首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
90K (Mac-2 BP) and galectins in tumor progression and metastasis   总被引:10,自引:0,他引:10  
Galectins and their ligands have been implicated in cell transformation and cancer metastasis, and found to have prognostic value. Mac-2 BP, also known as 90K, is a highly glycosylated, secreted protein extensively studied in human cancer, which binds galectin-1, galectin-3 and galectin-7. High expression levels of 90K are associated with a shorter survival, the occurrence of metastasis or a reduced response to chemotherapy in patients with different types of malignancy. The mechanisms underlying the prognostic significance of 90K and galectins in cancer are far from being understood, although they may be related to the ability of these proteins to interact and, to some extent, modulate cell-cell and cell-matrix adhesion and apoptosis. The resulting scenario is even more complex, as data have been presented that all these proteins might be associated with either a positive or a negative outcome of the patients. It is hypothesised that different galectins and galectin ligands with overlapping or opposite functions, expressed in different tumors during the different steps of the metastatic cascade might play a crucial role in tumor progression.  相似文献   

2.
Prostate tumor progression and metastasis   总被引:1,自引:0,他引:1  
  相似文献   

3.
The tumor-associated antigen 90K (TAA90K)/Mac-2-binding protein implicated in cancer progression and metastasis is modified by beta1-6 branched N-linked oligosaccharides in colon cancer cells, glycans shown to contribute to cancer metastasis. To elucidate the role of TAA90K in colon cancer, we examined its expression and function in human colon tumors and colon carcinoma cell lines. Immunohistochemical analyses of colon tumors revealed elevated expression of TAA90K in all samples analyzed compared to normal colon. To examine the function of TAA90K in colon cancer, we carried out protein and cell binding assays using TAA90K-His purified from HT-29 cells colon carcinoma cells infected with recombinant vaccinia virus expressing TAA90K containing a C-terminal poly-histidine tag. TAA90K-His bound to fibronectin, collagen IV, laminins-1, -5, and -10 and galectin-3 (Mac-2) but poorly to collagen I and galectin-1. As expected, binding of TAA90K to galectin-3 was dependent on carbohydrate since it was inhibitable by lactose and asiolofetuin, and a TAA90K-His glycoform purified from HT-29 cells treated with the glycosylation inhibitor 1-deoxymannojirimycin bound poorly to galectin-3. Unlike TAA90K isolated from other cell types, TAA90K-His isolated from colon cancer cells failed to mediate adhesion of colon cancer and normal cell lines, possibly due to cell-type specific glycosylation of TAA90K-His and/or its putative cellular receptor. However, at low concentrations, TAA90K-His enhanced galectin-3-mediated HT-29 cell adhesion while at high concentrations, it inhibited cell adhesion. Thus, a possible mechanism by which TAA90K may contribute to colon cancer progression is by modulating tumor cell adhesion to extracellular proteins, including galectin-3.  相似文献   

4.
黏蛋白1(MUC1)是一种高分子量跨膜糖蛋白,广泛分布于机体正常黏膜表面,具有多种功能。MUC1在肿瘤组织中异常表达,与肿瘤的侵袭、转移和预后密切相关,具有重要的临床应用价值。本文对MUC1的结构、功能及其在多种肿瘤转移中的研究进展进行了综述,并对其在肿瘤的临床诊断及治疗中的作用进行了展望。  相似文献   

5.
6.
Galectins are a family of carbohydrate binding proteins with a broad range of cytokine and growth factor-like functions in multiple steps of cancer progression. They contribute to tumor cell transformation, promote tumor angiogenesis, hamper the anti-tumor immune response, and facilitate tumor metastasis. Consequently, galectins are considered as multifunctional targets for cancer therapy. Interestingly, many of the functions related to tumor progression can be linked to galectins expressed by endothelial cells in the tumor vascular bed. Since the tumor vasculature is an easily accessible target for cancer therapy, understanding how galectins in the tumor endothelium influence cancer progression is important for the translational development of galectin-targeting therapies.  相似文献   

