首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
Oh WD  Lim PE  Seng CE  Sujari AN 《Bioresource technology》2011,102(20):9497-9502
The objectives of this study are to obtain the time courses of the amount of chlorophenol adsorbed onto granular activated carbon (GAC) in the simultaneous adsorption and biodegradation processes involving 4-chlorophenol (4-CP) and 2,4-dichlorophenol (2,4-DCP), respectively, and to quantify the bioregeneration efficiency of GAC loaded with 4-CP and 2,4-DCP by direct measurement of the amount of chlorophenol adsorbed onto GAC. Under abiotic and biotic conditions, the time courses of the amount of chlorophenol adsorbed onto GAC at various GAC dosages for the initial 4-CP and 2,4-DCP concentrations below and above the biomass acclimated concentrations of 300 and 150 mg/L, respectively, were determined. The results show that the highest bioregeneration efficiency was achieved provided that the initial adsorbate concentration was lower than the acclimated concentration. When the initial adsorbate concentration was higher than the acclimated concentration, the highest bioregeneration efficiency was achieved if excess adsorbent was used.  相似文献   

2.
2,4-Dichlorophenol (2,4-DCP) was anaerobically degraded in freshwater lake sediments. From observed intermediates in incubated sediment samples and from enrichment cultures, the following sequence of transformations was postulated. 2,4-DCP is dechlorinated to 4-chlorophenol (4-CP), 4-CP is dechlorinated to phenol, phenol is carboxylated to benzoate, and benzoate is degraded via acetate to methane and CO2; at least five different organisms are involved sequentially. The rate-limiting step was the transformation of 4-CP to phenol. Sediment-free enrichment cultures were obtained which catalyzed only the dechlorination of 2,4-DCP, the carboxylation of phenol, and the degradation of benzoate, respectively. Whereas the dechlorination of 2,4-DCP was not inhibited by H2, the dechlorination of 4-CP, and the transformation of phenol and benzoate were. Low concentrations of 4-CP inhibited phenol and benzoate degradation. Transformation rates and maximum concentrations allowing degradation were determined in both freshly collected sediments and in adapted samples: at 31 degrees C, which was the optimal temperature for the dechlorination, the average adaptation time for 2,4-DCP, 4-CP, phenol, and benzoate transformations were 7, 37, 11 and 2 days, respectively. The maximal observed transformation rates for these compounds in acclimated sediments were 300, 78, 2, 130, and 2,080 micromol/liter(-1)/day(-1), respectively. The highest concentrations which still allowed the transformation of the compound in acclimated sediments were 3.1 m/M 2,4-DCP, 3.1 mM 4-CP, 13 mM phenol, and greater than 52 mM benzoate. The corresponding values were lower for sediments which had not been adapted for the transformation steps.  相似文献   

3.
Sequential anaerobic degradation of 2,4-dichlorophenol in freshwater sediments   总被引:12,自引:0,他引:12  
2,4-Dichlorophenol (2,4-DCP) was anaerobically degraded in freshwater lake sediments. From observed intermediates in incubated sediment samples and from enrichment cultures, the following sequence of transformations was postulated. 2,4-DCP is dechlorinated to 4-chlorophenol (4-CP), 4-CP is dechlorinated to phenol, phenol is carboxylated to benzoate, and benzoate is degraded via acetate to methane and CO2; at least five different organisms are involved sequentially. The rate-limiting step was the transformation of 4-CP to phenol. Sediment-free enrichment cultures were obtained which catalyzed only the dechlorination of 2,4-DCP, the carboxylation of phenol, and the degradation of benzoate, respectively. Whereas the dechlorination of 2,4-DCP was not inhibited by H2, the dechlorination of 4-CP, and the transformation of phenol and benzoate were. Low concentrations of 4-CP inhibited phenol and benzoate degradation. Transformation rates and maximum concentrations allowing degradation were determined in both freshly collected sediments and in adapted samples: at 31 degrees C, which was the optimal temperature for the dechlorination, the average adaptation time for 2,4-DCP, 4-CP, phenol, and benzoate transformations were 7, 37, 11 and 2 days, respectively. The maximal observed transformation rates for these compounds in acclimated sediments were 300, 78, 2, 130, and 2,080 micromol/liter(-1)/day(-1), respectively. The highest concentrations which still allowed the transformation of the compound in acclimated sediments were 3.1 m/M 2,4-DCP, 3.1 mM 4-CP, 13 mM phenol, and greater than 52 mM benzoate. The corresponding values were lower for sediments which had not been adapted for the transformation steps.  相似文献   

