首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cultures of bovine adrenomedullary chromaffin cells accumulated 1-[methyl-3H]methyl-4-phenylpyridinium ([3H]MPP+) in a time- and concentration-dependent manner with an apparent Km of 0.7 microM and a Vmax of 3 pmol/min/10(6) cells. The uptake was sodium dependent and sensitive to inhibitors of the cell-surface catecholamine transporter. At low concentrations of MPP+, the subcellular distribution was identical to that of endogenous catecholamines in the catecholamine-containing chromaffin vesicles. However, at a higher concentration of MPP+, a larger proportion of the toxicant was recovered in the cytosolic fraction, with less in the chromaffin vesicle fractions. When cells were prelabeled with [3H]MPP+, at 1 and 300 microM, and then permeabilized with digitonin in the absence of Ca2+, there was a proportionally greater release of MPP+ from the cells labeled at the higher concentration of the toxicant. In the presence of Ca2+, cell permeabilization induced a time-dependent secretion of catecholamines and a parallel secretion of MPP+. Under these conditions, the secretion of endogenous catecholamines was unaffected by the presence of MPP+. When the permeabilization studies were carried out in the presence of tetrabenazine, a massive release of MPP+ was observed in the absence of Ca2+ and was not further increased by Ca2+. In intact cells prelabeled with 300 microM [3H]MPP+, the secretagogues nicotine and veratridine elicited a Ca2+ -dependent secretion of catecholamines and MPP+ from the cells in similar proportions to their cellular contents. Barium-induced release of both species was independent of external Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Selectivities of membrane potential changes for catecholamines and inorganic cations were investigated with lipophilic derivatives of calix[6]arene and related hosts incorporated in poly(vinyl chloride) (PVC) matrix liquid membranes. Homooxacalix[3]arene triether displayed an excellent selectivity for dopamine against other catecholamines (adrenaline, noradrenaline) and also against inorganic cations (K+, Na+).  相似文献   

3.
A total of 14 healthy subjects [means (SD): 27.6 (3.8) years; body mass 77.8 (6.6) kg; height 183 (6) cm] performed endurance exercise to exhaustion at 100% of the individual anaerobic threshold (Th(an)) on a cycle ergometer (mean workload 207 (55) W; lactate concentrations 3.4 (1.2) mmol.l-1; duration 83.8 (22.2) min, including 5 min at 50% of individual Th(an)). Leucocyte subpopulations were measured by flow cytometry and catecholamines by radioimmunological methods. Blood samples were taken before and several times during exercise. Values were corrected for plasma volume changes and analysed using ANOVA for repeated measures. During the first 10 min of exercise, of all cell subpopulations the natural killer cells (CD3-CD16/CD56+) increased the most (229%). Also CD3+CD16/CD56+ (84%), CD8+CD45RO- (69%) cells, eosinophils (36%) and monocytes (62%) increased rapidly during that time. CD3+, CD3+HLA-DR+, CD4+CD45RO+, CD4+CD45RO-, CD8+CD45RO+ and CD19+ cells either did not increase or increased only slightly during exercise. Adrenaline and noradrenaline increased nearly linearly by 36% and 77% respectively at 10 min exercise. The increase of natural killer cells and heart rates between rest and 10 min of exercise correlated significantly (r = 0.576, P = 0.031). We conclude that natural killer cells, cytotoxic, non-MHC-restricted T-cells, monocytes and eosinophils are mobilized rapidly during the first minutes of endurance exercise. Both catecholamines and increased blood flow are likely to contribute this effect.  相似文献   

