首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The African swine fever virus DNA polymerase X (ASFV Pol X or Pol X), the smallest known nucleotide polymerase, has recently been reported to be an extremely low fidelity polymerase that may be involved in strategic mutagenesis of the viral genome. Here we report the solution structure of Pol X. The structure, unique within the realm of nucleotide polymerases, consists of only palm and fingers subdomains. Despite the absence of a thumb subdomain, which is important for DNA binding in other polymerases, we show that Pol X binds DNA with very high affinity. Further structural analyses suggest a novel mode of DNA binding that may contribute to low fidelity synthesis. We also demonstrate that the ASFV DNA ligase is a low fidelity ligase capable of sealing a nick that contains a G-G mismatch. This supports the hypothesis of a virus-encoded, mutagenic base excision repair pathway consisting of a tandem Pol X/ligase mutator.  相似文献   

2.
Lamarche BJ  Tsai MD 《Biochemistry》2006,45(9):2790-2803
We recently demonstrated that African swine fever virus DNA polymerase X (Pol X) is extremely error-prone during single-nucleotide gap-filling and that the downstream ASFV DNA ligase seals 3' mismatched nicks with high efficiency. To further assess the credence of our hypothesis that these proteins may promote viral diversification by functioning within the context of an aberrant DNA repair pathway, herein we characterize the third protein expected to function in this system, a putative AP endonuclease (APE). Assays of the purified protein using oligonucleotide substrates unequivocally establish canonical APE activity, 3'-phosphatase and 3'-phosphodiesterase activities (in the context of a single-nucleotide gap), 3' --> 5' exonuclease activity (in the context of a nick), and nucleotide incision repair activity against 5,6-dihydrothymine. The 3' --> 5' exonuclease activity is shown to be highly dependent upon the identity of the nascent 3' base pair and to be inhibited when 2-deoxyribose-5-phosphate, rather than phosphate, constitutes the 5' moiety of the nick. ASFV APE retains activity when assayed in the presence of EDTA but is inactivated by incubation with 1,10-phenanthroline in the absence of a substrate, suggesting that it is an endonuclease IV homologue possessing intrinsic metal cofactors. The activities of ASFV APE, when considered alongside those of Pol X and ASFV DNA ligase, provide an enhanced understanding of (i) the types of damage that are likely to be sustained by the viral genome and (ii) the mechanisms by which the minimalist ASFV DNA repair pathway, consisting of just these three proteins, contributes to the fitness of the virus.  相似文献   

3.
Lamarche BJ  Kumar S  Tsai MD 《Biochemistry》2006,45(49):14826-14833
We previously demonstrated that the DNA repair system encoded by the African swine fever virus (ASFV) is both extremely error-prone during the single-nucleotide gap-filling step (catalyzed by ASFV DNA polymerase X) and extremely error-tolerant during the nick-sealing step (catalyzed by ASFV DNA ligase). On the basis of these findings we have suggested that at least some of the diversity known to exist among ASFV isolates may be a consequence of mutagenic DNA repair, wherein damaged nucleotides are replaced with undamaged but incorrect nucleotides by Pol X and the resultant mismatched nicks are sealed by ASFV DNA ligase. Recently, this hypothesis appeared to be discredited by Salas and co-workers [(2003) J. Mol. Biol. 326, 1403-1412], who reported the fidelity of Pol X to be, on average, 2 orders of magnitude higher than what we previously published. In an effort to address this discrepancy and provide a definitive conclusion about the fidelity of Pol X, herein we examine the fidelity of Pol X-catalyzed single-nucleotide gap-filling in both the steady state and the pre-steady state under a diverse array of assay conditions (varying pH and ionic strength) and within different DNA sequence contexts. These studies corroborate our previously published data (demonstrating the low fidelity of Pol X to be independent of assay condition/sequence context), do not reproduce the data of Salas et al., and therefore confirm Pol X to be one of the most error-prone polymerases known. These results are discussed in light of ASFV biology and the mutagenic DNA repair hypothesis described above.  相似文献   