4.
Effects of 2,4-dichlorophenol on activated sludge   总被引:6,自引:0,他引:6  
The effects of 2,4-dichlorophenol (2,4-DCP) on both acclimated and unacclimated activated sludge were investigated in batch reactors. The IC(50) values on the basis of maximum specific growth rate ( micro(m)), percent chemical oxygen demand (COD) removal efficiency and sludge activity were found to be 72, 60 and 47 mg l(-1), respectively, for unacclimated culture. The percent COD removal efficiencies of unacclimated culture were affected adversely, even at low concentrations, whereas culture acclimated to 75 mg 2,4-DCP l(-1) could tolerate about 200 mg 2,4-DCP l(-1)on the basis of COD removal efficiency. Although yield coefficient values of unacclimated culture increased surprisingly to very high values with the addition of 2,4-DCP, a linear decrease with respect to 2,4-DCP concentrations was observed for acclimated culture. Although no removal was observed with unacclimated culture, almost complete removal of 2,4-DCP up to a concentration of 148.7 mg l(-1) was observed with acclimated culture. It was showed that the culture could use 2,4-DCP as sole organic carbon source, although higher removal efficiencies in the presence of a readily degradable substrate were observed. Culture acclimated to 4-chlorophenol used 2,4-DCP as sole organic carbon source better than those acclimated to 2,4-DCP.  相似文献   

5.
Two instantaneously fed sequencing batch reactors (SBRs), one receiving 4-chlorophenol (4-CP) (SBR4) only and one receiving mixture of 4-CP and 2,4-dichlorophenol (2,4-DCP) (SBRM), were operated with increasing chlorophenols concentrations in the feed. Complete degradation of chlorophenols and high-Chemical oxygen demand (COD) removal efficiencies were observed throughout the reactors operation. Only a fraction of biomass (competent biomass) was thought to be responsible for the degradation of chlorophenols due to required unique metabolic pathways. Haldane model developed based on competent biomass concentration fitted reasonably well to the experimental data at different feed chlorophenols concentrations. The presence of 2,4-DCP competitively inhibited 4-CP degradation and its degradation began only after complete removal of 2,4-DCP. Based on the experimental results, the 4-CP degrader’s fraction in SBRM was estimated to be higher than that in SBR4 since 2,4-DCP degraders were also capable of degrading 4-CP due to similarity in the degradation pathways of both compounds.  相似文献   

6.
Chlorophenol degradation was studied by combined anaerobic–aerobic treatments as a single or multi-substrate system. 2,4-Dichlorophenol (2,4-DCP) was degraded to the extent of 52 and 78% in up-flow anaerobic sludge blanket (UASB) and aerobic suspended growth (ASG) reactors respectively, at organic loading rates of 0.18kg/m3/day and hydraulic retention time of 26.4h in the presence of glucose. The UASB represents the dominating facultative anaerobic microbial population. When the effluent from the anaerobic reactor (UASB) was subjected to aerobic treatment on the ASG reactor, 2,4-DCP and COD removals of 86 and 95% respectively were achieved. Aerobic degradation of chlorophenol by acclimated mixed bacterial isolates was found to be sequential: 2-Chlorophenol (2-CP) and 4-CP were degraded first, followed by 2,4-DCP and 2,4,6-Trichlorophenol (2,4,6-TCP) while the contrary was obtained in anaerobic degradation. In anaerobic degradation by acclimated mixed bacterial cells, 2,4-DCP and 2,4,6-TCP were degraded first followed by mono-chlorophenols. The anaerobic/aerobic bioreactors were most efficient when operated in sequence (series) rather than in parallel.  相似文献   