7.
Galectins are galactoside-binding proteins that exhibit an important function in tumor progression by promoting cancer cell invasion and metastasis formation. Using Northern blotting and Western blotting analysis, in situ hybridization (ISH), and immunohistochemistry (IHC), we studied galectin-1 and galectin-3 in tissue samples of 33 primary pancreatic cancers and in tumor metastases in comparison to 28 normal pancreases. Furthermore, the molecular findings were correlated with the clinical and histopathological parameters of the patients. Northern blotting and Western blotting analysis showed significantly higher galectin-1 and galectin-3 mRNA and protein levels in pancreatic cancer samples than in normal controls. For galectin-1, no ISH signals and immunoreactivity were observed in acinar or ductal cells in the normal pancreas and in pancreatic cancer cells, whereas fibroblasts and extracellular matrix cells around the cancer mass exhibited strong mRNA signals and immunoreactivity. Galectin-3 mRNA signals and immunoreactivity were strongly present in most pancreatic cancer cells, whereas in the normal controls only faint ISH and IHC signals were seen in some ductal cells. Metastatic pancreatic cancer cells exhibited moderate to strong galectin-3 immunoreactivity but were negative for galectin-1. No relationship between the galectin-1 and galectin-3 mRNA levels and the tumor stage or between the IHC staining score and the tumor stage was found. However, galectin-1 mRNA levels and the IHC staining score were significantly higher in poorly differentiated tumors compared with well/moderately differentiated tumors, whereas for galectin 3 no differences were found. The expression pattern of galectin-1 and galectin-3 in pancreatic cancer tissues indicates that galectin-1 plays a role in the desmoplastic reaction that occurrs around pancreatic cancer cells, whereas galectin-3 appears to be involved in cancer cell proliferation. High levels of galectin-3 in metastatic cancer cells suggest an impact on metastasis formation.  相似文献   

8.
Metastasis, the process by which cancer spreads from a primary to a secondary site, is responsible for the majority of cancer related deaths. Yet despite the detrimental effects of metastasis, it is an extremely inefficient process by which very few of the cells that leave the primary tumor give rise to secondary tumors. Metastasis can be considered as a series of sequential steps that begins with a cell leaving a primary tumor, and concludes with the formation of a metastatic tumor in a distant site. During the process of metastasis cells are subjected to various apoptotic stimuli. Thus, in addition to genetic changes that promote unregulated proliferation, successful metastatic cells must have a decreased sensitivity to apoptotic stimuli. As many cancer cells exhibit aberrations in the level and function of key apoptotic regulators, exploiting these alterations to induce tumor cell apoptosis offers a promising therapeutic target. This review will examine the apoptotic regulators that are often aberrantly expressed in metastatic cells; the role that these regulators may play in metastasis; the steps of metastasis and their susceptibility to apoptosis; and finally, current and future cancer prognostics and treatment targets based on apoptotic regulators.  相似文献   

9.
Various tumor cells exhibit structural alterations in the sulfated modifications to glycosaminoglycans (GAGs). The altered expression of chondroitin sulfate (CS) and heparan sulfate (HS) on the surfaces of tumor cells is known to play a key role in malignant transformation and tumor metastasis. The receptor molecule for the CS chains containing E-disaccharide units (CS-E) expressed on Lewis lung carcinoma (LLC) cells was recently revealed to be Receptor for Advanced Glycation End-products (RAGE). RAGE is also involved in the development of various pathological conditions including aging, infection, pulmonary fibrosis, diabetes, and Alzheimer’s disease, by binding to a wide range of ligands. RAGE binds strongly not only to CS-E, but also to HS-expressing LLC cells. Recombinant RAGE bound CS-E and HS with high affinity. Furthermore, in a mouse model, the colonization of the lungs by LLC cells was inhibited by intravenously injected CS-E, an anti-CS-E antibody, or an anti-RAGE antibody. These findings demonstrated that RAGE is at least one of the critical receptors for CS and HS chains expressed on the tumor cell surface and is involved in experimental lung metastasis, and also that CS/HS and RAGE are potential molecular targets for the treatment of pulmonary metastasis. We, hence, reviewed these findings and also several chemically synthesized small GAGmimetics that exhibit potent anti-metastatic and/or anti-tumor activities.  相似文献   

10.
11.
Melanoma is the leading cause of skin cancer-related deaths, which is due in large part to its aggressive behavior, resistance to therapy, and ability to metastasize to multiple organs such as the lymph nodes, lung, and brain. Melanoma progresses in a stepwise manner from the benign nevus, to radial spreading through the dermis, to a vertical invasive phase, and finally to metastasis. The carbohydrate-binding family of galectins has a strong influence on each phase of melanoma progression through their effects on immune surveillance, angiogenesis, cell migration, tumor cell adhesion, and the cellular response to chemotherapy. Galectins share significant homology in their carbohydrate recognition domain (CRD), which mediates binding to an array of N-glycosylated proteins located on the surface of tumor cells, endothelial cells, T-cells, and to similarly glycosylated extracellular matrix proteins. Galectins are also present within tumor cells where they perform anti-apoptotic functions and enhance intracellular signaling that results in deregulated expression of genes involved in tumor progression. The most extensively studied galectins, galectin-1 and galectin-3, have been shown to have profound effects on melanoma growth and metastasis by influencing many of these biological processes.  相似文献   