4.
We recently reported that prostaglandin E2 (PGE2) stimulated phosphoinositide metabolism in cultured bovine adrenal chromaffin cells and that PGE2 and ouabain, an inhibitor of Na+,K+-ATPase, synergistically induced a gradual secretion of catecholamines from the cells. The effect on catecholamine release was specific for prostaglandin E1 (PGE1) and PGE2 among prostaglandins tested (E1 = E2 greater than F2 alpha greater than D2). The release evoked by PGE2 plus ouabain was greatly reduced in Na+-depleted medium and not observed in Ca2+-free medium. Here we examined the synergistic effect of PGE2 and ouabain on the release with specific reference to ion fluxes. Regardless of the presence of PGE2, ouabain stimulated the release in a dose-dependent manner with half-maximal stimulation at 1 microM, and omission of K+ from the medium, a condition which suppresses the Na+,K+-ATPase activity, also enhanced the release from chromaffin cells exposed to PGE2. Ouabain induced a continuous accumulation of 22Na+ and 45Ca2+, as well as secretion of catecholamines. Although PGE2 itself showed hardly any effects on these cellular responses, PGE2 potentiated all of them induced by ouabain. The time course of catecholamine release was correlated with that of accumulation of 45Ca2+ rather than with that of 22Na+. The release evoked by PGE2 and ouabain was inhibited in a dose-dependent manner by amiloride and the analogue ethylisopropylamiloride, inhibitors of the Na+,H+-antiport, but not by the Na+-channel inhibitor tetrodotoxin nor by the nicotinic receptor antagonist hexamethonium. Ethylisopropylamiloride at 1 microM inhibited PGE2-enhanced accumulation of 22Na+ and 45Ca2+ and release of catecholamine by 40, 83, and 71%, respectively. Activation of the Na+,H+-antiport by elevation of the extracellular pH from 6.6 to 8.0 increased the release of catecholamines linearly. Furthermore, PGE2 induced a sustained increase in intracellular pH by about 0.1 pH unit above the resting value, which was abolished by amiloride or in Na+-free medium. These results taken together indicate that PGE2 activates the Na+,H+-antiport by stimulating phosphoinositide metabolism and that the increase in intracellular Na+ by both inhibition of Na+,K+-ATPase and activation of Na+,H+-antiport may lead to the redistribution of Ca2+, which is the initial trigger of catecholamine release.  相似文献   

5.
J B Fagan  E Racker 《Biochemistry》1977,16(1):152-158
Adenosine triphosphate (ATP) hydrolysis catalyzed by the plasma membrane (Na+,K+)ATPase isolated from several sources was inhibited by Mg+, provided that K+ and ATP were also present. Phosphorylation of the adenosine triphosphatase (ATPase) by ATP and by inorganic phosphate was also inhibited, as was p-nitrophenyl phosphatase activity. (Ethylenedinitrilo)tetraacetic acid (EDTA) and catecholamines protected from and reversed the inhibition of ATP hydrolysis by Mg2+, K+ and ATP. EDTA was protected by chelation of Mg2+ but catecholamines acted by some other mechanism. The specificities of various nucleotides as inhibitors (in conjunction with Mg2+ and K+) and as substrates for the (Na+, K+) ATPase were strikingly different. ATP, ADP, beta,gamma-CH2-ATP and alpha,beta-CH2-ADP were active as inhibitors, whereas inosine, cytidine, uridine, and guanosine triphosphates (ITP, CTP, UTP, and GTP) and adenosine monophosphate (AMP) were not. On the other hand, ATP and CTP were substrates and beta,gamma-NH-ATP was a competitive inhibitor of ATP hydrolysis, but not an inhibitor in conjunction with Mg2+ and K+. The Ca2+-ATPase from sarcoplasmic reticulum and F1, the Mg2+-ATPase from the inner mitochondrial membrane, were also inhibited by Mg2+. Catecholamines reversed inhibition of the Ca2+-ATPase, but not that of F1.  相似文献   

6.
Secretion of adenosine(5')tetraphospho(5')adenosine (Ap4A) and ATP from perfused bovine adrenal glands stimulated with acetylcholine or elevated potassium levels was measured and compared with that of catecholamines. We have found a close correlation between the release of Ap4A and catecholamines elicited with all the secretagogues used in the presence of either Ca2+ or Ba2+, suggesting co-release of both constituents from the chromaffin granules. By contrast, ATP secretion, as measured with luciferase, showed a significantly different time course regardless of the secretagogue used. ATP secretion consistently decreased after 1-2 min of stimulation at a time when Ap4A and catecholamine secretions were still increasing. Measures of degradation of injected [3H]ATP to the gland during stimulation showed little difference in the level of uptake or decomposition of ATP throughout the pulse. However, a reexamination of ATP secretion by monitoring its products of degradation (AMP, adenosine, and inosine) by HPLC techniques showed that Ap4A, ATP, and catecholamines are indeed secreted in parallel from the perfused adrenal gland.  相似文献   

