首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fractionation of methanol extracts of perfusate and haemolymph on thin-layer chromatography was used to separate hormones associated with haemolymph lipid regulation in Locusta. Electrical stimulation of the nervi corporis cardiaci II (NCC II) of isolated corpora cardiaca resulted in the release of three hormones into the perfusate; hypolipaemic hormone and two adipokinetic hormones. The two adipokinetic hormones co-migrated with synthetic adipokinetic hormone (adipokinetic hormone I) and with the RF value similar to Carlsen's peptide (adipokinetic hormone II).These two adipokinetic hormones were also present in small amounts in the haemolymph of unflown Locusta, and shown to be released during a 30-min flight. The adipokinetic hormone II fraction from the NCC II-stimulated perfusate and haemolymph also possessed hyperglycaemic activity when assayed in ligated locusts.It is concluded that NCC II controls the release of adipokinetic hormones during flight and that two adipokinetic hormones are released during flight. One of these hormones adipokinetic hormone II also acts as a hyperglycaemic hormone illustrating that a hyperglycaemic hormone is released, during flight.  相似文献   

2.
In the adult males of the Colorado potato beetle, Leptinotarsa decemlineata, corpora cardiaca extract injected in vivo gives rise to an increase in glucose and a decrease in alanine concentration of the haemolymph. The regulation of proline synthesis and glucose release in the fat body of the Colorado potato beetle was investigated further in vitro. Proline regulates its own synthesis by a feedback inhibition. Moreover, a factor present in extracts from the corpora cardiaca stimulates synthesis in the fat body in vitro. This effect was demonstrated with corpora cardiaca extracts from beetles, locusts and cokroaches. Also, synthetic adipokinetic hormone stimulates proline synthesis in the fat body of the Colorado beetle. In addition, a release of glucose from the fat body of the beetle could be evoked by the addition of locust and beetle corpora cardiaca extracts or synthetic adipokinetic hormone. The physiological significance of both effects is discussed.  相似文献   

3.
《Insect Biochemistry》1991,21(2):121-129
Members of the adipokinetic hormone/red pigment-concentrating hormone (AKH/RPCH) family characteristically cause metabolite mobilization by the insect fat body. The present study identified several additional physiological actions in adult Blaberus discoidalis cockroaches that were influenced by synthetic Blaberus hypertrehalosemic hormone (HTH) and other AKH/RPCH family peptides. HTH elevated blood carbohydrate by 4-fold and cytochrome heme a + b synthesis of fat body mitochondria by 3-fold. Both carbohydrate and heme synthesis were dose-responsive to HTH. Carbohydrate synthesis was 10 times more sensitive to HTH than heme synthesis. Heme synthesis was also stimulated by Periplaneta cardioacceleratory hormones (CAH)-I and -II and RPCH but not by AKH-I or -II, at the doses tested. HTH showed strong cardioexcitatory activity. Long-term treatment of decapitated female B. discoidalis with juvenile hormone analog (JHA = methoprene) stimulated by 2.6-fold the rate of synthesis of secreted fat body proteins. HTH enhanced the JHA-dependent export protein synthesis by 42% above that observed with JHA alone. SDS-PAGE demonstrated that JHA determined the nature of the newly synthesized polypeptides; HTH enhanced their synthesis rate. Neither AKH-I nor HTH affected protein synthesis when added directly to isolated fat body. These results demonstrate that peptides of the AKH/RPCH family have multiple physiological actions related to fat body energy metabolism.  相似文献   

4.
Since all life processes depend on energy, the endocrine control of energy metabolism is one of the driving forces for the performance of an individual. Here, we review the literature on the key players in the endocrine regulation of energy homeostasis in insects, the adipokinetic hormones. These pleiotropic peptides not only control dynamic performance traits (flight, swimming, walking) but also regulatory performance traits (egg production, larval growth, and molting). Adipokinetic hormone is released into the hemolymph during intense muscular activity (flight) and also during apparently less energy-demanding locomotory activities, such as swimming and even walking, and, finally, activates the catabolic enzymes phosphorylase and/or triacylglycerol lipase that mobilize carbohydrates and/or lipids and proline, respectively. At the same time, anabolic processes such as the synthesis of protein, lipid, and glycogen are inhibited. Furthermore, adipokinetic hormones affect locomotory activity via neuromodulatory mechanisms that apparently employ biogenic amines. During oogenesis, it is thought that adipokinetic hormone performs similar tasks, because energetic substrates have to be mobilized and transported from the fat body to the ovaries in order to support oocyte growth. Inhibition of anabolic processes by exogenous adipokinetic hormone results in females that lay fewer and smaller eggs. Much less is known about the role of adipokinetic hormones during larval development and during molting but in this case energy homeostasis has to be tightly regulated as well: in general, during the early phase of a larval instar intake of food prevails and the energy stores of the fat body are established, whereas, prior to the molt, insects stop feeding and mobilize energy stores in the fat body, thereby fueling energy-demanding processes such as the formation of the new cuticle and the emergence from the old one. From the few data available to date, it is clear that adipokinetic hormones are involved in the regulation of these events in larvae.  相似文献   

