共查询到20条相似文献,搜索用时 15 毫秒
1.
N-(benzyloxycarbonyl)-L-aspartyl-L-phenylalanine methyl ester, a precursor of the synthetic sweetener, aspartame, was synthesized from N-(benzyloxycarbonyl)-L-aspartic acid and L-phenylalanine methyl ester with an immobilized thermolysin (EC 3.4.24.4) in the mixed organic solvent system of tert-amyl alcohol and ethyl acetate. A mixed solvent consisting of tert-amyl alcohol and ethyl acetate at a ratio of 33:67 (v/v) was found to be the most suitable with respect to synthetic rate and stability of the immobilized enzyme. The reaction continued to proceed quite successfully in a column reactor at 40 degrees C and at a space velocity of 3.6 h(-1) with a yield of 99%, using 40 mM Z-Asp and 200 mM PheOMe dissolved in the mixed solvent as the substrate. (c) 1995 John Wiley & Sons, Inc. 相似文献
2.
Nagayasu T Miyanaga M Tanaka T Sakiyama T Nakanishi K 《Biotechnology and bioengineering》1994,43(11):1108-1117
N-(Benzyloxycarbonyl)-L-aspartyl-L-phenylalanine methyl ester (Z-AspPheOMe), a precursor of the aspartame, and N-(benzyloxycarbonyl)-L-phenylalanyl-Lphenylalanine methyl ester (Z-PhePheOMe) were synthesized from the respective amino acid derivatives with an immobilized thermolysin (EC 3.4.24.4) in ethyl acetate. Various factors affecting the synthesis of these dipeptide precursors were clarified. The initial synthetic rate was the highest at the water content of 3.5% for both reactions. The substrate concentration dependencies of the initial synthetic rate of Z-AspkPheOMe and Z-PhePheOMe with the immobilized enzyme in ethyl acetate were different from those in an aqueous buffer solution saturated with ethyl acetate but similar to those in the aqueous/organic biphasic system using the free enzyme. Particularly, the initial synthetic rate of Z-AspPhOMe increased in order higher than first order with respect to the concentration of L-phenylalanine methyl ester (PheOMe), whereas it decreased sharply with the concentration of N-(benzyloxycarbonyl)-L-aspartic acid (Z-Asp). Such kinetic behavior could be explained by regarding the inside of the immobilized enzyme as being a biphasic mode composed from the organic phase and aqueous phase where the enzymatic reaction takes place. The reaction in the aqueous/organic biphasic system using the free enzyme could be simulated by taking into consideration the partition of the substrate and the initial rate of synthesis in the aqueous buffer saturated with ethyl acetate. Based on this analysis, the rate of reaction with the immobilized enzyme in ethyl acetate could also be predicted. Z-AsPheOMe and Z-PhePheOMe were synthesized by the fed-batch method where the acid component of the substrate was intermittently added during the course of reaction and by the batch method. In the synthesis of Z-AspPheOMe, the synthetic rate and maximum yield of reaction as well as the stability of the immobilized enzyme were higher in the fed-batch reaction than those in the batch reaction. In the synthesis of Z-PhePheOMe, the results obtained by both methods were similar. (c) 1994 John Wiley & Sons, Inc. 相似文献
3.
A. V. Belyaeva Yu. A. Smirnova E. N. Lysogorskaya E. S. Oksenoit A. V. Timofeeva V. I. Lozinskii I. Yu. Filippova 《Russian Journal of Bioorganic Chemistry》2008,34(4):435-441
Preparations with different contents of thermolysin were obtained by the immobilization of the enzyme on granulated polyvinyl alcohol cryogel. Their activity and stability in an aqueous medium and in mixtures of polar organic solvents of different composition were investigated. The catalytic properties of the preparations in reactions of peptide bond formation were studied, and the optimal amount of the biocatalyst, the concentrations of initial reagents, and the ratios of organic solvents and water necessary for effective enzymatic peptide synthesis catalyzed by immobilized thermolysin were determined. A series of peptides of the general formula Z-Ala-Ala-Xaa-pNA, where Xaa = Leu, Ile, Phe, Val, or Ala, were synthesized, and the immobilized enzyme was shown to retain substrate specificity in an organic medium. 相似文献
4.
Yoshihiko Murakami Shigemitsu Hayashi Akinori Takehara Akira Hirata 《Biotechnology Techniques》1999,13(3):165-168
We propose a novel effective method for a continuous peptide synthesis in an aqueous/organic biphasic medium using a pulsed column reactor. N-Formyl-l-aspartyl-l-phenylalanine methyl ester was enzymatically synthesized continuously. With this extractive method using a pulsed column reactor, we can synthesize peptides with a stable performance even if a peptide (or a peptide-amino acid complex) is precipitated due to its high hydrophobicity. 相似文献
5.