7.
The action of epinephrine on Madin-Darby canine kidney cells   总被引:1,自引:0,他引:1  
We have used cultured monolayers of Madin-Darby canine kidney (MDCK) cells, which form epithelial layers of high transepithelial resistance, grown on Millipore filters, for transport studies. In the absence of hormones net ion transport is of small magnitude and is consistent with a net absorptive flow (apical to basal) of Na+. Epinephrine, effective only from the basolateral cell surface, stimulates a net secretion (basal to apical) of Cl-. A substantial portion of net Cl- secretion is inhibited by loop diuretics such as furosemide applied to the basolateral cell aspects. The participation of a diuretic-sensitive cotransport system for Na+, K+, and Cl-, similar to that found in other cells, in transepithelial Cl- flux is postulated. The action of catecholamines on MDCK cell adenylate cyclase and on a Ca2+-activated K+ conductance is described.  相似文献   

8.
The effects of micromolar concentrations of the ionophore X-537A (RO 2-2985) were studied using isolated preparations of the rat tail artery. The ionophore causes complete release of catecholamines from adrenergic nerves, which is the sole cause of the transient contractile response. The amines are released by a nonexocytotic process which seems to be related to the ability of X-537A to act as an efficient transmembrane carrier of Na+, k+, and H+. The ionophore also causes an almost complete and irreversible loss of the cocaine-sensitive component of metaraminol uptake by the tissue. X-537A dissipates the transmembrane concentration gradients of Na and K in the smooth muscle component of the preparation. This effect is unrelated to the release of endogenous catecholamines, and it can also be observed after the Na pump has been inhibited with ouabain. It is fully reversible, though not readily, and it can be induced repeatedly. In catecholamine-depleted strips, X-537A dissipates the transmembrane Na+ and K+ gradients without causing any change in tension. Stimulation of the rate of O2 consumption by X-537A in catecholamine-depleted tissue is reversible, and it is unaffected by ouabain and (or) removal of external Ca2+.  相似文献   

9.
The uptake of 22Na+ and secretion of catecholamines by primary cultures of adrenal medulla cells under the influence of a variety of agonists and antagonists were determined. Veratridine, batrachotoxin, scorpion venom, and nicotine caused a parallel increase in 22Na+ uptake and Ca2+-dependent catecholamine secretion. Ba2+, depolarizing concentrations of K+, and the Ca2+ ionophore Ionomycin stimulated secretion of catecholamines but did not increase the uptake of 22Na+. Tetrodotoxin inhibited both 22Na+ uptake and catecholamine secretion evoked by veratridine, batrachotoxin, and scorpion venom, but had no effect on 22Na+ uptake and catecholamine secretion caused by nicotine. On the other hand, histrionicotoxin, which blocks the acetylcholine receptor-linked ion conductance channel, blocked nicotine-stimulated 22Na+ uptake and catecholamine secretion, but only partially inhibited veratridine-stimulated catecholamine secretion and had no effect on veratridine-stimulated 22Na+ uptake. The combination of veratridine plus tetrodotoxin, which has been shown to prevent nicotine-stimulated secretion of catecholamines by adrenal medulla cells, also prevented nicotine-stimulated 22Na+ uptake by the primary cultures. These studies demonstrate the presence of tetrodotoxin-sensitive Na+ channels in adrenal medulla cells which are functionally linked to Ca2+-dependent catecholamine secretion. However, These channels are not utilized for Na+ entry upon activation of nicotinic receptors; in this case Na+ entry occurs through the receptor-associated ion conductance channel.  相似文献   

10.
The effects of catecholamines on hepatic K+ and Na+ movements were studied in anesthetized dogs by measuring systemic arterial and hepatic venous electrolyte composition following intraportal injections of adrenergic agonists. All catecholamines studied caused the initial loss and subsequent uptake of K+ by the liver. The loss of hepatic K+ was accompanied by an uptake of Na+ at a 1:1 ratio. This accumulation of Na+ continued, although at a slower rate, for at least 8 min. Epinephrine and norepinephrine were much more potent in these effects than either phenylephrine or isoproterenol. Neither alpha- nor beta-adrenergic blockade, singly or in combination, had an appreciable effect on the magnitude or duration of the observed ion shifts. It is concluded that the predominant effect of catecholamines is to produce a net accumulation of hepatic Na+, and that the mechanism governing hepatic ion movements is nonadrenergic as defined by stimulation by specific adrenergic agonists and inhibition by specific adrenergic antagonists.  相似文献   

