首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background  

The origin of the nucleus is a central problem about the origin of eukaryotes. The common ancestry of nuclear pore complexes (NPC) and vesicle coating complexes indicates that the nucleus evolved via the modification of a pre-existing endomembrane system. Such an autogenous scenario is cell biologically feasible, but it is not clear what were the selective or neutral mechanisms that had led to the origin of the nuclear compartment.  相似文献   

2.
Farnesylated prelamin A is a processing intermediate produced in the lamin A maturation pathway. Accumulation of a truncated farnesylated prelamin A form, called progerin, is a hallmark of the severe premature ageing syndrome, Hutchinson-Gilford progeria. Progerin elicits toxic effects in cells, leading to chromatin damage and cellular senescence and ultimately causes skin and endothelial defects, bone resorption, lipodystrophy and accelerated ageing. Knowledge of the mechanism underlying prelamin A turnover is critical for the development of clinically effective protein inhibitors that can avoid accumulation to toxic levels without impairing lamin A/C expression, which is essential for normal biological functions. Little is known about specific molecules that may target farnesylated prelamin A to elicit protein degradation. Here, we report the discovery of rapamycin as a novel inhibitor of progerin, which dramatically and selectively decreases protein levels through a mechanism involving autophagic degradation. Rapamycin treatment of progeria cells lowers progerin, as well as wild-type prelamin A levels, and rescues the chromatin phenotype of cultured fibroblasts, including histone methylation status and BAF and LAP2alpha distribution patterns. Importantly, rapamycin treatment does not affect lamin C protein levels, but increases the relative expression of the prelamin A endoprotease ZMPSTE24. Thus, rapamycin, an antibiotic belonging to the class of macrolides, previously found to increase longevity in mouse models, can serve as a therapeutic tool, to eliminate progerin, avoid farnesylated prelamin A accumulation, and restore chromatin dynamics in progeroid laminopathies.  相似文献   

3.
We have previously demonstrated that Toxoplasma gondii has a tyrosine-based sorting system, which mediates protein targeting to the lysosome-like rhoptry secretory organelle. We now show that rhoptry protein targeting is also dependent on a dileucine motif and occurs from a post-Golgi endocytic organelle to mature rhoptries in an adaptin-dependent fashion. The T. gondii AP-1 adaptin complex is implicated in this transport because the micro1 chain of T. gondii AP-1 (a) was localized to multivesicular endosomes and the limiting and luminal membranes of the rhoptries; (b) bound to endocytic tyrosine motifs in rhoptry proteins, but not in proteins from dense granule secretory organelles; (c) when mutated in predicted tyrosine-binding motifs, led to accumulation of the rhoptry protein ROP2 in a post-Golgi multivesicular compartment; and (d) when depleted via antisense mRNA, resulted in accumulation of multivesicular endosomes and immature rhoptries. These are the first results to implicate AP-1 in transport from a post-Golgi compartment to a mature secretory organelle and substantially expand the role for AP-1 in anterograde protein transport.  相似文献   

4.
5.
6.
Prelamin A accumulation causes nuclear abnormalities, impairs nuclear functions, and eventually promotes cellular senescence. However, the underlying mechanism of how prelamin A promotes cellular senescence is still poorly understood. Here we carried out a yeast two-hybrid screen using a human skeletal muscle cDNA library to search for prelamin A binding partners, and identified FAM96B as a prelamin A binding partner. The interaction of FAM96B with prelamin A was confirmed by GST pull-down and co-immunoprecipitation experiments. Furthermore, co-localization experiments by fluorescent confocal microscopy revealed that FAM96B colocalized with prelamin A in HEK-293 cells. Taken together, our data demonstrated the physical interaction between FAM96B and prelamin A, which may provide some clues to the mechanisms of prelamin A in premature aging.  相似文献   

7.
The ribosome exit site is a focal point for the interaction of protein-biogenesis factors that guide the fate of nascent polypeptides. These factors include chaperones such as NAC, N-terminal-modifying enzymes like Methionine aminopeptidase (MetAP), and the signal recognition particle (SRP), which targets secretory and membrane proteins to the ER. These factors potentially compete with one another in the short time-window when the nascent chain first emerges at the exit site, suggesting a need for regulation. Here, we show that MetAP contacts the ribosome at the universal adaptor site where it is adjacent to the α subunit of NAC. SRP is also known to contact the ribosome at this site. In the absence of NAC, MetAP and SRP antagonize each other, indicating a novel role for NAC in regulating the access of MetAP and SRP to the ribosome. NAC also functions in SRP-dependent targeting and helps to protect substrates from aggregation before translocation.  相似文献   