7.
Phanerochaete chrysosporium has been recognised as an effective bioremediation agent due to its unique degradation to xenobiotic and biosorption ability to heavy metals. However, few studies have focused on the simultaneous removal of heavy metals and organic pollutants. The aim of this work was to study the feasibility of simultaneous cadmium removal and 2,4-dichlorophenol (2,4-DCP) degradation in P. chrysosporium liquid cultures. The removal efficiencies were pH dependent and the maximum removal efficiencies were observed at pH 6.5 under an initial cadmium concentration of 5 mg/L and an initial 2,4-DCP concentration of 20 mg/L. The removal efficiencies for cadmium and 2,4-DCP reached 63.62% and 83.90%, respectively, under the optimum conditions. The high production levels of lignin peroxidase (7.35 U/mL) and manganese peroxidase (8.30 U/mL) resulted in an increase in 2,4-DCP degradation. The protein content decreased with increasing cadmium concentration. The surface characteristics and functional groups of the biomass were studied by scanning electron microscopy and a Fourier-transformed infrared spectrometer. The results showed that the use of P. chrysosporium is promising for the simultaneous removal of cadmium and 2,4-DCP from liquid media.  相似文献   

8.
Degradation of chlorophenols catalyzed by laccase   总被引:1,自引:0,他引:1  
The degradations of 2,4-dichlorophenol (2,4-DCP), 4-chlorophenol (4-CP) and 2-chlorophenol (2-CP) catalyzed by laccase were carried out. The optimal condition regarding degradation efficiency was also discussed, which included reaction time, pH value, temperature, concentration series of chlorophenols and laccase. Results showed that the capability of laccase was the best, while to oxidize 2,4-DCP among the above-mentioned chlorophenols. Within 10 h, the removal efficiency of 2,4-DCP, 2-CP and 4-CP could reach 94%, 75% and 69%, respectively. The optimal pH for laccase to degrade chlorophenols was around 5.5. The increase of laccase concentration or temperature might result in the degradation promotion. The trends of degradation percentage were various among these three chlorophenols with the concentration increase of chlorophenols. Degradation of 2,4-DCP is a first-order reaction and the reaction activation energy is about 44.8 kJ mol−1. When laccase was immobilized on chitosan, crosslinked with glutaraldehyde, the activity of immobilized laccase was lower than that of free laccase, but the stability improved significantly. The removal efficiency of immobilized laccase to 2,4-DCP still remained over 65% after six cycles of operation.  相似文献   

9.
Removal of chlorophenols in sequential anaerobic-aerobic reactors   总被引:5,自引:0,他引:5  
Combination of upflow anaerobic sludge blanket (UASB) and aerobic rotating biological contactor (RBC) reactors having higher biomass concentration and higher sludge retention time (SRT) was applied for the sequential treatment of priority pollutant chlorophenol containing wastewater. Target compounds 2-chlorophenol (2-CP) and 2,4-dichlorophenol (2,4-DCP) present in two simulated wastewaters at a concentration of 30 mg/l each individually were sequentially treated in continuous mode by combined UASB-I, RBC-I and combined UASB-II, RBC-II reactors, respectively after the acclimation of their biomass with the corresponding chlorophenol. Reactor combinations took 190 and 215 days for acclimation with 30 mg/l of 2-CP and 2,4-DCP respectively. Hydraulic retention time (HRT) studies showed that 12h HRT of UASB-I and 23 h HRT of RBC-I as well as 12h HRT of UASB-II and 28.8h HRT of RBC-II were the optimum combinations for the treatment of simulated wastewater containing 2-CP and 2,4-DCP respectively. Optimum HRT combinations produced 2-CP and 2,4-DCP effluent having corresponding chlorophenol concentration of below detectable limit (BDL) and 0.1 mg/l respectively. Half velocity coefficients (Ks) for 2-CP and 2,4-DCP biodegradation in UASB reactors were determined to be 5.07 mg 2-CP/l and 6.49 mg 2,4-DCP/l. Optimum ratio of substrate (chlorophenol): co-substrate (sodium acetate) was 1:100.  相似文献   

10.
Yang CF  Lee CM 《Biodegradation》2008,19(3):329-336
The objectives of this research were to monitor the variations of species in mixed cultures during the enrichment period, isolate species and identify and characterize the pure 4-chlorophenol (4-CP) degrading strains from enriched mixed cultures. Strain Rhizobium sp. 4-CP-20 was isolated from the acclimated mixed culture. The DGGE result indicated that strain Rhizobium sp. 4-CP-20 was undetectable at the beginning but detectable after 2 weeks of enrichment. The optimum growth temperatures for Rhizobium sp. 4-CP-20 were both 36°C using 350 mg l−1 glucose or sodium acetate as the substrate. The optimum pH range for degrading 100 mg l−1 4-CP was between 6.89 and 8.20. Strain Rhizobium sp. 4-CP-20 could degrade 4-CP completely within 3.95 days, as the initial 4-CP concentration was 100 mg l−1. If the initial 4-CP concentration was higher than 240 mg l−1, the growth of bacterial cells and the activity of degrading 4-CP were both inhibited.  相似文献   