11.
In previous work we presented evidence showing that a brain soluble fraction was necessary to observe the stimulation of membrane Na+,K+-ATPase activity by catecholamines. Preliminary experiments suggested to us that the soluble fraction by itself was able to modify this enzyme activity. In the present study we have assayed the activity of synaptosomal Na+,K+-ATPase in the presence of a soluble fraction (aqueous supernatant after 100,000 g 30 min) prepared from rat cerebral cortex. The soluble fraction was used at different times after its preparation and different conditions in the incubation period previous to the enzyme assay were tested. It was observed that the enzyme activity increased 70% in the presence of a "0 min" soluble fraction. This effect was not found: a) in the presence of a "30 min" soluble fraction or b) when the membranes plus a "0 min" soluble fraction were incubated for 30 min (15 min at 37 degrees C + 15 min at 0 degree C) before the ATPase assay. In the presence of a "60 min" or "24 h" soluble fraction Na+,K+-ATPase activity was inhibited 50%. Results obtained indicate that Na+,K+-ATPase activity of synaptosomal membranes can be stimulated, inhibited or unchanged, depending on the aging of the soluble fraction.  相似文献   

12.
A method of superweak hemifluorescence was applied to the study of the effect of catecholamines on the process of chain peroxidation of lipids in the membranes of hepatic mitochondria in the presence of of Fe2+ ions. It was revealed that catecholamines in the concentrattion range of 10(-6)--10(-4) inhibited this process. On the basis of a mathematical study of the kinetics of the process a calculation was made of the constants of the antioxidative activity of catecholamines which constituted 1.13-10(4) for noradrenaline, 1.04-10(4) for adrenaline, 7.6-10(3) for dophamine, 5-.10(3)M(-1) for DOPA. The antioxidant action of catecholamines was associated with the presence in their molecule of a free phenol group. The mechanism of inhibition consisted in the interaction of catecholamines with the free radicals the leading of the oxidation chain. It is supposed that the antioxidative action of catecholamines could be of significance for the regulation of permeability of the biological membranes.  相似文献   

13.
Effects of the inorganic calcium channel blockers zinc, manganese, cadmium, and nickel on secretion of catecholamines from the perfused adrenal gland of the rat were investigated. Secretion of catecholamines evoked by splanchnic nerve stimulation (1 and 10 Hz) was not affected by nickel (100 microM), partially blocked (50%) by cadmium (100 microM), and almost completely blocked (90%) by zinc (1 mM) or manganese (2 mM). A combination of nickel and cadmium inhibited nerve stimulation-evoked secretion by 80-90%. Catecholamine secretion evoked by direct stimulation of chromaffin cells by acetylcholine (50 micrograms), nicotine (5 microM), muscarine (50 micrograms), and K+ (17.5 mM) was not blocked by either cadmium, nickel, or their combination. However, zinc and manganese almost abolished nicotine- and K(+)-evoked secretion of catecholamines. None of the above agents had any effect on the secretion evoked by muscarine. Acetylcholine-evoked secretion of catecholamines was only partially reduced (50%) by zinc and manganese. We draw the following conclusions from the above findings: (a) cadmium plus nickel selectively blocks the calcium channels of splanchnic neurons but has no effect on calcium channels of the chromaffin cells; (b) zinc and manganese do not discriminate between calcium channels of neurons and calcium channels of chromaffin cells; (c) partial inhibition of acetylcholine-evoked secretion by inorganic calcium channel blockers is consistent with the idea that activation of nicotinic receptors increases Ca2+ influx, and activation of muscarinic receptors mobilizes intracellularly bound Ca2+, which is not affected by calcium channel blockers.  相似文献   

14.
This investigation was undertaken to clarify the mechanism of the stimulated--respiration caused by K+ or norepinephrine in brown adipose tissue. 1. The addition of 30 approximately 100 mM K+ stimulated remarkably oxygen uptake in brown adipose tissue, and similarly norepinephrine (0.1 or 1.0 mug/ml) caused a marked stimulation. 2. Even if Na+ in normal Ringer solution was replaced by Choline or Li+, oxygen uptake caused by K+ (30 mM) or norepinephrine (1.0 mug/ml) was unaffected. 3. K+ -induced oxygen uptake was not observed when a Ca2+ -deficient tissue was incubated in Ca2+ -free Ringer, while norepinephrine-induced oxygen uptake clearly observed. And the oxygen uptake of Ca2+ -deficient tissue due to K+ was recovered by the addition of 5 mM Ca2+. 4. Mn2+ (6 mM) or La3+ (10 mM) inhibited significantly oxygen uptake due to K+, but not oxygen uptake due to norepinephrine. 5. K+ -induced oxygen uptake was unaffected by 10(-4) or 10(-3)M ouabain, but norepinephrine-induced oxygen uptake was inhibited considerably by 10(-4)M ouabain. 6. The oxygen uptake due to K+ was unaffected by propranolol (33 muM), whereas that due to norepinephrine was significantly inhibited in the presence of propranolol. 7. In the tissue from reserpine-treated animal, the oxygen uptake caused by K+ was observed. According, from these positive results we are justified to suggest that K+ -induced oxygen uptake is dependent on the presence of Ca2+, and not always caused by catecholamines released secondarily from nerve terminal.  相似文献   