12.
Rat anti-mouse monoclonal antibodies (mAb), anti-Mac-1, -2, and -3, directed against macrophage (M phi) glycoprotein surface antigens, were used to demonstrate a tumor-induced shift in peritoneal M phi subpopulations. This study of the tumor-induced shift was approached in two steps. First, to show that separate phenotypic M phi subpopulations existed and second, to show that a shift in these populations was involved in immunosuppression of the host during tumor growth. Endogenous peroxidase activity was examined among normal and tumor-bearing host (TBH) M phi. A significant increase in the number of peroxidase-positive M phi occurred during tumor growth. Indirect immunofluorescence showed a decrease in Mac-2+ cells and an increase in Mac-3+ cells in TBH M phi populations. When the mAb, anti-Mac-1,-2, and -3 were used in the presence of complement (C), they were cytotoxic for M phi and showed differential depletion of normal and TBH M phi. Peroxidase-positive TBH M phi were susceptible to C-mediated lysis by anti-Mac-1 and -3 but not by anti-Mac-2, whereas no direct relationship was observed among normal host M phi. To demonstrate differences between normal and TBH M phi subpopulations, soluble inhibitory factors were examined from mAb plus C-modified M phi populations. Anti-Mac plus C-treated normal and TBH M phi produced supernatants with different regulatory capabilities as assessed in the mixed-lymphocyte reaction (MLR). Anti-Mac-2 plus C treatment significantly reduced the ability of TBH M phi to produce a soluble suppressor(s) but did not alter normal host M phi-derived suppressor production. In contrast, anti-Mac-1 and -3 plus C treatment of normal host M phi significantly reduced suppressor production. In the TBH, however, anti-Mac-1 plus C had no effect, while anti-Mac-3 plus C had only a limited reduction as compared to the normal host. Determination of levels of prostaglandin E2 (PGE2) in M phi supernatants showed that normal host Mac-1+ M phi were involved in down regulation of PGE2 production. This control was missing in the TBH M phi. Mac-2+ M phi were the apparent producers of PGE2 which accounts for the factor-mediated MLR suppression attributed to TBH Mac-2+ M phi. Collectively, these data suggest that tumor-induced aberrations in immunoregulation can in part be attributed to differences in anti-Mac mAb-defined M phi subpopulations.  相似文献   

13.
Animal models allowing more sensitive and early detection of tumorigenesis and metastasis are instrumental in the fight for developing effective therapies against aggressive forms of cancer. In the present chapter, the advantages and limitations of the bioluminescent imaging (BLI) approach are discussed. Although BLI provides rapid, highly sensitive, noninvasive and quantitative detection of small tumors and micrometastases, several issues like the low anatomic resolution or the attenuation of the luminescent signal with tissue depth must be considered when using this technology.  相似文献   

14.
Robust neovascularization and lymphangiogenesis have been found in a variety of aggressive and metastatic tumors. Endothelial sprouting angiogenesis is generally considered to be the major mechanism by which new vasculature forms in tumors. However, increasing evidence shows that tumor vasculature is not solely composed of endothelial cells (ECs). Some tumor cells acquire processes similar to embryonic vasculogenesis and produce new vasculature through vasculogenic mimicry, trans-differentiation of tumor cells into tumor ECs, and tumor cell–EC vascular co-option. In addition, tumor cells secrete various vasculogenic factors that induce sprouting angiogenesis and lymphangiogenesis. Vasculogenic tumor cells actively participate in the formation of vascular cancer stem cell niche and a premetastatic niche. Therefore, tumor cell-mediated neovascularization and lymphangiogenesis are closely associated with tumor progression, cancer metastasis, and poor prognosis. Vasculogenic tumor cells have emerged as key players in tumor neovascularization and lymphangiogenesis and play pivotal roles in tumor progression and cancer metastasis. However, the mechanisms underlying tumor cell-mediated vascularity as they relate to tumor progression and cancer metastasis remain unclear. Increasing data have shown that various intrinsic and extrinsic factors activate oncogenes and vasculogenic genes, enhance vasculogenic signaling pathways, and trigger tumor neovascularization and lymphangiogenesis. Collectively, tumor cells are the instigators of neovascularization. Therefore, targeting vasculogenic tumor cells, genes, and signaling pathways will open new avenues for anti-tumor vasculogenic and metastatic drug discovery. Dual targeting of endothelial sprouting angiogenesis and tumor cell-mediated neovascularization and lymphangiogenesis may overcome current clinical problems with anti-angiogenic therapy, resulting in significantly improved anti-angiogenesis and anti-cancer therapies.  相似文献   