4.
Improving the fidelity of Thermus thermophilus DNA ligase.   总被引:4,自引:0,他引:4       下载免费PDF全文
J Luo  D E Bergstrom    F Barany 《Nucleic acids research》1996,24(15):3071-3078
The DNA ligase from Thermus thermophilus (Tth DNA ligase) seals single-strand breaks (nicks) in DNA duplex substrates. The specificity and thermostability of this enzyme are exploited in the ligase chain reaction (LCR) and ligase detection reaction (LDR) to distinguish single base mutations associated with genetic diseases. Herein, we describe a quantitative assay using fluorescently labeled substrates to study the fidelity of Tth DNA ligase. The enzyme exhibits significantly greater discrimination against all single base mismatches on the 3'-side of the nick in comparison with those on the 5'-side of the nick. Among all 12 possible single base pair mismatches on the 3'-side of the nick, only T-G and G-T mismatches generated a quantifiable level of ligation products after 23 h incubation. The high fidelity of Tth DNA ligase can be improved further by introducing a mismatched base or a universal nucleoside analog at the third position of the discriminating oligonucleotide. Finally, two mutant Tth DNA ligases, K294R and K294P, were found to have increased fidelity using this assay.  相似文献   

5.
6.
Nick recognition by DNA ligases   总被引:4,自引:0,他引:4  
Phage T7 DNA ligase seals nicked DNA substrates and is a representative member of the ATP-dependent class of DNA ligases. Although the catalytic mechanism of DNA ligases has been delineated, little is known about the nature of nick recognition by these enzymes. Here, we show that T7 ligase discriminates, at the nick-binding step, between nicks containing either a 5'-phosphate or a 5'-OH. T7 ligase binds preferentially to phosphorylated nicks and catalyses the sealing reaction. We also show using DNA footprinting studies, that T7 ligase binds asymmetrically to nicks as a monomer, with the protein interface covering between 12 and 14 bp of DNA. Based on molecular modelling studies we propose a structural model of the ligase-DNA complex consistent with these and other data. Using photo-crosslinking and site-directed mutagenesis we have identified two residues, K238 and K240, critical for the transadenylation and nick-sealing reactions. Sequence conservation and structural analysis supports the premise that these two lysine residues are critical for both nucleotide binding and DNA nick recognition. The implications of these results on the ligation mechanism are discussed.  相似文献   

7.
Structural defects, affecting T4 DNA ligase function, were revealed with the help of synthetic DNA duplexes, containing modifications at single nick. Changes of configuration at C2' and C3' atoms of furanose in the acceptor terminus lead to total blocking of the nick sealing activity of T4 DNA ligase. On the contrary, substitution of 3'-terminal deoxyribonucleotide for ribonucleotide doesn't affect the enzyme's action. The duplex looses all of it's substrate activity if the next from the nick G.C pair is substituted for the noncomplementary G.C pair. In DNA duplexes containing an unpaired base in the nick, elimination of the extrahelical nucleotide proceeds the ligation step. In these cases the duplex substrate activity decreases depending on the extent of extrahelical base stacking into the double stranded DNA.  相似文献   

8.
DNA polymerase X (Pol X) from the African swine fever virus (ASFV) specifically binds intermediates in the single-nucleotide base-excision repair process, an activity indicative of repair function. In addition, Pol X catalyzes DNA polymerization with low nucleotide-insertion fidelity. The structural mechanisms by which DNA polymerases confer high or low fidelity in DNA polymerization remain to be elucidated. The three-dimensional structure of Pol X has been determined. Unlike other DNA polymerases, Pol X is formed from only a palm and a C-terminal subdomain. Pol X has a novel palm subdomain fold, containing a positively charged helix at the DNA binding surface. Purine deoxynucleoside triphosphate (dNTP) substrates bind between the palm and C-terminal subdomain, at a dNTP-binding helix, and induce a unique conformation in Pol X. The purine dNTP-bound conformation and high binding affinity for dGTP-Mg(2+) of Pol X may contribute to its low fidelity.  相似文献   

