase chromosomes with Alu I, Hae III and Hinf I released up to 40 distinct chromosomal proteins. Some of the proteins released by Hae III or Hinf I were enriched in the protein moiety liberated by Alu I but several proteins released by Hae III were not released by Alu I digestion. The amount of chromosomal protein released by deoxyribonuclease I (DNase I) was comparable to that liberated by the three restriction enzymes so far tested, while only four abundant protein species were detectable in the protein moiety released by DNase I. Two of them with molecular weights of 58,000 and 50,000 were also released by the three restriction enzymes and are similar in size to those found previously in the core-like structure of histone-depleted chromosomes.  相似文献   

16.
Three minor small RNA species from Novikoff hepatoma cells, with homology to repetitive DNA sequences, have been identified and characterized. These small RNAs, designated 5.1S, 6S and T3 RNAs, show homology to Alu 1, Alu 2, and Alu 3 sequences, respectively. 6S and T3 RNAs were found both in the nucleus and cytoplasm, whereas 5.1S RNA was not found in the nucleus. Neural tissues were found to contain a 6S-sized BC1 RNA with homology to I.D. sequences [19]; in contrast, the current study shows that Novikoff hepatoma cells contain a 75–80 nucleotide long (T3) RNA, homologous to I.D. sequences. These data suggest that BCl and T3 small RNAs, homologous to I.D. sequences, are expressed in a tissue-specific manner. These results also show that in addition to the abundant 7SL, 4.5S and 4.5S1 RNAs having homology to repetitive DNA, Novikoff hepatoma cells also contain several minor small RNAs with homology to repetitive sequences.  相似文献   

17.
18.
Human chromosomes prepared according to routine methods were treated with the restriction endonuclease Alu I followed by staining with Giemsa solution or fluorescent dyes. This procedure results in a C-band-like appearance of the chromosomes due to removal of DNA from euchromatic chromosomal regions. The resistance of heterochromatic regions against cleavage by the enzyme has mainly been interpreted by the absence or rareness of recognition sites for this particular enzyme in these regions. Proteinase K pretreatment followed by a nick translation procedure with Alu I was combined to check this hypothesis. The results show that heterochromatic chromosomal regions can also be labelled. Thus, they are not characterized by a lack of recognition sites. Gradual deproteinisation of chromosomes changes the labelling pattern from a reverse C-banding pattern to a C-band-like appearance. The resistance of heterochromatic chromosomal parts revealed by the technique is mainly due to local chromatin configuration rather than to the underlying DNA sequence itself.  相似文献   

19.
An Alu I family of repeated DNA sequence 113 bp in length was found to be the major component of the heterochromatin in Artemia franciscana. On the basis of the analysis of cloned oligomeric (monomer to examer) heterchromatic fragments we predicted that the sequence could produce a stable curvature in chromosomal DNA. This prediction was confirmed by polyacrylamide gel electrophoresis analysis and by electron microscope observations. The anomalous mobility of these fragments is reversed when the DNA samples are electrophoresed in the presence of distamycin A. Moreover treatment of living Artemia with this drug produces visible decondensation of heterochromatic masses in the interphase nuclei.  相似文献   

20.
We have determined the base sequence of several cloned Alu family members from the DNAs of a new world monkey (owl monkey) and a prosimian (galago). The three owl monkey Alu family members reported here belong to a single 300 base pair consensus sequence which closely resembles the human Alu family consensus. The galago Alu family members can best be represented as belonging to either of two related but distinct consensus sequences. One of the two galago Alu family subgroups (Type I) more accurately resembles the human consensus sequence than does the other subgroup (Type II). In this work we compare base sequences of human and galago Type I Alu family members. There are several examples of species-specific differences between the human and Type I galago sequences indicating that the Alu family members are effectively homogenized within a species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号