11.
Surfactant-mediated treatment increases hydrocarbon solubilization and potentially facilitates biodegradation, unless toxic co-contaminants inhibiting microbial activity are present in the hydrocarbon mixture. We assessed the effect of rhamnolipids on the performance of a bacterial consortium degrading diesel fuel employed as a model hydrocarbon-rich effluent, co-contaminated with toxic phenol, 4-chlorophenol (4-CP) or 2,4-dichlorophenol (2,4-DCP). This approach led to the unexpected finding that rhamnolipids reduced toxicity of 4-CP and 2,4-DCP to the hydrocarbon-degrading cells. The facts that rhamnolipids decreased diesel fuel - water partition coefficient (KFW) of 4-CP and 2,4-DCP and modified aggregate size distribution profiles of the dispersed diesel fuel - chlorinated phenols solutions, suggest the existence of specific interactions between rhamnolipids and the co-contaminants. Due to the polar nature of 4-CP and 2,4-DCP, possible explanations involve adsorption of 4-CP and 2,4-DCP on the surface of biosurfactant aggregates. This property of rhamnolipids is of interest to those using biosurfactants for microbial treatment of hydrocarbon-rich wastewaters co-contaminated with toxic compounds.  相似文献   

12.
The effect of carbon sources and shock loadings have been studied using two sets of sequential upflow anaerobic sludge blanket (UASB) and rotating biological contactor (RBC) reactors viz., UASB-I followed by RBC-I and UASB-II followed by RBC-II for the removal of two different priority pollutants, 2-CP and 2,4-DCP present in simulated wastewaters. Sodium formate, sodium propionate, glucose and methanol were used separately as four different carbon sources in the feed as co-substrate. Methanol was found to be the best carbon source for UASB reactors showing 95% 2-CP and 81.1% 2,4-DCP removals. The carbon sources formate and propionate were not found suitable in UASB reactors as only 22.6-46.8% 2-CP and 41.9-42.8% 2,4-DCP removals were observed. With glucose as carbon source 93.7% 2-CP and 79.6% 2,4-DCP removals were observed in UASB reactors. For all the four carbon sources more than 97.6% 2-CP and 99.7% 2,4-DCP removals were observed in sequential reactors. Although all the four carbon sources could not serve as good carbon source for UASB reactor alone but could be successfully used by the sequential reactors for the removal of chlorophenols. The Performance of sequential reactors was also evaluated at five different chlorophenolic shock loadings. During shock loading study the concentration of chlorophenols in the wastewaters was increased to 45, 60, 75, 90 and 105 mg/l as compared to the normal feed containing 30 mg/l 2-CP or 2,4-DCP. During shock loading study complete removal of 2-CP and more than 99.6% removal of 2,4-DCP was observed in sequential reactors. Sequential reactors successfully withstood all the shock loadings and produced high quality effluents.  相似文献   

13.
The simultaneous removal of 4-chlorophenol (4-CP) and phenol in lab-scale sequencing batch reactors at different temperatures has been studied. Phenol feed concentration was fixed at 525 mg/L and 4-CP concentration was increased from 105 to 2100 mg/L at a constant hydraulic residence time (HRT) of 10.5 d. Complete phenol and 4-CP biodegradation was achieved during the aerobic stage working with 4-CP concentrations up to 1470 mg/L in the feed. Both 4-CP and phenol specific initial removal rates were strongly affected by 4-CP feed concentration and temperature. Only at the highest temperature tested (35 °C) it was possible to increase the maximum assimilative 4-CP concentration by the biological sludge up to 2100 mg/L, and a significant reduction of the ecotoxicity of the effluents was observed. 4-chlorocatechol (4-CC) was identified as the major intermediate in the aerobic cometabolic 4-CP degradation, being the ecotoxicity of that species substantially lower than that of 4-CP.  相似文献   