9.
We have identified two novel enzyme systems in human HeLa nuclear extracts that can nick at specific sites of DNA molecules with base mismatches, in addition to the T/G mismatch-specific nicking enzyme system (Wiebauer, K., and Jiricny, J. (1989) Nature 339, 234-236). One enzyme (called all-type) can nick all eight base mismatches with different efficiencies. The other (A/G-specific) nicks only DNA containing an A/G mismatch. The all-type enzyme can be separated from the T/G-specific and A/G-specific nicking enzymes by Bio-Rex 70 chromatography. Further purification on a DEAE-5PW column separated the A/G-specific nicking enzyme from the T/G-specific nicking enzyme. Therefore, at least three different enzyme systems are able to cleave mismatched DNA in HeLa nuclear extracts. The all-type and A/G-specific enzymes work at different optimal salt concentrations and cleave at different sites within the mismatched DNA. The all-type enzyme can only cleave at the first phosphodiester bond 5' to the mispaired bases. This enzyme shows nick disparity to only one DNA strand and may be involved in genetic recombination. The A/G-specific enzyme simultaneously makes incisions at the first phosphodiester bond both 5' and 3' to the mispaired adenine but not the guanine base. This enzyme may be involved in an A/G mismatch-specific repair similar to the Escherichia coli mutY (or micA)-dependent pathway.  相似文献   

10.
Genetic studies have previously demonstrated that the Saccharomyces cerevisiae CDC9 gene product, which is functionally homologous to mammalian DNA ligase I, is required for DNA replication and is also involved in DNA repair and genetic recombination. In the present study we have purified the yeast enzyme. When measured under denaturing conditions, Cdc9 protein has a polypeptide molecular mass of 87 kDa. The native form of the enzyme is an 80-kDa asymmetric monomer. Both estimates are in good agreement with the M(r) = 84,406 predicted from the translated sequence of the CDC9 gene. Cdc9 DNA ligase acts via the same basic reaction mechanism employed by all known ATP-dependent DNA ligases. The catalytic functions reside in a 70-kDa C-terminal domain that is conserved in mammalian DNA ligase I and in Cdc17 DNA ligase from Schizosaccharomyces pombe. The ATP analog ATP alpha S inhibits the ligation reaction, although Cdc9 protein does form an enzyme-thioadenylate intermediate. Since Cdc9 DNA ligase exhibited the same substrate specificity as mammalian DNA ligase I, this enzyme can be considered to be the DNA ligase I of S. cerevisiae. There is genetic evidence suggesting that DNA ligase may be directly involved in error-prone DNA repair. We examined the ability of Cdc9 DNA ligase to join nicks with mismatches at the termini. Mismatches at the 5' termini of nicks had very little effect on ligation, whereas mismatches opposite a purine at 3' termini inhibited DNA ligation. The joining of DNA molecules with mismatched termini by DNA ligase may be responsible for the generation of mutations.  相似文献   

11.
Bacillus subtilis gene yshC encodes a 64-kDa family X DNA polymerase (PolXBs), which contains all the critical residues involved in DNA and nucleotide binding as well as those responsible for catalysis of DNA polymerization, conserved in most family X members. Biochemical analyses of the purified enzyme indicate that PolXBs is a monomeric and strictly template-directed DNA polymerase, preferentially acting on DNA structures containing gaps from one to a few nucleotides and bearing a phosphate group at the 5' end of the downstream DNA. The fact that PolXBs is able to conduct filling of a single-nucleotide gap, allowing further sealing of the resulting nick by a DNA ligase, points to a putative role in base excision repair during the B. subtilis life cycle.  相似文献   

12.
DNA polymerase X (pol X) from African swine fever virus (ASFV) is the smallest naturally ocurring DNA-directed DNA polymerase (174 amino acid residues) described so far. Previous biochemical analysis has shown that ASFV pol X is a highly distributive, monomeric enzyme, lacking a proofreading 3'-5' exonuclease. Also, ASFV pol X binds intermediates of the single-nucleotide base excision repair (BER) process, and is able to efficiently repair single-nucleotide gapped DNA. In this work, we perform an extensive kinetic analysis of single correct and incorrect nucleotide insertions by ASFV pol X using different DNA substrates: (i) a primer/template DNA; (ii) a 1nt gapped DNA; (iii) a 5'-phosphorylated 1nt gapped DNA. The results obtained indicate that ASFV pol X exhibits a general preference for insertion of purine deoxynucleotides, especially dGTP opposite template C. Moreover, ASFV pol X shows higher catalytic efficiencies when filling in gapped substrates, which are increased when a phosphate group is present at the 5'-margin of the gap. Interestingly, ASFV pol X misinserts nucleotides with frequencies from 10(-4) to 10(-5), and the insertion fidelity varies depending on the substrate, being more faithful on a phosphorylated 1nt gapped substrate. We have analyzed the capacity of ASFV pol X to act on intermediates of BER repair. Although no lyase activity could be detected on preincised 5'-deoxyribose phosphate termini, ASFV pol X has lyase activity on unincised abasic sites. Altogether, the results support a role for ASFV pol X in reparative BER of damaged viral DNA during ASFV infection.  相似文献   