Summary The enzymatic synthesis of a peptide compound was carried out successfully in homogeneous organic solvent.Solid Thermolysin was found to catalyze the synthetic reaction of N-benzyloxycarbonyl-L-aspartyl-L-phenylalanine methyl ester (Z-APM; a precursor of sweetner Aspartame) from N-benzyloxycarbonyl-L-aspartic acid (Z-L-Asp) and L-phenylalanine methyl ester (L-PheOMe) in a 98 percent organic medium (ethylacetatebenzenemethanolwater=5029192). The dissolution of enzyme was not observed. The optimal pH shifted to acidic side by 1.0 pH unit, compared with that in aqueous medium. The enzymatic activity of solid thermolysin with an average size of 3.4×9.5 m was determined to be 0.18 moles-product/(mg-solid)·h under the initial concentrations of L-PheOMe of 0.1M and Z-L-Asp of 0.05M, and at pH 6.0 and 40°C. 相似文献
6.
Synthesis and characteristics of an aspartame analogue, L-asparaginyl L-3-phenyllactic acid methyl ester 总被引:2,自引:0,他引:2
Aspartame (L-aspartyl L-phenylalanine methyl ester) isan artificial sweetener as shown in Fig.1 (A) [1]. Studieson its structure and function showed that its N-terminalL-aspartyl residue could only be replaced by aminomalonyl[2] or L-asparaginyl [3] residue. When its peptide bondwas replaced by an ester bond [Fig. 1(B)] or the hydrogenof amide in the peptide bond replaced by a methyl group[Fig. 1(C)], its sweetness was lost [4]. According to thecrystal structure of aspartame, between the … 相似文献
7.
Thermolysin (Bacillus thermoproteolyticus neutral proteinase, EC 3.4.24.4) has been immobilized by radiation polymerization of hydrophilic and hydrophobic monomers, and its properties, such as enzyme activity, thermal stability and durability, have been studied. The activity of the immobilized enzymes increased with an increase in the hydrophilicity of the polymer matrix and with a decrease in monomer concentration. Immobilization with hydrophilic monomers increased the thermal stability of the enzymes, but the thermal stability of the enzymes immobilized with hydrophobic monomers was comparable with that of native enzymes. The durability of the immobilized enzymes was examined by continuous hydrolysis of casein; enzymes immobilized with a high concentration (90%) of hydrophilic monomers appeared to be stabilized and could be used for long times. 相似文献
8.
We showed that modified proteases could catalyze synthesis of a wide variety of peptides of various lengths and structures both in solution and on solid phase in organic solvents. The following modified proteases were studied as catalysts for enzymatic peptide synthesis in polar organic solvents (acetonitrile, dimethylformamide, and ethanol): pepsin sorbed on celite, a noncovalent complex of subtilisin with sodium dodecylsulfate, and subtilisin or thermolysin covalently immobilized on a cryogel of polyvinyl alcohol. The use of the noncovalent complex of subtilisin with sodium dodecylsulfate and immobilized subtilisin is especially promising for the segment condensation of peptide fragments containing residues of trifunctional amino acids with unprotected ionogenic groups in side chains, such as Lys, Arg, His, Glu, and Asp. 相似文献
9.
Enzymatic synthesis of esters using an immobilized lipase 总被引:6,自引:0,他引:6
Various esters were synthesized in nearly anhydrous hexane from alcohols and carboxylic acids using a lipase from Candida cylindracea. The enzyme was immobilized on a nylon support and protein loadings as high as 10 mg/g were obtained. The activity of the immobilized enzyme was maximum in a range of temperatures from 25 to 37 degrees C. Ethylpropionate was formed from ethanol and propionic acid at a rate of 0.017 mol/h g immobilized protein. Different esters were formed at comparable rates and equilibrium conversions could generally be approached in less than 10 h in a batch reaction system. The immobilized lipase catalyst was quite stable and retained about one third of the initial activity after repeated experiments during the course of 72 days. A stirred tank continuous flow reactor was used successfully for the continuous production of esters. 相似文献
10.
