共查询到20条相似文献,搜索用时 15 毫秒
1.
Mohit P Makhijani K Madhavi MB Bharathi V Lal A Sirdesai G Reddy VR Ramesh P Kannan R Dhawan J Shashidhara LS 《Developmental biology》2006,291(2):356-367
Suppression of wing fate and specification of haltere fate in Drosophila by the homeotic gene Ultrabithorax is a classical example of Hox regulation of serial homology (Lewis, E.B. 1978. Nature 276, 565-570) and has served as a paradigm for understanding homeotic gene function. We have used DNA microarray analyses to identify potential targets of Ultrabithorax function during haltere specification. Expression patterns of 18 validated target genes and functional analyses of a subset of these genes suggest that down-regulation of both anterior-posterior and dorso-ventral signaling is critical for haltere fate specification. This is further confirmed by the observation that combined over-expression of Decapentaplegic and Vestigial is sufficient to override the effect of Ubx and cause dramatic haltere-to-wing transformations. Our results also demonstrate that analysis of the differential development of wing and haltere is a good assay system to identify novel regulators of key signaling pathways. 相似文献
2.
In Drosophila, wings and halteres are the dorsal appendages of the second and third thoracic segments, respectively. In the third thoracic segment, homeotic selector gene Ultrabithorax (Ubx) suppresses wing development to mediate haltere development (E.B. Lewis, 1978. A gene complex controlling segmentation in Drosophila. Nature 276, 565-570). Halteres lack stout sensory bristles of the wing margin and veins that reticulate the wing blade. Furthermore, wing and haltere epithelia differ in the size, shape, spacing and number of cuticular hairs. The differential development of wing and haltere, thus, constitutes a good genetic system to study cell fate determination. Here, we report that down-regulation of Egfr/Ras pathway is critical for haltere fate specification: over-expression of positive components of this pathway causes significant haltere-to-wing transformations. RNA in situ, immunohistochemistry, and epistasis genetic experiments suggest that Ubx negatively regulates the expression of the ligand vein as well as the receptor Egf-r to down-regulate the signaling pathway. Electromobility shift assays further suggest that Egf-r is a potential direct target of Ubx. These results and other recent findings suggest that homeotic genes may regulate cell fate determination by directly regulating few steps at the top of the hierarchy of selected signal transduction pathways. 相似文献
3.
4.
P A Beachy 《Trends in genetics : TIG》1990,6(2):46-51
5.
6.
Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product. 总被引:65,自引:0,他引:65
We characterized the distribution of AGAMOUS (AG) RNA during early flower development in Arabidopsis. Mutations in this homeotic gene cause the transformation of stamens to petals in floral whorl 3 and of carpels to another ag flower in floral whorl 4. We found that AG RNA is present in the stamen and carpel primordia but is undetectable in sepal and petal primordia throughout early wild-type flower development, consistent with the mutant phenotype. We also analyzed the distribution of AG RNA in apetela2 (ap2) mutant flowers. AP2 is a floral homeotic gene that is necessary for the normal development of sepals and petals in floral whorls 1 and 2. In ap2 mutant flowers, AG RNA is present in the organ primordia of all floral whorls. These observations show that the expression patterns of the Arabidopsis floral homeotic genes are in part established by regulatory interactions between these genes. 相似文献
7.
8.
Introgression of homeotic mutations into wild-type genetic backgrounds results in a wide variety of phenotypes and implies that major effect modifiers of extreme phenotypes are not uncommon in natural populations of Drosophila. A composite interval mapping procedure was used to demonstrate that one major effect locus accounts for three-quarters of the variance for haltere to wing margin transformation in Ultrabithorax flies, yet has no obvious effect on wild-type development. Several other genetic backgrounds result in enlargement of the haltere significantly beyond the normal range of haploinsufficient phenotypes, suggesting genetic variation in cofactors that mediate homeotic protein function. Introgression of Antennapedia produces lines with heritable phenotypes ranging from almost complete suppression to perfect antennal leg formation, as well as transformations that are restricted to either the distal or proximal portion of the appendage. It is argued that the existence of "potential" variance, which is genetic variation whose effects are not observable in wild-type individuals, is a prerequisite for the uncoupling of genetic from phenotypic divergence. 相似文献
9.
10.
11.
Negative regulation of TGF-β signaling in development 总被引:4,自引:0,他引:4
The TGF-β superfamily members have important roles in controlling patterning and tissue formation in both invertebrates and vertebrates. Two types of signal transducers, receptors and Smads, mediate the signaling to regulate expression of their target genes. Despite of the relatively simple signal transduction pathway, many modulators have been found to contribute to a tight regulation of this pathway in a variety of mechanisms. This article reviews the negative regulation of TGF-β signaling with focus on its roles in vertebrate development. 相似文献
12.
13.
Organogenesis in Drosophila melanogaster: embryonic salivary gland determination is controlled by homeotic and dorsoventral patterning genes. 总被引:7,自引:0,他引:7
We have investigated Drosophila salivary gland determination by examining the effects of mutations in pattern forming genes on the salivary gland primordium. We find that the anterior-posterior extent of the primordium, a placode of columnar epithelial cells derived from parasegment 2, is established by the positive action of the homeotic gene Sex combs reduced (Scr). Embryos mutant for Scr lack a detectable placode, while ectopic Scr expression leads to the formation of ectopic salivary glands. In contrast, the dorsal-ventral extent of the placode is regulated negatively. Functions dependent on the decapentaplegic product place a dorsal limit on the placode, while dorsal-dependent genes act to limit the placode ventrally. We propose a model in which these pattern forming genes act early to determine the salivary gland anlage by regulating the expression of salivary gland determining genes, which in turn control genes that are involved in salivary gland morphogenesis. 相似文献
14.