13.
Chlorella virus PBCV-1 DNA ligase seals nicked duplex DNA substrates consisting of a 5'-phosphate-terminated strand and a 3'-hydroxyl-terminated strand annealed to a bridging template strand, but cannot ligate a nicked duplex composed of two DNAs annealed on an RNA template. Whereas PBCV-1 ligase efficiently joins a 3'-OH RNA to a 5'-phosphate DNA, it is unable to join a 3'-OH DNA to a 5'-phosphate RNA. The ligase discriminates at the substrate binding step between nicked duplexes containing 5'-phosphate DNA versus 5'-phosphate RNA strands. PBCV-1 ligase readily seals a nicked duplex DNA containing a single ribonucleotide substitution at the reactive 5'-phosphate end. These results suggest a requirement for a B-form helical conformation of the polynucleotide on the 5'-phosphate side of the nick. Single base mismatches at the nick exert disparate effects on DNA ligation efficiency. PBCV-1 ligase tolerates mismatches involving the 5'-phosphate nucleotide, with the exception of 5'-A:G and 5'-G:A mispairs, which reduce ligase activity by two orders of magnitude. Inhibitory configurations at the 3'-OH nucleotide include 3'-G:A, 3'-G:T, 3'-T:T, 3'-A:G, 3'-G:G, 3'-A:C and 3'-C:C. Our findings indicate that Chlorella virus DNA ligase has the potential to affect genome integrity by embedding ribonucleotides in viral DNA and by sealing nicked molecules with mispaired ends, thereby generating missense mutations.  相似文献   

14.
The high fidelity of chick embryo DNA polymerase-gamma (pol-gamma) observed during in vitro DNA synthesis (Kunkel, T. A. (1985) J. Biol. Chem. 260, 12866-12874) has led us to examine this DNA polymerase for the presence of an exonuclease activity capable of proofreading errors. Highly purified chick embryo pol-gamma preparations do contain exonuclease activity capable of digesting radiolabeled DNA in a 3'----5' direction, releasing deoxynucleoside 5'-monophosphates. The polymerase and exonuclease activities cosediment during centrifugation in a glycerol gradient containing 0.5 M KCl. In the absence of dNTP substrates, this exonuclease excises both matched and mismatched primer termini, with a preference for mismatched bases. Excision is inhibited by the addition of nucleoside 5'-monophosphates to the digestion reaction. In the presence of dNTP substrates to permit competition between excision and polymerization from the mismatched primer, the exonuclease excises mismatched bases from preformed terminal mispairs with greater than 98% efficiency. The preference for excision over polymerization can be diminished by addition of either high concentrations of dNTP substrates or nucleoside 5'-monophosphates to the exonuclease/polymerase reaction. To determine if this exonuclease is capable of proofreading misinsertions produced during a normal polymerization reaction, a sensitive base substitution fidelity assay was developed based on reversion of an M13mp2 lacZ alpha nonsense codon. In this assay using reaction conditions that permit highly active exonucleolytic proofreading, pol-gamma exhibits a fidelity of less than one error for every 260,000 bases polymerized. As for terminal mismatch excision, fidelity is reduced by the addition to the synthesis reaction of high concentrations of dNTP substrates or nucleoside 5'-monophosphates, both hallmarks of exonucleolytic proofreading by prokaryotic enzymes. Taken together, these observations suggest that the 3'----5' exonuclease present in highly purified chick embryo pol-gamma preparations proofreads base substitution errors during DNA synthesis. It remains to be determined if the polymerase and exonuclease activities reside in the same or different polypeptides.  相似文献   