When using proteases in direct reversal of their normal hydrolytic function, the equilibrium position is very important in limiting the attainable yield in equilibrium-controlled enzymic peptide synthesis. Analysis of the equilibrium position reveals a favourable shift towards the peptide product if starting materials are largely undissolved in the reaction medium and the product precipitates. This approach enabled us to obtain high peptide yields in thermolysin-catalysed reactions in high-density aqueous media with an equimolar supply of substrates. The easy scale-up (up to mol-scale) of this approach is demonstrated by two examples. Z-His-Phe- NH2 and Z-Asp-Phe-OMe, precursors for cyclo-[-His-Phe-] and the low-calorie sweetener Aspartame, respectively, were synthesized in preparative yields of 84–88%. © 1997 European Peptide Society and John Wiley & Sons, Ltd. 相似文献
11.
Subtilisin 72 serine protease (EC 3.4.21.14) immobilized on a poly(vinyl alcohol) cryogel was used as a catalyst in the syntheses of N-protected peptide p-nitroanilides of the general formulas Z(or Boc)-Xaa-Phe-pNA (Xaa = Leu or Ala), Z-Ala-Xaa-Yaa-pNA (Xaa = Leu or Ala; Yaa = Leu or Phe), and Z-Ala-Ala-Xaa-Yaa-pNA (Xaa = Leu, Arg, or Gly; Yaa = Phe, Leu, Gly, Asp, or Glu). The syntheses were carried out in DMF-acetonitrile mixtures. A number of protected di-, tri-, and tetrapeptides were prepared in yields up to 99%. The syntheses were found to retain stereoselectivity under the conditions studied. The activation of carboxyl group of the acylating component was shown to have a positive effect upon the coupling rate. 相似文献
12.
A. V. Bacheva M. S. Isakov E. N. Lysogorskaya D. J. Macquarrie I. Yu. Philippova 《Russian Journal of Bioorganic Chemistry》2008,34(3):334-338
New biocatalysts, preparations of subtilisin Carlsberg immobilized on chitosan (a deacetylated derivative of chitin), were obtained. The enzyme content, hydrolytic activity, and ability to catalyze peptide bond formation in organic solvents were characterized for these preparations. The influence of the form and composition of the biocomplosite (content of the enzyme and glutaraldehyde, the cross-linking agent) and buffer pH on the biocatalytic properties of the immobilized enzyme was studied in the reactions of peptide bond hydrolysis. The synthase activity of the preparations was investigated in the reaction of synthesis of Z-Ala-Ala-Leu-Phe-pNA in a 6:4 DMF-acetonitrile mixture in dependence on the reaction time. The yield of this product was 100% after only 40 min. 相似文献
13.
Cross-linked polyurethane (PU) was prepared for entrapping thermolysin. Using the immobilized thermolysin (IT), Z-L-aspartic acid (ZA) was reacted with -Lphenylalanine methyl ester (L-PM) in water-saturated ethyl acetate to give only alpha-Z-L-aspartylL-phenylalanine methyl ester (alpha-ZAPM). Ninety-four percent conversion of alpha-ZAPM was obtained for 30 h of reaction at 40 degrees C when 46 mg of enzyme was entrapped. PU support prepared from polypropylene glycol (#2000) showed better properties than from polypropylene (#1000) and polyethylene (#1000). Addition of polyol could increase the gel fraction of PU. The IT PU-ll-G-3, prepared from 1/2 mole ratio of PPG (#2000)/glycerin, gave the highest gel fraction and best swelling, and 89.0% of residual activity was obtained after four times of reuse (72 h). The stability of immobilized thermolysin was good; the activity loss resulting from degradatin and leak of enzyme in each time of reuse were found only about 2%. The kinetics of immobilized thermolysin-catalyzed condensation reaction of ZA with L-PM in water-saturated ethyl acetate was found to be first order in L-PM and the Lineweaver-Burk plot of 1/V against 1/[ZA] yields a straight line, showing that the reaction involves consecutive reactions of ZA and L-PM with the immobilized enzyme and with the ZA-immobilized enzyme complex, with the second reaction being the rate determining step. 相似文献
14.
The point of maximum activity is specific to a particular substrate-enzyme system but may vary with different substrates and the same enzyme. The specificity of enzymes has, however, been generally reported only at their "optimal" pH. In this article, we introduce the Michaelis-Menten equation taking pH into account, and apply it to the pH-activity profile of the thermolysin-catalyzed dipeptide synthesis. It has been reported to date that the pH-activity profile of thermolysin follows a bell-shaped curve with a maximal activity at or near pH 7.0. The profiles obtained in this study, however, indicated that the optimal pH varied from 5.8 (for F-AspPheOMe) to 7.3 (for Z-ArgPheOMe), and the order of thermolysin activity was greatly dependent on the pH of reaction media. We have succeeded in evaluating the substrates-induced change of the dissociation states of the active site of thermolysin using the hydrophobicity of substrates. We have obtained apparent kinetic parameters which are independent of the pH of reaction media. The apparent specificity of thermolysin which were independent of pH of the reaction media was in order L-Leu > L-Asp > L-Arg > L-Ala > L-Gly > L-Val and Z > Boc = F at P1 and P2 positions, respectively. 相似文献
15.