14.
Anaerobic degradation of 2,4-dichlorophenol (2,4-DCP) between 5 and 72 degrees C was investigated. Anaerobic sediment slurries prepared from local freshwater pond sediments were partitioned into anaerobic tubes or serum vials, which then were incubated separately at the various temperatures. Reductive 2,4-DCP dechlorination occurred only in the temperature range between 5 and 50 degrees C, although methane was formed up to 60 degrees C. In sediment samples from two sites and at all tested temperatures from 5 to 50 degrees C, 2,4-DCP was transformed to 4-chlorophenol (4-CP). The 4-CP intermediate was subsequently degraded after an extended lag period in the temperature range from 15 to 40 degrees C. Adaptation periods for 2,4-DCP transformation decreased between 5 and 25 degrees C, were essentially constant between 25 and 35 degrees C, and increased in the tubes incubated at temperatures between 35 and 40 degrees C. The degradation rates increased exponentially between 15 and 30 degrees C, had a second peak at 35 degrees C, and decreased to about 5% of the peak activity by 40 degrees C. In tubes from one sediment sample, incubated at temperatures above 40 degrees C, an increase in the degradation rate was observed following the minimum at 40 degrees C. This suggests that at least two different organisms were involved in the transformation of 2,4-DCP to 4-CP. Storage of the original sediment slurries for 2 months at 12 degrees C resulted in increased adaptation times, but did not affect the degradation rates.  相似文献   

15.
Anaerobic degradation of 2,4-dichlorophenol (2,4-DCP) between 5 and 72 degrees C was investigated. Anaerobic sediment slurries prepared from local freshwater pond sediments were partitioned into anaerobic tubes or serum vials, which then were incubated separately at the various temperatures. Reductive 2,4-DCP dechlorination occurred only in the temperature range between 5 and 50 degrees C, although methane was formed up to 60 degrees C. In sediment samples from two sites and at all tested temperatures from 5 to 50 degrees C, 2,4-DCP was transformed to 4-chlorophenol (4-CP). The 4-CP intermediate was subsequently degraded after an extended lag period in the temperature range from 15 to 40 degrees C. Adaptation periods for 2,4-DCP transformation decreased between 5 and 25 degrees C, were essentially constant between 25 and 35 degrees C, and increased in the tubes incubated at temperatures between 35 and 40 degrees C. The degradation rates increased exponentially between 15 and 30 degrees C, had a second peak at 35 degrees C, and decreased to about 5% of the peak activity by 40 degrees C. In tubes from one sediment sample, incubated at temperatures above 40 degrees C, an increase in the degradation rate was observed following the minimum at 40 degrees C. This suggests that at least two different organisms were involved in the transformation of 2,4-DCP to 4-CP. Storage of the original sediment slurries for 2 months at 12 degrees C resulted in increased adaptation times, but did not affect the degradation rates.  相似文献   

16.
The aim of the study was to characterize the 2,4-dichlorophenoxyacetic acid (2,4-D) degradative potential of three bacterial strains identified by MIDI-FAME profiling as Burkholderia cepacia (DS-1), Pseudomonas sp. (DS-2) and Sphingomonas paucimobilis (DS-3) isolated from soil with herbicide treatment history. All strains were capable of using herbicide as the only source of carbon and energy when grown in mineral salt medium (MSM) containing 2,4-D (50 mg/l). Over a 10 day incubation period, 69%, 73% and 54% of the initial dose of 2,4-D were degraded by strains DS-1, DS-2 and DS-3, respectively. Analysis of 2,4-dichlorophenol (2,4-DCP) concentration, the main metabolite of 2,4-D degradation, revealed that strains DS-1 and DS-2 may also have the potential to metabolize this compound. The percentage of 2,4-DCP removal was 67% and 77% in relation to maximum values of 9.5 and 9.2 mg/l determined after 4 and 2 days for MSM+DS-1 and MSM+DS-2, respectively. The degradation kinetics of 2,4-D (50 mg/kg) in sterile soil (SS) showed different potential of tested strains to degrade 2,4-D. The times within which the initial 2,4-D concentration was reduced by 50% (DT50) were 6.3, 5.0 and 9.4 days for SS+DS-1, SS+DS-2 and SS+DS-3, respectively.  相似文献   