5.
6.
Both adipokinetic hormone and octopamine have a stimulating effect on lipid release from locust fat body in vitro, when incubated in diluted haemolymph. The presence of adipokinetic hormone results in the formation of the flight-specific haemolymph lipoprotein A+ accepting the increased amount of lipids released into the incubation medium. In contrast, interconversions of lipoproteins do not occur when octopamine is added to the incubation medium, which is in line with the expectations: the lipid-mobilizing effect of octopamine is a limited and short-term effect. When fat body tissue is incubated with isolated haemolymph protein fractions, the lipid-mobilizing effect of adipokinetic hormone only occurs when the incubation medium contains both lipoprotein, Ay and protein fraction C, resulting in the formation of lipoprotein A+. In similar control incubations with the hormone omitted, some lipoprotein A+ is also formed (concomitant with a slight amount of lipid released), though significantly less than in incubations with hormone. Besides a stimulating function on lipolytic processes in the fat body, adipokinetic hormone is suggested to influence haemolymph lipoprotein rearrangement. A possible counteracting function of another factor in the haemolymph is discussed.  相似文献   

7.
Between 10 and 20 per cent of the total glycogen phosphorylase in the fat body of mature Locusta migratoria of both sexes is in the active form. Injection of an aqueous corpus cardiacum (CC) extract results in a rapid activation: within 2 min the level of active phosphorylase is significantly increased and full activation is reached within 10 to 20 min. As little as 0.002 CC gland equivalents stimulate fat body glycogen phosphorylase significantly and maximum activation is obtained with 0.05 CC gland equivalents. From experiments with known quantities of injected synthetic adipokinetic hormone (SAKH), it appears that this hormone cannot account for all the activation. This is supported by results obtained when extracts of carefully isolated storage lobes are injected; at the dose used here these have no adipokinetic activity, but activate fat body phosphorylase. Furthermore, when locusts are ‘stressed’ by rotation, although no adipokinetic hormone is released, an activation of phosphorylase occurs. Starvation causes also an increase in the active form of the enzyme. The fat body receptor sites of the locust recognise also the crustacean red pigment concentrating hormone (RPCH), whose structure closely resembles that of the locust adipokinetic hormone, leading to activation of the phosphorylase. However, RPCH is about 2.5–5 times less potent than SAKH. Crude CC extracts of a stick insect (Carausius morosus), a cockroach (Periplaneta americana) and the tobacco hornworm (Manduca sexta) activate locust fat body phosphorylase, although this last extract has no effect on lipid elevation. On the other hand, CC extracts of the death's head hawk moth (Acherontia atropos) and purified crustacean hyperglycaemic hormone from a crayfish (Orconectes limosus) have no effect.  相似文献   

8.
Lipid metabolism in Tenebrio larval fat body has been studied in vitro. Lipid release required the presence of diluted hemolymph in the incubation medium. This time-dependent release of lipid was strongly stimulated in a dose-dependent manner by Tenebrio corpora cardiaca (CC) extracts or synthetic adipokinetic hormone (AKH I). Furthermore, some glycerol was released when larval fat body was incubated without hemolymph, and this phenomenon was also dose dependent for added CC extracts. Lipid synthesis was estimated in vitro by following the incorporation of radioactivity from [6-14C] glucose into fatty acids. Lipogenesis occurred in the absence of added carbohydrates in the medium, but it was stimulated by the addition of glucose, and especially trehalose (10 mg ml?1). Intestinal insulin-like peptide (ILP) also stimulated in vitro lipogenesis in a dose-dependent fashion. We conclude that lipolytic and lipogenetic activities of larval mealworm fat body in vitro are effectively under hormonal control.  相似文献   