《Biocatalysis and Biotransformation》2013,31(4):201-216
The enzymatic synthesis of the seven consecutive dipeptide fragments of the cholecysto kinin C-terminal octapeptide (CCK-8) in organic media is reported. The influence of the reaction medium composition, the protease, and the structure of N-α and C-α protecting groups of both carboxyl and amino components was evaluated. α-Chymotrypsin, papain and thermolysin adsorbed on Celite were used as catalysts, under thermodynamic and kinetic control. The carboxamidomethyl, methyl and allyl ester derivatives of acetyl, benzyloxycarbonyl, tert-butyloxycarbonyl and fluoren-9-ylmethoxycarbonyl amino acids, were assayed as carboxy components. Amino acid amide and ester derivatives were employed as nucleophiles with a preference for the latter, since the dipeptide product obtained could be used directly, without any further chemical modification, as acyl-donor in subsequent coupling steps. All dipeptides selected were successfully synthesized, using the optimal combination of protecting groups, reaction media and enzyme different for each coupling reaction. The information gained with this study should be instrumental in designing an optimal strategy for the total enzymatic synthesis of cholecystokinin C-terminal octapeptide (CCK-8). 相似文献
16.
Geun Hee Shin Chulyoung Kim Hyun Jung Kim Chul Soo Shin 《Journal of Molecular Catalysis .B, Enzymatic》2003,26(3-6):201
A stereoselective protease produced by Bacillus amyloliquefaciens KCCM 12091 was isolated. The enzyme catalyzed the synthesis of N-CBZ-
-Asp-PheOMe from N-CBZ-
-Asp and
-PheOMe, but not N-CBZ-
-Asp-
-PheOMe from N-CBZ-
-Asp and
-PheOMe. More than 50% of added
-PheOMe was consumed when eutectic mixtures of N-CBZ-
-Asp, racemic
- and
-PheOMe were used for synthesis of an aspartame precursor of N-CBZ-
-Asp-
-PheOMe.
-PheOMe was not involved in the reaction and did not affect synthesis of N-CBZ-
-Asp-
-PheOMe. 相似文献
17.
Several examples of two-step sequential reactions exist where, because of the poor equilibrium conversion by the first reaction, it is desirable to conduct the two reactions simultaneously. In such a scheme, the product of the first reaction is continuously removed by the second reaction, thus not allowing the first reaction to approach chemical equilibrium. Therefore, the first reaction is allowed to proceed in the desired direction at an appreciable rate. However, in many biochemical applications where enzyme catalysts are involved, the enzyme's activities are strong functions of pH. Where the pH optima of the first and second reaction differ by three to four units, the above reaction scheme would be difficult to implement. In these cases, the two reactions can be separated by a thin permeable membrane across which the desired pH gradient is maintained. In this article, it was shown, both by theory and experiment, that a thin, flat membrane of immobilized urease can accomplish this goal when one face of the membrane is exposed to the acidic bulk solution (pH(b) = 4.5) containing a small quantity of urea (0.01 M). In this particular case, the ammonia that was produced in the membrane consumed the incoming hydrogen ions and thus maintained the desired pH gradient. Experimental results indicate that with sufficient urease loading, the face of the membrane opposite to the bulk solution could be maintained at a pH that would allow many enzymes to realize their maximum activities ( approximately 7.5). It was also found that this pH gradient could be maintained even in the presence of a buffer, which greatly enhances the transport of protons into the membrane. (c) 1993 John Wiley & Sons, Inc. 相似文献
18.