17.
不同电子供体对2,4-二氯酚还原脱氯的影响   总被引:3,自引:0,他引:3  
以葡萄糖、乙酸钠、Fe0、Fe0 葡萄糖、Fe0 乙酸钠作为电子供体,接种未驯化厌氧混合菌,考察2,4-二氯酚(2,4-DCP)的还原脱氯特性及Fe0作为电子供体的最佳作用条件与持续性特征.结果表明:与葡萄糖的作用相比,Fe0 葡萄糖可有效提高目标物脱氯效果;乙酸钠、Fe0及Fe0 乙酸钠均为有效电子供体,其中Fe0作为电子供体时目标物脱氯效果最佳,最佳作用条件为初始pH8.0,Fe0投加量2.0 g/L,4-CP为其主要脱氯中间产物;Fe0可持续供给2,4-DCP还原脱氯所需电子,而乙酸钠不断消耗后其脱氯效果与Fe0作为电子供体有明显差距.  相似文献   

18.
In this study, the biodegradation of a mixture of 2-chlorophenol (2-CP), 2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (2,4,6-TCP) and pentachlorophenol (PCP) using the laccase produced by the white-rot fungus Trametes pubescens CBS 696.94 was evaluated. Two laccase isoenzymes with molecular weights of about 60 and 120 kDa were identified in the enzymatic crude extract. The highest laccase activity with syringaldazine was observed with pH 6.0 and 60°C, while with 2,2-azino-bis(3-ethylbenzothiazoline-6) sulphonic acid the highest activity was observed between 50 and 60°C and 3.0-4.0 pH. A biodegradation of 100%, 99%, 82.1% and 41.1% for 2-CP, 2,4-DCP, 2,4,6-TCP and PCP, respectively, was observed after 4h of reaction. The reduction in chlorophenols concentration allowed 90% reduction in mixture toxicity. In summary, these results show the feasibility of a laccase enzymatic crude extract from T. pubescens for the reduction of concentration and toxicity of chlorophenols.  相似文献   

19.
The reductive dechlorination of pentachlorophenol (PCP) was investigated in anaerobic sediments that contained nonadapted or 2,4- or 3,4-dichlorophenol (DCP)-adapted microbial communities. Adaptation of sediment communities increased the rate of conversion of 2,4- or 3,4-DCP to monochlorophenols (CPs) and eliminated the lag phase before dechlorination was observed. Both 2,4- and 3,4-DCP-adapted sediment communities dechlorinated the six DCP isomers to CPs. The specificity of chlorine removal from the DCP isomers indicated a preference for ortho-chlorine removal by 2,4-DCP-adapted sediment communities and for para-chlorine removal by 3,4-DCP-adapted sediment communities. Sediment slurries containing nonadapted microbial communities either did not dechlorinate PCP or did so following a lag phase of at least 40 days. Sediment communities adapted to dechlorinate 2,4- or 3,4-DCP dechlorinated PCP without an initial lag phase. The 2,4-DCP-adapted communities initially removed the ortho-chlorine from PCP, whereas the 3,4-DCP-adapted communities initially removed the para-chlorine from PCP. A 1:1 mixture of the adapted sediment communities also dechlorinated PCP without a lag phase. Dechlorination by the mixture was regiospecific, following a para greater than ortho greater than meta order of chlorine removal. Intermediate products of degradation, 2,3,5,6-tetrachlorophenol, 2,3,5-trichlorophenol, 3,5-DCP, 3-CP, and phenol, were identified by a combination of cochromatography (high-pressure liquid chromatography) with standards and gas chromatography-mass spectrometry.  相似文献   

20.
This study was carried out to determine the effect of influent pH and alkalinity on the performance of sequential UASB and RBC reactors for the removal of 2-CP and 2,4-DCP from two different simulated wastewaters. The performance of methanogens at low (<6.0) to high (>8.0) pH values and at sufficiently high alkalinity (1500–3500 mg/l as CaCO3) is described in this paper. Sequential reactors were capable of handling wastewaters with influent pH, 5.5–8.5. However, with influent pH 7.0 ± 0.1 UASB reactor showed best performance for 2-CP (99%) and 2,4-DCP (88%) removals. Increase in alkalinity/COD ratio in the influent (>1.1) caused gradual decrease in the chlorophenol removal in UASB reactors. The UASB reactors could not tolerate wastewater with higher alkalinity/COD ratio (2.6) and showed significant deterioration of its performance in terms of chlorophenols removal achieving only 74.7% 2-CP and 60% 2,4-DCP removals, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号