15.
16.
17.
本文从流行病学、药理学动物模型和体外药理学三个方面列举了COX-2作为肿瘤发生限速步骤的证据,分析了COX-2促进肿瘤发生的可能机制,探讨COX-2同时表达于炎症和肿瘤的意义,最后对COX-2与肿瘤发生的研究方向进行了一些推测。  相似文献   

18.
19.
The leukocyte integrin alphaMbeta2 (Mac-1) is a multiligand receptor that mediates a range of adhesive reactions of leukocytes during the inflammatory response. This integrin binds the coagulation protein fibrinogen providing a key link between thrombosis and inflammation. However, the mechanism by which alphaMbeta2 binds fibrinogen remains unknown. Previous studies indicated that a model in which two fibrinogen gammaC domain sequences, P1 (gamma190-202) and P2 (gamma377-395), serve as the alphaMbeta2 binding sites cannot fully account for recognition of fibrinogen by integrin. Here, using surface plasmon resonance, we examined the interaction of the ligand binding alphaMI-domain of alphaMbeta2 with the D fragment of fibrinogen and showed that this ligand is capable of associating with several alphaMI-domain molecules. To localize the alternative alphaMI-domain binding sites, we screened peptide libraries covering the complete sequences of the gammaC and betaC domains, comprising the majority of the D fragment structure, for alphaMI-domain binding. In addition to the P2 and P1 peptides, the alphaMI-domain bound to many other sequences in the gammaC and betaC scans. Similar to P1 and P2, synthetic peptides derived from gammaC and betaC were efficient inhibitors of alphaMbeta2-mediated cell adhesion and were able to directly support adhesion suggesting that they contain identical recognition information. Analyses of recognition specificity using substitutional peptide libraries demonstrated that the alphaMI-domain binding depends on basic and hydrophobic residues. These findings establish a new model of alphaMbeta2 binding in which the alphaMI-domain interacts with multiple sites in fibrinogen and has the potential to recognize numerous sequences. This paradigm may have implications for mechanisms of promiscuity in ligand binding exhibited by integrin alphaMbeta2.  相似文献   

20.
The effects of the pleiotropic serine protease thrombin on tumor cells are commonly thought to be mediated by the thrombin receptor protease-activated receptor 1 (PAR1). We demonstrate here that PAR1 activation has a role in experimental metastasis using the anti-PAR1 antibodies ATAP2 and WEDE15, which block PAR1 cleavage and activation. Thrombin also stimulates chemokinesis of human melanoma cells toward fibroblast conditioned media and soluble matrix proteins. Thrombin-enhanced migration is abolished by anti-PAR1 antibodies, demonstrating that PAR1 cleavage and activation are required. The PAR1-specific agonist peptide TFLLRNPNDK, however, does not stimulate migration, indicating that PAR1 activation is not sufficient. In contrast, a combination of TFLLRNPNDK and the PAR2 agonist peptide SLIGRL mimics the thrombin effect on migration, whereas PAR2 agonist alone has no effect. Agonist peptides for the thrombin receptors PAR3 and PAR4 used alone or with PAR1 agonist also have no effect. Similarly, activation of PAR1 and PAR2 also enhances chemokinesis of prostate cancer cells. Desensitization with PAR2 agonist abolishes thrombin-enhanced cell motility, demonstrating that thrombin acts through PAR2. PAR2 is cleaved by proteases with trypsin-like specificity but not by thrombin. Thrombin enhances migration in the presence of a cleavage-blocking anti-PAR2 antibody, suggesting that thrombin activates PAR2 indirectly and independent of receptor cleavage. Treatment of melanoma cells with trypsin or PAR2 agonist peptide enhances experimental metastasis. Together, these data confirm a role for PAR1 in migration and metastasis and demonstrate an unexpected role for PAR2 in thrombin-dependent tumor cell migration and in metastasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号