15.
We have purified wild type and exonuclease-deficient four-subunit DNA polymerase epsilon (Pol epsilon) complex from Saccharomyces cerevisiae and analyzed the fidelity of DNA synthesis by the two enzymes. Wild type Pol epsilon synthesizes DNA accurately, generating single-base substitutions and deletions at average error rates of 5' exonuclease activity is less accurate to a degree suggesting that wild type Pol epsilon proofreads at least 92% of base substitution errors and at least 99% of frameshift errors made by the polymerase. Surprisingly the base substitution fidelity of exonuclease-deficient Pol epsilon is severalfold lower than that of proofreading-deficient forms of other replicative polymerases. Moreover the spectrum of errors shows a feature not seen with other A, B, C, or X family polymerases: a high proportion of transversions resulting from T.dTTP, T.dCTP, and C.dTTP mispairs. This unique error specificity and amino acid sequence alignments suggest that the structure of the polymerase active site of Pol epsilon differs from those of other B family members. We observed both similarities and differences between the spectrum of substitutions generated by proofreading-deficient Pol epsilon in vitro and substitutions occurring in vivo in a yeast strain defective in Pol epsilon proofreading and DNA mismatch repair. We discuss the implications of these findings for the role of Pol epsilon polymerase activity in DNA replication.  相似文献   

16.
Wang Y  Lamarche BJ  Tsai MD 《Biochemistry》2007,46(17):4962-4976
In addition to linking nicked/fragmented DNA molecules back into a contiguous duplex, DNA ligases also have the capacity to influence the accuracy of DNA repair pathways via their tolerance/intolerance of nicks containing mismatched base pairs. Although human DNA ligase I (Okazaki fragment processing) and the human DNA ligase III/XRCC1 complex (general DNA repair) have been shown to be relatively intolerant of nicks containing mismatched base pairs, the human DNA ligase IV/XRCC4 complex has not been studied in this regard. Ligase IV/XRCC4 is the sole DNA ligase involved in the repair of double strand breaks (DSBs) via the non-homologous end joining (NHEJ) pathway. During the repair of DSBs generated by chemical/physical damage as well as the repair of the programmed DSB intermediates of V(D)J recombination, there are scenarios where, at least conceptually, a capacity for ligating nicks containing mismatched base pairs would appear to be advantageous. Herein we examine whether ligase IV/XRCC4 can contribute a mismatched nick ligation activity to NHEJ. Toward this end, we (i) describe an E. coli-based coexpression system that provides relatively high yields of the ligase IV/XRCC4 complex, (ii) describe a unique rate-limiting step, which has bearing on how the complex is assayed, (iii) specifically analyze how XRCC4 influences ligase IV catalysis and substrate specificity, and (iv) probe the mismatch tolerance/intolerance of DNA ligase IV/XRCC4 via quantitative in vitro kinetic analyses. Analogous to most other DNA ligases, ligase IV/XRCC4 is shown to be fairly intolerant of nicks containing mismatched base pairs. These results are discussed in light of the biological roles of NHEJ.  相似文献   

17.
The effects of deoxynucleoside monophosphates on the 3' leads to 5' exonuclease activity of DNA polymerase III holoenzyme have been correlated with their effects on the fidelity of DNA replication. In particular, dGMP inhibits the proofreading activity of the enzyme and decreases the fidelity in those cases where a "following nucleotide effect" is also noted. This is strong evidence for proofreading. However, the absence of the effects of proofreading inhibitors or following nucleotides need not be evidence against the occurrence of proofreading: a theoretical analysis shows that these effects may not be observed even though there is active proofreading. This is suggested to be the case with the phage T4 enzyme system. The proofreading activity of Pol III appears to be directed primarily towards removing purine x pyrimidine-mediated rather than purine x purine-mediated misincorporations. recA protein inhibits the proofreading activity of Pol III on synthetic templates containing mismatched 3' termini. This is paralleled by a decrease in the fidelity of DNA replication in vitro. The inhibition is increased in the presence of dGMP or dAMP but there is no further increase in the infidelity of replication. The presence of both dNMPs and recA protein does not enable Pol III to copy past pyrimidine photodimers.  相似文献   