The protease trypsin was immobilized to porous glass in both the presence and absence of acetylated soybean trypsin inhibitor (STI) to determine whether immobilization could alter enzyme activity in favor of aminolysis over hydrolysis. Actiive-site titration with 4-methylumbelliferylguanidinobenzoate (MUGB) showed that only about 10% of immobilized trypsin had catalytic activity. Immobilization in the presence of STI produced a higher yield of active enzyme accessible to the inhibitor but did not increase the total yield of MUGB-active immobilized enzyme. Thus, enzyme inactivation upon immobilization could not be attributed to an inaccessible enzyme orientation, nor did STI prevent inactivation by stabilizing the active-site conformation. Kinetic parameters were determined for soluble and immobilized trypsin for two esters, N-tosyl-L-arginine methyl ester (TAME) and N-benzoyl-L-arginine ethyl ester (BAEE), and two amides, N-benzoyl-L-arginine p-nitroanilide (BAPNA) and N-t-boc-leucylglycylarginine p-nitroanilide (LGRNA). In all cases, immobilization caused a greater decrease in k(cat) for amidase activity than for esterase activity. The ratio [k(cat)/ K(m) (ester)]/[k(cat)/K(m) (amide)] increased slightly or stayed the same (for I.GRNA) or decreased sharply (for BAPNA). Including STI during immobilization had little effect on the active enzyme's intrinsic kinetics. A direct comparison of energy diagrams and free energies of activation for BAEE and BAPNA indicates that immobilization raises the free energy barriers for both amide and ester hydrolysis and lowers the energy barrier for aminolysis. In practice, these effects should lower the amidase activity and increase the aminolysis-hydrolysis ratio, rendering the immobilized enzyme a more efficient catalyst for peptide synthesis. (c) 1993 John Wiley & Sons, Inc. 相似文献
19.
P. Polverino de Laureto E. Scaramella V. De Filippis M. Bruix M. Rico A. Fontana 《Protein science : a publication of the Protein Society》1997,6(4):860-872
We have examined the proteolysis of bovine pancreatic ribonuclease A (RNase) by thermolysin when dissolved in aqueous buffer, pH 7.0, in the presence of 50% (v/v) trifluoroethanol (TFE). Under these solvent conditions, RNase acquires a conformational state characterized by an enhanced content of secondary structure (helix) and reduced tertiary structure, as given by CD measurements. It was found that the TFE-resistant thermolysin, despite its broad substrate specificity, selectively cleaves the 124-residue chain of RNase in its TFE state (20-42 degrees C, 6-24 h) at peptide bond Asn 34-Leu 35, followed by a slower cleavage at peptide bond Thr 45-Phe 46. In the absence of TFE, native RNase is resistant to proteolysis by thermolysin. Two nicked RNase species, resulting from cleavages at one or two peptide bonds and thus constituted by two (1-34 and 35-124) (RNase Th1) or three (1-34, 35-45 and 46-124) (RNase Th2) fragments linked covalently by the four disulfide bonds of the protein, were isolated to homogeneity by chromatography and characterized. CD measurements provided evidence that RNase Th1 maintains the overall conformational features of the native protein, but shows a reduced thermal stability with respect to that of the intact species (-delta Tm 16 degrees C); RNase Th2 instead is fully unfolded at room temperature. That the structure of RNase Th1 is closely similar to that of the intact protein was confirmed unambiguously by two-dimensional NMR measurements. Structural differences between the two protein species are located only at the level of the chain segment 30-41, i.e., at residues nearby the cleaved Asn 34-Leu 35 peptide bond. RNase Th1 retained about 20% of the catalytic activity of the native enzyme, whereas RNase Th2 was inactive. The 31-39 segment of the polypeptide chain in native RNase forms an exposed and highly flexible loop, whereas the 41-48 region forms a beta-strand secondary structure containing active site residues. Thus, the conformational, stability, and functional properties of nicked RNase Th1 and Th2 are in line with the concept that proteins appear to tolerate extensive structural variations only at their flexible or loose parts exposed to solvent. We discuss the conformational features of RNase in its TFE-state that likely dictate the selective proteolysis phenomenon by thermolysin. 相似文献
20.
Synthesis of the kyotorphin precursor benzoyl‐L‐tyrosine‐L‐argininamide with immobilized α‐chymotrypsin in sequential batch with enzyme reactivation 下载免费PDF全文
Carola Bahamondes Lorena Wilson Claudia Bernal Andrés Illanes Gregorio Álvaro Fanny Guzmán 《Biotechnology progress》2016,32(1):54-59
α‐Chymotrypsin was immobilized in activated agarose support and the stability of the biocatalyst was assessed in three polar organic solvents, namely, ethanol, diglyme, and acetonitrile. Ethanol was the solvent in which the stability of the enzyme was higher and was then selected to perform the synthesis of the kyotorphin derivative benzoyl‐tyrosine argininamide, evaluating enzyme reactivation after synthesis. Substrates for reaction were benzoyl tyrosine ethyl ester and argininamide, the reaction being performed under kinetic control. High conversion yield (85%) was obtained and the immobilized enzyme was successfully used in sequential batch reactor operation with enzyme reactivation after three batches. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:54–59, 2016 相似文献