9.
Experiments dealing with the role of juvenile hormone, adipokinetic hormone and diuretic hormone in the Painted Lady butterfly Vanessa cardui are reported. The results demonstrate an important role of JH in the regulation of ovarian and colleterial gland development in females, and in the regulation of accessory gland, tubular gland and ejaculatory duct development in males. In addition, the presence of an adult reproductive diapause, characterized by decreased effective juvenile hormone haemolymph titres, is suggested. Evidence for the existence of both adipokinetic and diuretic hormones in the Painted Lady is also presented, as is data indicating that both hormones may be similar or identical to those previously described in Monarch butterflies. Owing to the above results, and the existence of an artificial diet suitable for mass rearing in the laboratory, the Painted Lady appears to be an excellent species for studies on adult lepidopteran neuroendocrinology.  相似文献   

10.
We have previously shown that stereospecific hydrolysis of stored triacylglycerol by a phosphorylatable triacylglycerol-lipase is the pathway for the adipokinetic hormone-stimulated synthesis of sn -1, 2-diacylglycerol in insect fat body. The current series of experiments were designed to determine whether cAMP and/or calcium are involved in the signal transduction pathway for adipokinetic hormone in the fat body. After adipokinetic hormone treatment, cAMP-dependent protein kinase activity in the fat body rapidly increased and reached a maximum after 20 min, suggesting that adipokinetic hormone causes an increase in cAMP. Forskolin (0.1 micrometer), an adenylate cyclase activator, induced up to a 97% increase in the secretion of diacylglycerol from the fat body. 8Br-cAMP (a membrane-permeable analog of cAMP) produced a 40% increase in the hemolymph diacylglycerol content. Treatment with cholera toxin, which also stimulates adenylate cyclase, induced up to a 145% increase in diacylglycerol production. Chelation of extracellular calcium produced up to 70% inhibition of the adipokinetic hormone-dependent mobilization of lipids. Calcium-mobilizing agents, ionomycin and thapsigargin, greatly stimulated DG production by up to 130%. Finally, adipokinetic hormone caused a rapid increase of calcium uptake into the fat body. Our findings indicate that the action of adipokinetic hormone in mobilizing lipids from the insect fat body involves both cAMP and calcium as intracellular messengers.  相似文献   

11.
The effects of flight upon the level of cyclic AMP in the fat body of Locusta migratoria have been examined. Flight induced two phases of cyclic AMP elevation; the first during the initial 10 min of flight, the second between 20–30 min of flight. Neck-ligated locusts have increased levels of cyclic AMP after 10 min of flight, indicating that the adipokinetic hormones are not necessary for this elevation. Injection of 6 mg trehalose, a procedure known to delay the release of adipokinetic hormones, prevented the increases seen at 10 and 30 min of flight. Injection of synthetic adipokinetic hormone I increased the levels of cyclic AMP within 5 min, and these were maintained for up to 15 min. The roles of octopamine and the adipokinetic hormones in increasing fat body cyclic AMP, and thereby regulating haemolymph lipid, during flight are discussed.  相似文献   

12.
Maintenance of biological functions under negative energy balance depends on mobilization of storage lipids and carbohydrates in animals. In mammals, glucagon and glucocorticoid signaling mobilizes energy reserves, whereas adipokinetic hormones (AKHs) play a homologous role in insects. Numerous studies based on AKH injections and correlative studies in a broad range of insect species established the view that AKH acts as master regulator of energy mobilization during development, reproduction, and stress. In contrast to AKH, the second peptide, which is processed from the Akh encoded prohormone [termed “adipokinetic hormone precursor-related peptide” (APRP)] is functionally orphan. APRP is discussed as ecdysiotropic hormone or as scaffold peptide during AKH prohormone processing. However, as in the case of AKH, final evidence for APRP functions requires genetic mutant analysis. Here we employed CRISPR/Cas9-mediated genome engineering to create AKH and AKH plus APRP-specific mutants in the model insect Drosophila melanogaster. Lack of APRP did not affect any of the tested steroid-dependent processes. Similarly, Drosophila AKH signaling is dispensable for ontogenesis, locomotion, oogenesis, and homeostasis of lipid or carbohydrate storage until up to the end of metamorphosis. During adulthood, however, AKH regulates body fat content and the hemolymph sugar level as well as nutritional and oxidative stress responses. Finally, we provide evidence for a negative autoregulatory loop in Akh gene regulation.  相似文献   