18.
DNA Polymerase δ (Pol δ) and the Werner syndrome protein, WRN, are involved in maintaining cellular genomic stability. Pol δ synthesizes the lagging strand during replication of genomic DNA and also functions in the synthesis steps of DNA repair and recombination. WRN is a member of the RecQ helicase family, loss of which results in the premature aging and cancer-prone disorder, Werner syndrome. Both Pol δ and WRN encode 3' → 5' DNA exonuclease activities. Pol δ exonuclease removes 3'-terminal mismatched nucleotides incorporated during replication to ensure high fidelity DNA synthesis. WRN exonuclease degrades DNA containing alternate secondary structures to prevent formation and enable resolution of stalled replication forks. We now observe that similarly to WRN, Pol δ degrades alternate DNA structures including bubbles, four-way junctions, and D-loops. Moreover, WRN and Pol δ form a complex with enhanced ability to hydrolyze these structures. We also present evidence that WRN can proofread for Pol δ; WRN excises 3'-terminal mismatches to enable primer extension by Pol δ. Consistent with our in vitro observations, we show that WRN contributes to the maintenance of DNA synthesis fidelity in vivo. Cells expressing limiting amounts (~10% of normal) of WRN have elevated mutation frequencies compared with wild-type cells. Together, our data highlight the importance of WRN exonuclease activity and its cooperativity with Pol δ in preserving genome stability, which is compromised by the loss of WRN in Werner syndrome.  相似文献   

19.
Bulk replicative DNA synthesis in eukaryotes is highly accurate and efficient, primarily because of two DNA polymerases (Pols): Pols δ and ε. The high fidelity of these enzymes is due to their intrinsic base selectivity and proofreading exonuclease activity which, when coupled with post-replication mismatch repair, helps to maintain human mutation rates at less than one mutation per genome duplication. Conditions that reduce polymerase fidelity result in increased mutagenesis and can lead to cancer in mice. Whereas yeast Pol ε has been well characterized, human Pol ε remains poorly understood. Here, we present the first report on the fidelity of human Pol ε. We find that human Pol ε carries out DNA synthesis with high fidelity, even in the absence of its 3'→5' exonucleolytic proofreading and is significantly more accurate than yeast Pol ε. Though its spectrum of errors is similar to that of yeast Pol ε, there are several notable exceptions. These include a preference of the human enzyme for T→A over A→T transversions. As compared with other replicative DNA polymerases, human Pol ε is particularly accurate when copying homonucleotide runs of 4-5 bases. The base pair substitution specificity and high fidelity for frameshift errors observed for human Pol ε are distinct from the errors made by human Pol δ.  相似文献   

20.
Kumar S  Lamarche BJ  Tsai MD 《Biochemistry》2007,46(12):3814-3825
The structural specificity that translesion DNA polymerases often show for a particular class of lesions suggests that the predominant criterion of selection during their evolution has been the capacity for lesion tolerance and that the error-proneness they display when copying undamaged templates may simply be a byproduct of this adaptation. Regardless of selection criteria/evolutionary history, at present both of these properties coexist in these enzymes, and both properties confer a fitness advantage. The repair polymerase, Pol X, encoded by the African swine fever virus (ASFV) is one of the most error-prone polymerases known, leading us to previously hypothesize that it may work in tandem with the exceptionally error-tolerant ASFV DNA ligase to effect viral mutagenesis. Here, for the first time, we test whether the error-proneness of Pol X is coupled with a capacity for lesion tolerance by examining its ability to utilize the types of damaged DNA and dNTP substrates that are expected to be relevant to ASFV. We (i) test Pol X's ability to both incorporate opposite to and extend from ubiquitous oxidative purine (7,8-dihydro-8-oxoguanine), oxidative pyrimidine (5,6-dihydroxy-5,6-dihydrothymine), and noncoding (AP site) lesions, in addition to 5,6-dihydrothymine, (ii) determine the catalytic efficiency and dNTP specificity of Pol X when catalyzing incorporation opposite to, and when extending from, 7,8-dihydro-8-oxoguanine in a template/primer context, and (iii) quantitate Pol X-catalyzed incorporation of the damaged nucleotide 8-oxo-dGTP opposite to undamaged templates in the context of both template/primer and a single-nucleotide gap. Our findings are discussed in light of ASFV biology and the mutagenic DNA repair hypothesis described above.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号