8.
9.
10.
The proteasomal lid subunit Rpn11 is essential for maintaining a correct cell cycle and mitochondrial morphology in Saccharomyces cerevisiae. In this paper, we show that the rpn11-m1 mutant has a peculiar cell cycle defect reminiscent of mutants defective in the FEAR pathway that delay the release of the Cdc14 protein phosphatase from the nucleolus. We analyzed the rpn11-m1 phenotypes and found that overexpression of Cdc14 suppresses all the rpn11-m1 defects, including the mitochondrial ones. Suppression by Cdc14 of the rpn11-m1 mitochondrial morphology defect reveals an uncharacterized connection between mitochondrial and cell cycle events. Interestingly, the overexpression of Cdc14 also partially restores the tubular network in an Δmmm2 strain, which lacks a mitochondrial protein belonging to the complex necessary to anchor the mitochondrion to the actin cytoskeleton. Altogether our findings indicate, for the first time, a cross-talk between the cell cycle and mitochondrial morphology.  相似文献   

11.
The localization and intracellular transport of major histocompatibility complex (MHC) class II molecules nd lysosomal hydrolases were studied in I-Cell Disease (ICD) B lymphoblasts, which possess a mannose 6-phosphate (Man-6-P)-independent targeting pathway for lysosomal enzymes. In the trans-Golgi network (TGN), MHC class II- invariant chain complexes colocalized with the lysosomal hydrolase cathepsin D in buds and vesicles that lacked markers of clathrin-coated vesicle-mediated transport. These vesicles fused with the endocytic pathway leading to the formation of "early" MHC class II-rich compartments (MIICs). Similar structures were observed in the TGN of normal beta lymphoblasts although they were less abundant. Metabolic labeling and subcellular fractionation experiments indicated that newly synthesized cathepsin D and MHC class II-invariant chain complexes enter a non-clathrin-coated vesicular structure after their passage through the TGN and segregation from the secretory pathway. These vesicles were also devoid of the cation-dependent mannose 6-phosphate (Man-6-P) receptor, a marker of early and late endosomes. These findings suggest that in ICD B lymphoblasts the majority of MHC class II molecules are transported directly from the TGN to "early" MIICs and that acid hydrolases cam be incorporated into MIICs simultaneously by a Man-6-P-independant process.  相似文献   

12.
Eukaryotes use the process of autophagy, in which structures targeted for lysosomal/vacuolar degradation are sequestered into double-membrane autophagosomes, in numerous physiological and pathological situations. The key questions in the field relate to the origin of the membranes as well as the precise nature of the rearrangements that lead to the formation of autophagosomes. We found that yeast Atg9 concentrates in a novel compartment comprising clusters of vesicles and tubules, which are derived from the secretory pathway and are often adjacent to mitochondria. We show that these clusters translocate en bloc next to the vacuole to form the phagophore assembly site (PAS), where they become the autophagosome precursor, the phagophore. In addition, genetic analyses indicate that Atg1, Atg13, and phosphatidylinositol-3-phosphate are involved in the further rearrangement of these initial membranes. Thus, our data reveal that the Atg9-positive compartments are important for the de novo formation of the PAS and the sequestering vesicle that are the hallmarks of autophagy.  相似文献   

13.
14.
15.
Genome organization within the cell nucleus is a result of chromatin condensation achieved by histone tail-tail interactions and other nuclear proteins that counter the outward entropic pressure of the polymeric DNA. We probed the entropic swelling of chromatin driven by enzymatic disruption of these interactions in isolated mammalian cell nuclei. The large-scale decondensation of chromatin and the eventual rupture of the nuclear membrane and lamin network due to this entropic pressure were observed by fluorescence imaging. This swelling was accompanied by nuclear softening, an effect that we quantified by measuring the fluctuations of an optically trapped bead adhered onto the nucleus. We also measured the pressure at which the nuclear scaffold ruptured using an atomic force microscope cantilever. A simple theory based on a balance of forces in a swelling porous gel quantitatively explains the diffusive dynamics of swelling. Our experiments on decondensation of chromatin in nuclei suggest that its compaction is a critical parameter in controlling nuclear stability.  相似文献   

16.
Biogenesis of the ribbon-like membrane network of the mammalian Golgi requires membrane tethering by the conserved GRASP domain in GRASP65 and GRASP55, yet the tethering mechanism is not fully understood. Here, we report the crystal structure of the GRASP55 GRASP domain, which revealed an unusual arrangement of two tandem PDZ folds that more closely resemble prokaryotic PDZ domains. Biochemical and functional data indicated that the interaction between the ligand-binding pocket of PDZ1 and an internal ligand on PDZ2 mediates the GRASP self-interaction, and structural analyses suggest that this occurs via a unique mode of internal PDZ ligand recognition. Our data uncover the structural basis for ligand specificity and provide insight into the mechanism of GRASP-dependent membrane tethering of analogous Golgi cisternae.  相似文献   