13.
Corpus cardiacum extracts from the phasmids, Carausius morosus, Cuniculina impigra, Sipyloidea sipylus, Acrophylla wuelfingi, Eurycantha goliath, Bacillus rossius and Extatosoma tiaratum, from the Orthopterans, Locusta migratoria and Gryllus bimaculatus, from the Dictyopterans, Periplaneta americana, Gromphadorrhina coquereliana and Blaberus craniifer, from the Coleopterans Tenebrio molitor and Pachnoda sp., synthetic adipokinetic hormone and synthetic crustacean red pigment-concentrating hormone (RPCH) were injected into locusts, cockroaches and ligated stick insects as bioassay systems for adipokinetic and hyperglycaemic substances, respectively. The locust and cockroach bioassay gave positive results with all corpus cardiacum material tested (however the lipid response in locusts upon injection of T. molitor corpus cardiacum extract was very poor). The stick insect bioassay was quite specific for stick insect corpus cardiacum material; only corpus cardiacum extracts from a few other species (G. bimaculatus, P. americana, G. coquereliana and Pachnoda sp.) showed weak activity. All other extracts, including synthetic adipokinetic hormone and RPCH, failed to induce a response.Separations of corpus cardiacum extracts from L. migratoria, P. americana, T. molitor, C. morosus and S. sipylus were achieved on reversed-phase high-performance liquid chromatography (RP-HPLC). Locust corpus cardiacum extract showed two absorbance peaks with adipokinetic activity, adipokinetic hormones I and II. The peaks with hyperglycaemic activity from P. americana corpus cardiacum extracts had different retention times to those of locust adipokinetic hormones I and II. Stick insect corpus cardiacum extracts revealed also 2 absorbance peaks with adipokinetic activity, the major one co-eluting with RPCH. The active compound from corpus cardiacum extracts of T. molitor appeared to elute close to locust adipokinetic hormone I.  相似文献   

14.
《Insect Biochemistry》1990,20(3):319-323
Vitellogenesis in locusts is synchronized with the cyclic maturation of oocytes. Vitellogenesis by excised fat body of gravid females is differentially inhibited 80–90% when locust adipokinetic hormone I (AKH-I) is added to the incubation media. Hemolymph methanolic extracts completely inhibit fat body protein synthesis in vitro when the donor females are at the end of the ovarian cycle (6 mm stage), but not when taken from earlier stages. Hemolymph methanolic extracts from vitellogenic females at the 6 mm stage are separated by HPLC into three distinct inhibitors of protein synthesis, one of which is AKH-I. AKH-RIA of hemolymph during the first ovarian cycle reveals no AKH-I during active vitellogenesis, but a marked increase to about 5 ng per female at the end of egg maturation. A development of responsiveness to AKH-I is evident in female fat body as vitellogenesis proceeds. AKH-I is involved in the negative control of vitellogenesis.  相似文献   

15.
Activation and inactivation of fat body glycogen phosphorylase was investigated in ligated abdomens of larval Manduca sexta and in vitro. After maximal activation through Manduca adipokinetic hormone (AKH) or chilling, inactivation of glycogen phosphorylase commenced as soon as the stimulus for the activation was removed indicating that the enzyme system in the fat body is fine-tuned to low phosphorylase activities which is necessary to allow glycogen synthesis. In intact ligated abdomens phosphorylase can be activated repeatedly by either stimulus showing that the fat body system does not lose its responsiveness. It was impossible to achieve complete conversion of the inactive form of phosphorylase into the active form even after administration of AKH and simultaneous chilling. © 1992 Wiley-Liss, Inc.  相似文献   

16.
《Insect Biochemistry》1990,20(4):325-330
Forskolin (FORSK), octopamine (OA) and adipokinetic hormone (AKH) stimulate the production of diacylglycerol (DG) in fat body of the locust, Locusta migratoria and the release of DG from fat body into hemolmph. The three effectors also increase the level of cAMP in fat body, but the cAMP content is not proportional to DG production. AKH stimulates the uptake of Ca2+ by fat body cells and requires the presence of extracellular Ca2+ to increase cAMP and DG levels in fat body. The production of DG seems to be an energy-dependent process. The uptake of DG by lipophorin (LP) from fat body is also energy-dependent but does not require extracellular Ca2+.  相似文献   