15.
Two possible cellular pathways of catecholamines from the chromaffin vesicles of PC12 cells to the surrounding medium are explored in this study. The direct one circumventing the cytoplasm can be activated in alpha-toxin-permeabilized cells with micromolar levels of free Ca2+. Catecholamine metabolites formed in the cytoplasm (i.e., 3,4-dihydroxyphenylacetic acid and 3,4-dihydroxyphenylethanol) are neither formed nor released from the cells under these conditions. However, when vesicular catecholamines were discharged into the cytoplasm by addition of the ionophore nigericin, such metabolites are formed and released into the medium independent of Ca2+. Both types of experiments provide direct evidence for the operation of Ca2+-induced exocytosis of dopamine and noradrenaline in permeabilized PC12 cells. The Ca2+ dependence of dopamine or noradrenaline release, as measured by the determination of the endogenous catecholamines using the high-performance liquid chromatography technique, exhibits two different phases. One is already activated below 1 microM free Ca2+ and plateaus at 1-5 microM free Ca2+, while a second occurs in the presence of larger amounts of free Ca2+ (10-100 microM). Ca2+-induced catecholamine release from the permeabilized cells can be modulated in different ways: It is enhanced by the phorbol ester 12-O-tetradecanoylphorbol 13-acetate and the diacylglycerol 1-oleyl-2-acetylglycerol provided Mg2+/ATP is present, and it is inhibited by guanosine 5'-O-(3-thiotriphosphate). The latter effect is abolished by pretreatment of the cells with pertussis toxin but not by cholera toxin. Thus, it appears that Ca2+-induced exocytosis can be modulated via the protein kinase C system, as well as via GTP binding proteins.  相似文献   

16.
17.
Bovine adrenomedullary chromaffin (BAMC) cells, cultured in a defined medium, were used to study the mechanisms of toxicity and cellular resistance to the catecholamine neuron toxicants 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 1-methyl-4-phenylpyridinium (MPP+). The viability of the cells was assessed biochemically [cellular catecholamine content and the catalytic activities of tyrosine hydroxylase (TH) and lactate dehydrogenase (LDH)] and anatomically (by electron microscopy). When cultures of BAMC cells were exposed to MPTP or MPP+ for 3 days, a marked loss of cellular catecholamines and TH activity was observed. The addition of an inhibitor of monoamine oxidase (MAO) B (Ro 19-6327), but not MAO A (clorgyline), prevented the toxicity of MPTP but not that of MPP+. In addition, the cellular toxicity of MPP+, but not MPTP, was antagonized by desmethylimipramine, an inhibitor of cellular catecholamine uptake. The toxicity of MPP+ was time dependent, with losses of TH and the release of cellular LDH occurring after 48 h in culture. Catecholamine depletion occurred somewhat sooner, being evident after 24 h of exposure to MPP+. The cellular toxicity of MPP+ was concentration dependent and significantly enhanced by inhibitors of catecholamine vesicular uptake (reserpine, tetrabenazine, or Ro 4-1284). Electron microscopic examination of cells treated with either MPP+, tetrabenazine, or their combination revealed that MPP+ damaged BAMC cells and that this damage was markedly potentiated by the inhibition of vesicular uptake by tetrabenazine. The concentration of glucose in the culture media of untreated cells slowly decreased as a function of time. The rate of glucose consumption was markedly accelerated by MPP+ treatment and the losses in cell TH and the release of LDH into the media were preceded by a 99% depletion of glucose from the media. In cultures not treated with MPP+, lactate accumulated in the media as a function of time. Addition of MPP+ to the media increased the formation of lactate, in a concentration-dependent manner. Reserpine pretreatment further enhanced the production of lactate in response to MPP+. Culturing cells in glucose-free medium greatly potentiated the effects of MPP+ on cellular TH and catecholamines. The toxicity observed after 3 days' exposure of BAMC cells to MPP+ could be prevented when the medium was replaced with fresh medium every 24 h. The effects of glucose deprivation and reserpine were observed to be additive. The ability of MPP+ to affect mitochondrial function is determined by the capacity of the storage vesicle to sequester the pyridinium, acting as a cytosolic "buffer."(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Resting oxygen consumption (VO2) before and after injection of noradrenaline (NA), and plasma triiodothyronine levels were elevated in hyperthyroid and hyperphagic cafeteria fed rats, but were reduced in 4d-fasted and hypothyroid animals compared to controls. Refeeding fasted rats with a single carbohydrate meal caused all of these parameters to increase towards control levels. In vivo turnover, and in vitro release of NA brown adipose tissue (BAT) was elevated in cafeteria fed rats but remained unaltered in other groups and levels and uptake of NA in BAT were similar for all rats. Basal and NA stimulated Na+,K+-ATPase activity in BAT was increased in cafeteria and hyperthyroid rats and reduced in fasted and hypothyroid animals compared to control and refed groups. A highly significant correlation (r = 0.977), (P less than 0.001), found between the in vitro activity of this enzyme and resting VO2 in all rats, indicates that BAT Na+,K+-ATPase may be involved in the thermogenic responses to diet, catecholamines and thyroid hormones.  相似文献   