Vincenzo Pirrotta Luca Rastelli 《BioEssays : news and reviews in molecular, cellular and developmental biology》1994,16(8):549-556
The use of Drosophila chromosomal rearrangements and transposon constructs involving the white gene reveals the existence of repressive chromatin domains that can spread over considerable genomic distances. One such type of domain is found in heterochromatin and is responsible for classical position-effect variegation. Another type of repressive domain is established, beginning at specific sequences, by complexes of Polycomb Group proteins. Such complexes, which normally regulate the expression of many genes, including the homeotic loci, are responsible for silencing, white gene variegation, pairing-dependent effects and insertional targeting. 相似文献
15.
We describe the regulated expression of the segmentation gene giant (gt) during early embryogenesis. The gt protein is expressed in two broad gradients in precellular embryos, one in anterior regions and the other in posterior regions. Double immunolocalization studies show that the gt patterns overlap with protein gradients specified by the gap genes hunchback (hb) and knirps (kni). Analysis of all known gap mutants, as well as mutations that disrupt each of the maternal organizing centers, indicate that maternal factors are responsible for initiating gt expression, while gap genes participate in the subsequent refinement of the pattern. The maternal morphogen bicoid (bcd) initiates the anterior gt pattern, while nanos (nos) plays a role in the posterior pattern. Gene dosage studies indicate that different thresholds of the bcd gradient might trigger hb and gt expression, resulting in overlapping but noncoincident patterns of expression. We also present evidence that different concentrations of hb protein are instructive in defining the limits of kni and gt expression within the presumptive abdomen. These results suggest that gt is a bona fide gap gene, which acts with hb, Krüppel and kni to initiate striped patterns of gene expression in the early embryo. 相似文献
16.
Rolf Urbach Dagmar Volland Janina Seibert Gerhard M Technau 《Development (Cambridge, England)》2006,133(21):4315-4330
An initial step in the development of the Drosophila central nervous system is the delamination of a stereotype population of neural stem cells (neuroblasts, NBs) from the neuroectoderm. Expression of the columnar genes ventral nervous system defective (vnd), intermediate neuroblasts defective (ind) and muscle segment homeobox (msh) subdivides the truncal neuroectoderm (primordium of the ventral nerve cord) into a ventral, intermediate and dorsal longitudinal domain, and has been shown to play a key role in the formation and/or specification of corresponding NBs. In the procephalic neuroectoderm (pNE, primordium of the brain), expression of columnar genes is highly complex and dynamic, and their functions during brain development are still unknown. We have investigated the role of these genes (with special emphasis on the Nkx2-type homeobox gene vnd) in early embryonic development of the brain. We show at the level of individually identified cells that vnd controls the formation of ventral brain NBs and is required, and to some extent sufficient, for the specification of ventral and intermediate pNE and deriving NBs. However, we uncovered significant differences in the expression of and regulatory interactions between vnd, ind and msh among brain segments, and in comparison to the ventral nerve cord. Whereas in the trunk Vnd negatively regulates ind, Vnd does not repress ind (but does repress msh) in the ventral pNE and NBs. Instead, in the deutocerebral region, Vnd is required for the expression of ind. We also show that, in the anterior brain (protocerebrum), normal production of early glial cells is independent from msh and vnd, in contrast to the posterior brain (deuto- and tritocerebrum) and to the ventral nerve cord. 相似文献
17.
18.
The homeotic gene Ultrabithorax (Ubx) is expressed in specific parts of Drosophila embryos: in a single metamer in the visceral mesoderm and forming a complex pattern limited to a broad domain in the ectoderm and in the somatic mesoderm. Here we use a linked beta-galactosidase gene to identify cis-acting regulatory sequences. In the visceral mesoderm, correct expression of Ubx depends on localized upstream sequences. In the ectoderm, all galactosidase-positive transformants show the same characteristic pattern. The repeated elements of this basal pattern appear to be a sub-pattern of engrailed (en) expression; they depend on en function as well as on sequences in the Ubx RNA leader. We use a mutant (Haltere-mimic) to show that sequences that normally restrict segmental expression of Ubx in the ectoderm are located downstream from the RNA leader. 相似文献
19.
Suppression of wing fate and specification of haltere fate in Drosophila by Ultrabithorax is a classical example of Hox regulation of serial homology. However, the mechanism of Ultrabithorax function in specifying haltere size and shape is not well understood. Here we show that Decapentaplegic signaling, which controls wing growth and shape, is a target of Ultrabithorax function during haltere specification. The Decapentaplegic signaling is down-regulated in haltere discs due to a combination of reduced levels of the Dpp, its trapping at the A/P boundary by increased levels of its receptor Thick-vein and its inability to diffuse in the absence of Dally. Results presented here suggest a complex mechanism adopted by Ultrabithorax to modulate Decapentaplegic signaling. We discuss how this complexity may regulate the final form of the adult haltere in the fly, without compromising features such as cell survival, which is also dependent on Decapentaplegic signaling. 相似文献