首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spatial and temporal distributions of salmonids were examined in Junction Pond, Northeast River, Placentia and Conne Pond, Conne River, Newfoundland using Lundgren multiple-mesh experimental gillnets. Both ponds contain populations of Atlantic salmon and brook trout with Junction Pond also possessing brown trout and resident Arctic charr. For salmon parr there was a significant month effect in distribution of catch rates in both ponds, and in Junction Pond, there was a significant diel effect. There was also significant variation in catch rates by lentic zone. For brook trout, there was a significant lentic zone × month interaction in Junction Pond; in Conne Pond, the main effects lentic zone and month were significant. Highest benthic catch rates of Atlantic salmon parr occurred in the littoral zone of both ponds. Most captures of brook trout also occurred benthically in both ponds; similar to salmon parr, littoral zone catch rates were higher than those of the deeper benthic area in Conne Pond but the reverse was true for Junction Pond. For both salmon parr and brook trout, the deeper benthic area and the pelagic area were relatively important rearing habitats in each pond. The distribution of catches for brown trout (few in number relative to the other species) in Junction Pond was similar to that of brook trout while Arctic charr were found mainly pelagically. Within the benthic area, most Arctic charr were caught at depths beyond the littoral zone. There was a tendency for Altantic salmon parr and brook trout found in the deeper benthic area and the pelagic area to be significantly larger and older than those in littoral zone in each pond. Sizes of Arctic charr did not differ significantly among lentic zones.  相似文献   

2.
An investigation was carried out during the rainy period in six semi-intensive production fish ponds in which water flowed from one pond to another without undergoing any treatment. Eight sampling sites were assigned at pond outlets during the rainy period (December-February). Lowest and highest physical and chemical parameters of water occurred in pond P1 (a site near the springs) and in pond P4 (a critical site that received allochthonous material from the other ponds and also from frog culture ponds), respectively. Pond sequential layout caused concentration of nutrients, chlorophyll-a and conductivity. Seasonal rains increased the water flow in the ponds and, consequently, silted more particles and other dissolved material from one fish pond to another. Silting increased limnological variables from P3 to P6. Although results suggest that during the period under analysis, rainfall affected positively the ponds' water quality and since the analyzed systems have been aligned in a sequential layout with constant water flow from fish ponds and parallel tanks without any previous treatment, care has to be taken so that an increase in rain-induced water flow does not have a contrary effect in the fish ponds investigated.  相似文献   

3.
High-frequency measurements are increasingly available and used to model ecosystem processes. This growing capability provides the opportunity to resolve key drivers of ecosystem processes at a variety of scales. We use a unique series of high-frequency measures of potential predictors to analyze daily variation in rates of gross primary production (GPP), respiration (R), and net ecosystem production (NEP = GPP − R) for two north temperate lakes. Wind speed, temperature, light, precipitation, mixed layer depth, water column stability, chlorophyll a, chromophoric dissolved organic matter (CDOM), and zooplankton biomass were measured at daily or higher-frequency intervals over two summer seasons. We hypothesized that light, chlorophyll a, and zooplankton biomass would be strongly related to variability in GPP. We also hypothesized that chlorophyll a, CDOM, and temperature would be most strongly related to variability in R, whereas NEP would be related to variation in chlorophyll a and CDOM. Consistent with our hypotheses, chlorophyll a was among the most important drivers of GPP, R, and NEP in these systems. However, multiple regression models did not necessarily include the other variables we hypothesized as most important. Despite the large number of potential predictor variables, substantial variance remained unexplained and models were inconsistent between years and between lakes. Drivers of GPP, R, and NEP were difficult to resolve at daily time scales where strong seasonal dynamics were absent. More complex models with greater integration of physical processes are needed to better identify the underlying drivers of short-term variability of ecosystem processes in lakes and other systems.  相似文献   