19.
K-Cl cotransport activity in frog erythrocytes was estimated as a Cl- -dependent component of K+ efflux from cells incubated in Cl- - or NO3- -containing medium at 20 degrees C. Decreasing the osmolality of the medium resulted in an increase in K+ efflux from the cells in a Cl- medium but not in an NO3- medium. Treatment of red cells with 5 mM NaF caused a significant decrease (approximately 50%) in K+ loss from the cells in iso- and hypotonic Cl- media but only a small decrease in K+ loss in isotonic NO3- medium. Addition of 1 mM vanadate to an isotonic Cl- medium also led to a significant reduction in K+ efflux. Similar inhibitory effects of NaF and vanadate on K+ efflux in a Cl- medium, but not in an NO3- medium were observed when the incubation temperature was decreased from 20 to 5 degrees C. Thus, under various experimental conditions, NaF and vanadate inhibited about 50% of Cl- -dependent K+ efflux from frog red cells probably due to inhibition of protein phosphatases. Cl- -dependent K+ (86Rb) influx into frog erythrocytes was nearly completely blocked (approximately 94%) by 5 mM NaF. In a NO3- medium, K+ influx was mainly mediated by the Na+,K+ pump and was unchanged in the presence of 5 mM NaF, 0.03 mM Al3+ or their combination. These data indicate that G proteins or cAMP are not involved in the regulation of Na+,K+ pump activity which is activated by catecholamines and phosphodiesterase blockers in these cells.  相似文献   

20.
Noradrenaline, adrenaline, and isoproterenol induce head-to-head association in bovine spermatozoa in a Tris-HCl-buffered medium. Noradrenaline was the most and isoproterenol the least efficient. This effect was stimulated by Ca2+, Mg2+ and Mn2+, Ca2+ being more efficient than the other two ions. At 2 X 10(-6) M Ca2+, oxidation products of adrenaline dissociated spermatozoa associated by washing; at 2 X 10(-5) M Ca2+, the dissociating effect was transformed into association. The induction of association by adrenaline was blocked by both alpha- and beta-adrenergic blockers at low concentrations (2 X 10(-7) M). Both cAMP and dibutyryl substituted cAMP (db-cAMP) induced association in the Tris-buffered medium at 2 X 10(-6) M Ca2+. Further increase in association was brought about by increasing the Ca2+ concentration to 2 X 10(-5) M. Prolongation of the treatment with cAMP increased association. When combined with cAMP under the same conditions as used in the combination with adrenaline, L-propranolol did not inhibit association induced by cAMP. In an identical experiment, performed in Tyrode solution, L-propranolol inhibited association induced by cAMP. At 2 X 10(-5) M, theophylline, caffeine, and papaverine induced association in the presence of 2 X 10(-5) M Ca2+. The results are compatible with the hypothesis that catecholamines act via receptors and formation of cAMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号