17.
Topological studies of multi-spanning membrane proteins commonly use sequentially truncated proteins fused to a C-terminal translocation reporter to deduce transmembrane (TM) segment orientation and key biogenesis events. Because these truncated proteins represent an incomplete stage of synthesis, they transiently populate intermediate folding states that may or may not reflect topology of the mature protein. For example, in Xenopus oocytes, the aquaporin-1 (AQP1) water channel is cotranslationally directed into a four membrane-spanning intermediate, which matures into the six membrane-spanning topology at a late stage of synthesis (Skach, W. R., Shi, L. B., Calayag, M. C., Frigeri, A., Lingappa, V. R., and Verkman, A. S. (1994) J. Cell Biol. 125, 803-815 and Lu, Y., Turnbull, I. R., Bragin, A., Carveth, K., Verkman, A. S., and Skach, W. R. (2000) Mol. Biol. Cell 11, 2973-2985). The hallmark of this process is that TM3 initially acquires an Nexo/Ccyto (Type I) topology and must rotate 180 degrees to acquire its mature orientation. In contrast, recent studies in HEK-293 cells have suggested that TM3 acquires its mature topology cotranslationally without the need for reorientation (Dohke, Y., and Turner, R. J. (2002) J. Biol. Chem. 277, 15215-15219). Here we re-examine AQP1 biogenesis and show that irrespective of the reporter or fusion site used, oocytes and mammalian cells yielded similar topologic results. AQP1 intermediates containing the first three TM segments generated two distinct cohorts of polypeptides in which TM3 spanned the ER membrane in either an Ncyto/Cexo (mature) or Nexo/Ccyto (immature) topology. Pulse-chase analyses revealed that the immature form was predominant immediately after synthesis but that it was rapidly degraded via the proteasome-mediated endoplasmic reticulum associated degradation (ERAD) pathway with a half-life of less than 25 min in HEK cells. As a result, the mature topology predominated at later time points. We conclude that (i) differential stability of biogenesis intermediates is an important factor for in vivo topological analysis of truncated chimeric proteins and (ii) cotranslational events of AQP1 biogenesis reflect a common AQP1 folding pathway in diverse expression systems.  相似文献   

18.
Mutations in the lamin A/C (LMNA) gene that cause Hutchinson-Gilford progeria syndrome (HGPS) lead to expression of a protein called progerin with 50 amino acids deleted from the tail of prelamin A. In cells from patients with HGPS, both the amount and distribution of heterochromatin are altered. We designed in vitro assays to ask whether such alterations might reflect changes in chromatin, DNA and/or histone binding properties of progerin compared to wild-type lamin C-terminal tails. We show that progerin tail has a reduced DNA/chromatin binding capacity and modified trimethylated H3K27 binding pattern, offering a molecular mechanism for heterochromatin alterations related to HGPS.

Structured summary

MINT-7893924, MINT-7893941, MINT-7893990, MINT-7894005, MINT-7894023, MINT-7894038: H3 (uniprotkb:Q71DI3) binds (MI:0407) to LaminA (uniprotkb:P02545) by surface plasmon resonance (MI:0107)MINT-7893957, MINT-7893974, MINT-7894055: H3 (uniprotkb:Q71DI3) binds (MI:0407) to progerin (uniprotkb:Q6UYC3) by surface plasmon resonance (MI:0107)  相似文献   

19.
R J Ivatt 《Biochemistry》1986,25(23):7522-7528
Embryonal carcinoma and early embryonic cells assemble a family of unusually large and complex carbohydrates. These glycans are highly branched, repeating copolymers of the sugars galactose and N-acetylglucosamine, referred to as polylactosamines, and are frequently decorated with fucose, sulfate, and sialic acid. We have previously shown that in teratocarcinoma cells these glycans are part of a large spectrum of glycans assembled on mannose cores derived from a common precursor glycan. Metabolic studies revealed a large excess of high-mannose glycans at a time when complex-type glycans cease to accumulate. The present studies demonstrate that these high-Man glycans are not degraded internally or secreted directly but are on glycoproteins destined for the cell surface. These unprocessed glycoproteins replace material lost during the extensive membrane turnover that occurs in these cells. Their export to the cell surface is delayed in a pre-Golgi compartment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号