4.
We present data on amphibian density, species richness, and diversity from a 7140-ha area consisting of 200 ponds in the Midwestern U.S. that represents most of the possible lentic aquatic breeding habitats common in this region. Our study includes all possible breeding sites with natural and anthropogenic disturbance processes that can be missing from studies where sampling intensity is low, sample area is small, or partial disturbance gradients are sampled. We tested whether pond area was a significant predictor of density, species richness, and diversity of amphibians and if values peaked at intermediate pond areas. We found that in all cases a quadratic model fit our data significantly better than a linear model. Because small ponds have a high probability of pond drying and large ponds have a high probability of fish colonization and accumulation of invertebrate predators, drying and predation may be two mechanisms driving the peak of density and diversity towards intermediate values of pond size. We also found that not all intermediate sized ponds produced many larvae; in fact, some had low amphibian density, richness, and diversity. Further analyses of the subset of ponds represented in the peak of the area distribution showed that fish, hydroperiod, invertebrate density, and canopy are additional factors that drive density, richness and diversity of ponds up or down, when extremely small or large ponds are eliminated. Our results indicate that fishless ponds at intermediate sizes are more diverse, produce more larvae, and have greater potential to recruit juveniles into adult populations of most species sampled. Further, hylid and chorus frogs are found predictably more often in ephemeral ponds whereas bullfrogs, green frogs, and cricket frogs are found most often in permanent ponds with fish. Our data increase understanding of what factors structure and maintain amphibian diversity across large landscapes.  相似文献   

5.
1. The effects of transient acidity on the recruitment of Lepomis sunfish were examined in two ponds in Plymouth County, Massachusetts with on-site monitoring systems. One pond had low buffering capacity and was sensitive to acidification and acid spikes, the other had better buffering with no acid spikes. Pond pH was continuously monitored over 3 years.
2. Young-of-the-year (YOY) sunfish were collected and through otolith analysis aged in days since larval metamorphosis. Day-classes were constructed from these age data. The YOY swim-up day-class distribution was more irregular with pronounced gaps in Maquan Pond than in the better-buffered Furnace Pond.
3. The poorly buffered pond, Maquan, experienced irregular acid spikes, defined as a sudden lowering of pond pH from about 6.6 to below 5.3 for an hour or more. These spikes were associated with rainfall ( P < 0.005). Acid spikes were not found at Furnace Pond.
4. The occurrence of acid spikes and diminished day-classes from expected swim-up values were significantly associated, based on pooled data from 3 years at Maquan Pond.
5. Transient acid spikes at Maquan Pond appear to harm Lepomis YOY at the vulnerable stage of metamorphosis, when their gills become fully functional and exposed to the environment.
6. Growth rates of Lepomis YOY were also studied. Length–age and weight–length growth relationships were examined for differences in instantaneous growth coefficients between years and between ponds. Length–age instantaneous growth coefficients ranged from 0.0114 to 0.0176 over five pond-years. The slowest growth rates were in a warm, dry spawning season with the earliest average metamorphosis date.  相似文献   

6.
1. The effects of transient acidity on the recruitment of Lepomis sunfish were examined in two ponds in Plymouth County, Massachusetts with on-site monitoring systems. One pond had low buffering capacity and was sensitive to acidification and acid spikes, the other had better buffering with no acid spikes. Pond pH was continuously monitored over 3 years.
2. Young-of-the-year (YOY) sunfish were collected and through otolith analysis aged in days since larval metamorphosis. Day-classes were constructed from these age data. The YOY swim-up day-class distribution was more irregular with pronounced gaps in Maquan Pond than in the better-buffered Furnace Pond.
3. The poorly buffered pond, Maquan, experienced irregular acid spikes, defined as a sudden lowering of pond pH from about 6.6 to below 5.3 for an hour or more. These spikes were associated with rainfall ( P < 0.005). Acid spikes were not found at Furnace Pond.
4. The occurrence of acid spikes and diminished day-classes from expected swim-up values were significantly associated, based on pooled data from 3 years at Maquan Pond.
5. Transient acid spikes at Maquan Pond appear to harm Lepomis YOY at the vulnerable stage of metamorphosis, when their gills become fully functional and exposed to the environment.
6. Growth rates of Lepomis YOY were also studied. Length–age and weight–length growth relationships were examined for differences in instantaneous growth coefficients between years and between ponds. Length–age instantaneous growth coefficients ranged from 0.0114 to 0.0176 over five pond-years. The slowest growth rates were in a warm, dry spawning season with the earliest average metamorphosis date.  相似文献   