17.
《Insect Biochemistry》1991,21(4):375-380
Inclusion of glucose or trehalose in the medium during the incubation of locust fat body in vitro leads to a reduction of the relative amount of active (AMP-independent) glycogen phosphorylase. The presence of adipokinetic hormone (AKH I) results in a rapid activation of phosphorylase, reaching a maximum within 5 min. This AKH effect is highly dependent on added Ca2+, and requires ⩾ 1 mM Ca2+ for maximal enzyme activation. Ca2+ alone has no effect on phosphorylase activity, but it does activate the enzyme when the ionophore A23187 is also included in the medium. In a cell-free system from locust fat body the activation of endogenous phosphorylase by phosphorylase kinase is stimulated by Ca2+. Activity of the latter enzyme can be increased further by high doses of calmodulin. Both in the presence and in the absence of external calmodulin, the calmodulin antagonist trifluoperazine has an inhibitory effect on phosphorylase kinase. Results are discussed in relation to the possible mechanisms underlying hormonal control of glycogenolysis.  相似文献   

18.
Sexual phenotype and vitellogenin synthesis in Drosophila melanogaster   总被引:17,自引:0,他引:17  
An ovary transplanted from a Drosophila melanogaster female into a male will mature and form morphologically normal yolk-filled oocytes. Since it has been supposed that the yolk polypeptides come only from the female fat body, it was hypothesized that the implanted ovary induces the fat body of the male host to synthesize and secrete yolk polypeptides (YPs). To test this hypothesis, fat body preparations from females, untreated males, and males containing transplanted ovaries were cultured in vitro with 35S-methionine and the medium was examined for the presence of newly labeled YPs. Female fat body secreted newly labeled YPs, but no freshly synthesized YPs were secreted by fat bodies from untreated males or from males containing transplanted ovaries. In vitro cultured ovaries, however, both from females and from male hosts did secrete newly synthesized YPs. Therefore, the YPs in an ovary that matured in a male come mainly from endogenous synthesis by the implanted ovary. To find whether males were responsive to the hormones that stimulate YP production in isolated female abdomens, we treated males with the juvenile hormone analogue ZR-515 and with 20-hydroxyecdysone. The latter, but not the former, was able to cause synthesis and secretion of three bands migrating precisely as YPs in SDS gels. Partial peptide digests of the 20-hydroxyecdysone-stimulated polypeptides in males showed them to be identical with those stimulated by 20-hydroxyecdysone or ZR-515 in isolated female abdomens and with the three YPs found in normal female hemolymph. Finally, YP synthesis was assayed in mutants that affect the phenotypic sex of a fly. It was found that flies bearing two X chromosomes and the mutations dsx, dsxD, ix or three sets of autosomes continued to make YPs, but tra-3-pseudomales did not. These results suggest that the process of sex determination involves steps leading to synthesis of an ecdysteroid in females, which then activates synthesis of the YPs by the fat body. A hypothesis is suggested to explain the fact that two different hormones can stimulate YP synthesis and two different organs can synthesize YPs.  相似文献   

19.
Recent findings on differences between the gregarious and solitary phases of locusts are reviewed in relation to flight fuel utilization, adipokinetic responses, and adipokinetic hormones. Laboratory results obtained with Locusta migratoria migratorioides show that the amount of lipid reserves, resting levels of haemolymph lipids, and hyperlipaemic responses to flight and to injection of corpus cardiacum extract or of synthetic adipokinetic hormones, are higher in crowded than in isolated locusts. No major phase-dependent differences seem to exist in flight-related carbohydrate metabolism. The adipokinetic hormone content of the corpora cardiaca is higher in younger isolated locusts than in crowded ones. Adipokinetic hormone precursor-related peptide content of the corpora cardiaca is also higher in isolated than in crowded locusts. Crowded locusts have higher lipid reserves and higher hyperlipaemic responses to flight than isolated locusts also in Schistocerca gregaria and, following injection of synthetic adipokinetic hormone, the formation of low density lipophorin is higher in crowded than in isolated locusts of this species. The laboratory results obtained with isolated and crowded locusts are extrapolated to understand the ecophysiology of the migrations of solitary and gregarious field populations of L.m. migratorioides according to available information on the differences in the migration of the two phases. It is inferred that in this species solitary locusts have a rather coarse adipokinetic strategy focused on a single prereproductive long-distance migratory flight, whereas gregarious locusts possess a fine adipokinetic balance for reiterative, sometimes unpredictably long-distance, migrations in the prereproductive, as well as reproductive, periods. The differences between the adipokinetic strategies of solitary and gregarious S. gregaria seem to be less dramatic, nevertheless, they indicate a better adaptation of the gregarious phase to prolonged flights.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号