7.
Urbanization is a global process contributing to the loss and fragmentation of natural habitats. Many studies have focused on the biological response of terrestrial taxa and habitats to urbanization. However, little is known regarding the consequences of urbanization on freshwater habitats, especially small lentic systems. In this study, we examined aquatic macro‐invertebrate diversity (family and species level) and variation in community composition between 240 urban and 782 nonurban ponds distributed across the United Kingdom. Contrary to predictions, urban ponds supported similar numbers of invertebrate species and families compared to nonurban ponds. Similar gamma diversity was found between the two groups at both family and species taxonomic levels. The biological communities of urban ponds were markedly different to those of nonurban ponds, and the variability in urban pond community composition was greater than that in nonurban ponds, contrary to previous work showing homogenization of communities in urban areas. Positive spatial autocorrelation was recorded for urban and nonurban ponds at 0–50 km (distance between pond study sites) and negative spatial autocorrelation was observed at 100–150 km and was stronger in urban ponds in both cases. Ponds do not follow the same ecological patterns as terrestrial and lotic habitats (reduced taxonomic richness) in urban environments; in contrast, they support high taxonomic richness and contribute significantly to regional faunal diversity. Individual cities are complex structural mosaics which evolve over long periods of time and are managed in diverse ways. This facilitates the development of a wide range of environmental conditions and habitat niches in urban ponds which can promote greater heterogeneity between pond communities at larger scales. Ponds provide an opportunity for managers and environmental regulators to conserve and enhance freshwater biodiversity in urbanized landscapes whilst also facilitating key ecosystem services including storm water storage and water treatment.  相似文献   

8.
SUMMARY 1. The ciliate populations of two temporary ponds in southern Ontario were studied throughout their aquatic phases in 2001. Pond I (~1 ha) held water for 98 days, whereas Pond II (~0.25 ha) held water for 34 days. Populations were assessed both within the ponds themselves and within a series of enclosures in which invertebrate predator pressure was manipulated. 2. In the natural pond water, total ciliate abundance in Pond II rose rapidly from day 1 increasing two orders of magnitude by day 7. In contrast, total abundance in Pond I began at the same level as in Pond II but increased much more slowly, reached a plateau of around 500 individuals L?1, and increased again late in the hydroperiod. 3. Despite being only 500 m apart, the two ponds were fairly dissimilar in terms of their species richness and species composition. Pond I contained 50 species compared with 70 species for Pond II, with only 24 species shared. Additional species occurred within the enclosures raising the total species richness to 145 species; 88 from Pond I, 104 from Pond II, with 47 species (30%) in common. Pond II contained more mid‐sized ciliates (50–200 μm), whereas Pond I was dominated by smaller ciliates, especially in mid‐May and early June. In Pond I, cumulative species richness throughout the hydroperiod was highest in the predator addition enclosures (65 ± 4 species), followed by the partial‐predator exclusion enclosures (50 ± 4). Lowest species richness was found in the control enclosures (39 ± 2) and in the pondwater controls (39 ± 0). Differences between the ciliates in the natural pond water and the enclosures appeared to be related to a greater concentration of phytoplankton within the enclosures (perhaps resulting from extensive growth of duckweed, Lemna, outside), and higher densities of zooplankters in the pond. 4. The physicochemical environment influenced species richness, total abundance and the number of rare species (27 in Pond II versus 13 in Pond I). Variation in ciliate abundance in Pond I could be explained by the number of days after filling (39%) and enclosure treatment (23%). These two parameters also explained 72% of the variation in species richness in Pond I (46 and 26%, respectively). Sixty‐five per cent of the variation in abundance in Pond II could be explained by the measured parameters: number of days after filling 27%, pH 19%, and nitrate levels 12%. Fifty‐two per cent of the variation in species richness was explained by the environmental parameters, of which pH was the most influential. Species succession was a strong feature of both ponds and its relationship to environmental variables and the presence of other organisms is discussed. 5. Addition of invertebrate predators resulted in higher abundance and higher species richness for a limited time period in one of the ponds – suggesting that differences in foodweb dynamics may influence ciliate community composition.  相似文献   

9.
Lotic dispersal of lentic macroinvertebrates   总被引:2,自引:0,他引:2  
Little is known on dispersal of lentic macroinvertebrates. We quantified dispersal of lentic macroinvertebrates through pond connections in a highly connected pond system, and investigated how dispersal rates were affected by connection properties and time of the day (day, night). Furthermore, by comparing the composition of assemblages of dispersing macroinvertebrates with the macroinvertebrate assemblages of source ponds, we tested whether dispersal was neutral or a taxon-specific process. We found that many taxa dispersed through the pond connections. Taxa richness of the dispersing macroinvertebrate assemblage was proportional to taxa richness in the source ponds. The number of individuals that dispersed, however, was not related to source pond densities, possibly because of the highly patchy distribution of lentic macroinvertebrates within ponds. Elevated dispersal rates were recorded for Baetidae, Chironomidae and Physidae, indicating a taxon-specific use of pond connections as dispersal pathway. None of the physical properties of the connections affected dispersal. Macroinvertebrates dispersed more during the night than during daytime. Of seven tested families, Chaoboridae and Chironomidae showed higher dispersal during the night, probably resulting from diel vertical migration, since pond connections mainly transported near-surface water. Flying and non-flying invertebrates dispersed equally frequent through pond connections. For non-flying invertebrates that disperse infrequently over land, dispersal through pond connections may provide an important additional means of dispersal.  相似文献   

10.
Differences among lake morphologies often explain variation in characteristics of lentic ecosystems. Although beaver ponds also vary in morphology, previous studies have not examined the effects of such variation on downstream ecosystems. This study evaluated downstream effects of multiple beaver ponds in the Colorado Rocky Mountains during one low and one high-flow year. Beaver pond morphology was described as the natural log transformed ratio of beaver dam height (which determines hydraulic head) to pond surface area and related to pond spillover phytoplankton and characteristics of the ecosystem downstream (nutrient concentrations, limiting nutrients, periphyton, benthic organic matter (BOM), and benthic invertebrate consumers). Nitrate concentration increased systematically downstream of beaver ponds, but only in the low flow year when groundwater influences predominated. Effects of beaver ponds on soluble reactive phosphorus concentration depended on pond morphology, increasing downstream of small ponds with high dams, but only during the low-flow year. In situ experiments showed that neither beaver activity nor pond morphology predicted periphyton-limiting nutrients downstream. Both periphyton biomass and BOM decreased downstream of small ponds with high dams but pond morphology did not predict abundance of invertebrate grazers or detritus-feeding consumers. While suspension feeding invertebrates increased downstream from small ponds with high dams, variation in chlorophyll a from water spilling over beaver dams did not follow a similar pattern. We conclude that the effects of beaver ponds on downstream nutrients, resources and consumers are rarely systematic, but instead depend on variation in pond morphology and on annual hydrologic variation.  相似文献   

11.
Ecosystem metabolism is an important determinant of trophic structure, nutrient cycling, and other critical ecosystem processes in streams. Whereas watershed- and local-scale controls on stream metabolism have been independently investigated, little is known about how controls exerted at different scales interact to determine stream metabolic rates, particularly in urban streams and across seasons. To address this knowledge gap, we measured ecosystem metabolism in four urban and four reference streams in northern Kentucky, USA, with paired closed and open riparian canopies, during each of the four seasons. Gross primary production (GPP), ecosystem respiration, and net ecosystem production (NEP) were all best predicted by models with season as a main effect, but interactions between season, canopy, and watershed varied for each response. Urban streams exhibited higher GPP during most seasons, likely due to elevated nutrient loads. Open canopy reaches in both urban and forested streams, supported higher rates of GPP than the closed canopy which reaches during the summer and fall, when the overhead vegetation shaded the closed reaches. The effect of canopy cover on GPP was similar among urban and forested streams. The combination of watershed and local-scale controls resulted in urban streams that alternated between net heterotrophy (NEP <0) and net autotrophy (NEP >0) at the reach-scale during seasons with dense canopy cover. This finding has management relevance because net production can lead to accumulation of algal biomass and associated issues like nighttime hypoxia. Our study suggests that although watershed urbanization fundamentally alters ecosystem function, the preservation and restoration of canopied riparian zones can provide an important management tool at the local scale, with the strongest impacts on stream metabolism during summer.  相似文献   

12.
Kettle holes are often abundant within agriculturally used moraine landscapes. They are highly enriched with nutrients and considered hotspots of carbon turnover. However, data on their primary productivity remain rare. We analysed two kettle holes typical to Germany with common aquatic plant communities during one year. We hypothesised that gross primary production (GPP) rates would be high compared to other temperate freshwater ecosystems, leading to high sediment deposition. Summer GPP rates (4.5–5.1 g C m?2 day?1) were higher than those of most temperate freshwater systems, but GPP rates were reduced by 90% in winter. Macrophytes dominated GPP from May to September with emergent macrophytes accounting for half of the GPP. Periphyton contributed to most of the system GPP throughout the rest of the year. Sediment deposition rates were high and correlated with GPP in one kettle hole. In contrast, due to prolonged periods of anoxia, aerobic sediment mineralisation was low while sediment phosphorus release was significant. Our results suggest that kettle holes have a high potential for carbon burial, provided they do not fully dry up during warm years. Due to their unique features, they should not be automatically grouped with ponds and shallow lakes in global carbon budget estimates.  相似文献   

13.
Inter-biome comparison of factors controlling stream metabolism   总被引:15,自引:0,他引:15  
1. We studied whole-ecosystem metabolism in eight streams from several biomes in North America to identify controls on the rate of stream metabolism over a large geographic range. The streams studied had climates ranging from tropical to cool-temperate and from humid to arid and were all relatively uninfluenced by human disturbances.
2. Rates of gross primary production (GPP), ecosystem respiration (R) and net ecosystem production (NEP) were determined using the open-system, two-station diurnal oxygen change method.
3. Three general patterns in metabolism were evident among streams: (1) relatively high GPP with positive NEP (i.e. net oxygen production) in early afternoon, (2) moderate primary production with a distinct peak in GPP during daylight but negative NEP at all times and (3) little or no evidence of GPP during daylight and a relatively constant and negative NEP over the entire day.
4. Gross primary production was most strongly correlated with photosynthetically active radiation (PAR). A multiple regression model that included log PAR and stream water soluble reactive phosphorus (SRP) concentration explained 90% of the variation in log GPP.
5. Ecosystem respiration was significantly correlated with SRP concentration and size of the transient storage zone and, together, these factors explained 73% of the variation in R. The rate of R was poorly correlated with the rate of GPP.
6. Net ecosystem production was significantly correlated only with PAR, with 53% of the variation in log NEP explained by log PAR. Only Sycamore Creek, a desert stream in Arizona, had positive NEP (GPP: R  > 1), supporting the idea that streams are generally net sinks rather than net sources of organic matter.
7. Our results suggest that light, phosphorus concentration and channel hydraulics are important controls on the rate of ecosystem metabolism in streams over very extensive geographic areas.  相似文献   

14.
Eight hypereutrophic phytoplankton dominated ponds from the Brussels Capital Region (Belgium) were biomanipulated (emptied with fish removal) to restore their ecological quality and reduce the risk of cyanobacterial bloom formation. Continuous monitoring of the ponds before and after the biomanipulation allowed the effects of the management intervention on different compartments of pond ecosystems (phytoplankton, zooplankton, submerged vegetation and nutrients) to be assessed. Fish removal resulted in a drastic reduction in phytoplankton biomass and a shift to the clear-water state in seven out of eight biomanipulated ponds. The reduction in phytoplankton biomass was associated with a marked increase in density and size of large cladocerans in six ponds and a restoration of submerged macrophytes in five ponds. The phytoplankton biomass in the ponds with extensive stands of submerged macrophytes was less affected by planktivorous fish recolonisation of some of the ponds later in the summer. The two non-vegetated ponds as well as one pond with sparse submerged vegetation showed a marked increase in phytoplankton biomass associated with the appearance of fish. Phytoplankton biomass increase coincided with the decrease in large Cladocera density and size. One pond lacking submerged macrophytes could maintain very low phytoplankton biomass owing to large Cladocera grazing alone. The results of this study confirmed the importance of large zooplankton grazing and revegetation with submerged macrophytes for the maintenance of the clear-water state and restoration success in hypereutrophic ponds. They also showed that large Cladocera size is more important than their number for efficient phytoplankton control and when cladocerans are large enough, they can considerably restrain phytoplankton growth, including bloom-forming cyanobacteria, even when submerged vegetation is not restored. The positive result of fish removal in seven out of eight biomanipulated ponds clearly indicated that such management intervention can be used, at least, for the short-term restoration of ecological water quality and prevention of noxious cyanobacterial bloom formation. The negative result of biomanipulation in one pond seems to be related to the pollution by sewage water. Guest editors: B. Oertli, R. Cereghino, A. Hull & R. Miracle Pond Conservation: From Science to Practice. 3rd Conference of the European Pond Conservation Network, Valencia, Spain, 14–16 May 2008  相似文献   

15.
SUMMARY. In a study of small prairie ponds in Central Saskatchewan, chironomid diversity was dependent on the stage of development of the plant community within a moisture gradient. Changes in the moisture regime affect the plant community directly, which in turn influences the diversity of the chironomid community. Rapid or complete water level reduction in a pond maintains a very simple chironomid community, three to ten species, and a simple plant community of two to three dominant species. Increased water levels eliminate emergent and submergent plants, thereby eliminating those chironomid species which live in association with the plants. Pond morphometry (mean depth, maximum depth, surface area) and water chemistry (pH and bicarbonate) showed positive relationships with chironomid diversity. The precise nature of these relationships was not determined.
Chironomid diversity increases gradually from very temporary ponds to permanent ponds, therefore, chironomids can be used as indicators of pond permanency.  相似文献   

16.
We explored the relationships between aquatic bird abundance and various pond features (physical and chemical) using data from 112 ponds located in the Aspen Parkland of British Columbia. As expected, pond size was the most important factor influencing the number of aquatic birds present. Total dissolved nitrogen, conductivity and calcium were positively associated with the abundance of several species whereas chloride tended to be negatively associated. The abundance of dabbling ducks was positively associated with turbidity and total dissolved nitrogen and negatively with percent of forested shoreline, percent of marsh and chloride. The abundance of diving ducks was associated positively with pond depth, conductivity and total dissolved nitrogen and negatively with percent of marsh and phosphorus levels. Pond area influenced more the abundance of diving ducks than dabbling ducks. Relationships between bird density and pond features were affected significantly by the area unit used to calculate density. For example, the density of Bufehead (Bucephala albeola) was correlated positively with pH and conductivity when expressed per area of water 0–2 m deep but negatively when expressed per total area of pond. Results highlight the problems associated with interpreting correlative type studies especially the difficulties in assessing the biological significance of the observed correlations. It underscores the urgent need for experimental approaches to bird-habitat studies.  相似文献   

17.
E. F. Legner 《BioControl》1978,23(1):51-56
The culture ofTilapia zillii (Gervais) in 18 and 34 cm deep, 5.5×7.6 m earthen ponds at 3 initial stocking densities, 6, 9 and 12 pairs, revealed an optimum 9 pair initial density for the maximum production of fry after 104 days. However, biomass increase was significantly greater at the 6 pair stocking density and in deeper ponds. Pond depth had no significant effect on size and weight gain of parental fish. Nest and brooding tube construction was variously influenced by pond depth and stocking density. Partial shading of ponds, while not affecting the maximum water temperature, did apparently reduce fish biomass production, the average length and weight of fry, and the average depth of nests. An estimated 1 million fish could be produced in 104 days from 190 similar ponds with a water surface equivalent to 0.8 hectares. This would be equivalent to ca. 725 kg fish biomass production and would require ca. 1,900 kg of catfish pellets or their equivalent. Possible ways to increase rearing efficiency are discussed.  相似文献   

18.
North American beavers (Castor canadensis) were introduced to Tierra del Fuego Island in 1946 for their fur, and have since spread across the archipelago and onto the South American mainland. We assessed the impact of invasive beavers on streams of these forested watersheds by quantifying the trophic basis of production (TBP) and consumptive organic matter flows of benthic macroinvertebrate assemblages. TBP was determined in two streams: clear- and black-water. Stable isotopes were used across four streams to further elucidate food web structure and dominant pathways. TBP and stable isotopes showed that terrestrially derived organic matter (amorphous detritus, leaves, and wood) supported a majority of secondary production in the benthic food webs at all sites (forested reaches, beaver ponds, and sections downstream of ponds with foraged riparian zones). The magnitude of these flows was enhanced in beaver-modified sites compared with forested habitats (4.0–5.3× increase g AFDM m−2 year−1 in pond habitats, 1.1–2.1× increase in downstream habitats). Diatoms were the only autochthonous resource identified in macroinvertebrate guts, but their contribution to secondary production was small. Consumptive flows mirrored trends in TBP (i.e., dominance of terrestrial sources and greater magnitude in beaver ponds). Collector–gatherer consumption of amorphous detrital material dominated food web flows in all habitats, but was higher in beaver ponds relative to other habitats. Food web structure was simplified in beaver ponds; only two of the five possible functional groups contributed >1% of total organic matter flow in ponds (collector–gatherers and predators). Consumptive flows to predators increased in ponds, and stable isotopes of nitrogen and carbon (δ15N and δ13C) corroborated a relatively greater importance of predators (greater trophic distance), as well as less diversity of basal resources (less variation in δ13C) in ponds. Our findings indicate that invasive beaver’s engineering activities resulted in greater flows of terrestrial organic matter subsidies to in-stream food webs, which had a relatively greater change in the clear-water than in the black-water stream. Owing to the fact that these streams were naturally dependent on allochthonous resources for a majority of production and material flows, changes wrought by beavers to streams in forested environments are probably less than in watersheds with inherently greater dependence on autochthonous production such as the adjacent steppe biome.  相似文献   

19.
Our study found that beaver activity affects macroinvertebrate assemblages of both beaver ponds and downstream sites. The percentage composition of the invertebrate faunae of beaver ponds was strikingly different from the invertebrate faunae of upstream forested and downstream sites. The number of EPT (ephemeropteran, plecopteran, trichopteran) taxa in the upstream forested sites in all streams was higher than in beaver pond and downstream sites. Statistically significant differences were found in absolute and relative abundances of EPT and Chironomidae between different streams sites. The absolute and relative abundance of pollution-sensitive EPT was significantly higher in forested sites than in beaver pond and downstream sites in all measured streams. Beaver ponds had a significantly higher absolute and relative abundance of Chironomidae compared with upstream forested and downstream sites. We found that Plecoptera and Coleoptera were absent from beaver pond sites. The absolute abundance of Plecoptera was significantly higher in upstream forested sites than in downstream sites in all three streams. Gatherers were the dominant functional feeding group in relative abundance in all three habitat types. The percentage of gatherers was higher in beaver ponds than in forested and downstream sites.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号