首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Galectins as inflammatory mediators   总被引:18,自引:0,他引:18  
Over the last decade a vast amount of reports have shown that galectin-1 and galectin-3 are important mediators of inflammation. In this review we describe how the galectins may be involved in several parts of the inflammatory process, including the recruitment of neutrophils into an infected tissue and the recognition and killing of bacteria by activation of the tissue destructive phagocytic respiratory burst. During bacterial infection or aseptic inflammatory processes, galectins are produced and released by e.g. infected epithelium, activated tissue-resident macrophages and endothelial cells. These extracellular galectins may facilitate binding of neutrophils to the endothelium by cross-linking carbohydrates on the respective cells. Further the galectins improve binding of the neutrophil to the extracellular matrix proteins laminin and fibronectin, and are potential chemotactic factors, inducing migration through the extracellular matrix towards the inflammatory focus. When the cells encounter bacteria, galectin-3 could function as an opsonin, cross-linking bacterial lipopolysaccharide or other carbohydrate-containing surface structures to phagocyte surface glycoconjugates. Both galectin-1 and galectin-3 have the capacity to induce a respiratory burst in neutrophils, provided that the cells have been primed by degranulation and receptor upregulation. The reactive oxygen species produced may be destructive to the invading micro-organisms as well as to the surrounding host tissue, pointing out the possible role of galectins, not only in defence toward infection, but also in inflammatory-induced tissue destruction.  相似文献   

2.
Galectins are a group of lactose-binding proteins widely distributed in nature. Twelve mammalian galectins have so far been identified, but their functions are to a large extent unknown. In this work we study galectin-1 in its interaction with human neutrophils, with regard to both cell surface binding and activation of the superoxide-producing NADPH-oxidase. We show that galectin-1 is able to activate the neutrophil NADPH-oxidase, provided that the cells have been primed by extravasation from the blood into the tissue, an activation pattern that is similar to that of galectin-3. Using in vitro priming protocols, the galectin-1 responsiveness was found to correlate to granule mobilization and galectin-1 binding to the cells, suggesting the presence of granule-localized receptors that are up-regulated to the cell surface upon priming. By galectin-1 overlay of fractionated neutrophils we identified potential galectin-1 receptor candidates localized in the membranes of the secretory vesicle and gelatinase granules. The binding of galectin-1 and galectin-3 to neutrophil proteins was compared, as were the dose dependencies for activation by the two lectins. The results suggest that, although similarities are found between the two galectins, they appear to activate the NADPH-oxidase using different receptors. In conclusion, galectin-1 appears to have proinflammatory functions, mediated through activation of the neutrophil respiratory burst.  相似文献   

3.
Sepsis is a complex immune disorder with a mortality rate of 20–50% and currently has no therapeutic interventions. It is thus critical to identify and characterize molecules/factors responsible for its development. We have recently shown that pulmonary infection with Francisella results in sepsis development. As extensive cell death is a prominent feature of sepsis, we hypothesized that host endogenous molecules called alarmins released from dead or dying host cells cause a hyperinflammatory response culminating in sepsis development. In the current study we investigated the role of galectin-3, a mammalian β-galactoside binding lectin, as an alarmin in sepsis development during F. novicida infection. We observed an upregulated expression and extracellular release of galectin-3 in the lungs of mice undergoing lethal pulmonary infection with virulent strain of F. novicida but not in those infected with a non-lethal, attenuated strain of the bacteria. In comparison with their wild-type C57Bl/6 counterparts, F. novicida infected galectin-3 deficient (galectin-3−/−) mice demonstrated significantly reduced leukocyte infiltration, particularly neutrophils in their lungs. They also exhibited a marked decrease in inflammatory cytokines, vascular injury markers, and neutrophil-associated inflammatory mediators. Concomitantly, in-vitro pre-treatment of primary neutrophils and macrophages with recombinant galectin-3 augmented F. novicida-induced activation of these cells. Correlating with the reduced inflammatory response, F. novicida infected galectin-3−/− mice exhibited improved lung architecture with reduced cell death and improved survival over wild-type mice, despite similar bacterial burden. Collectively, these findings suggest that galectin-3 functions as an alarmin by augmenting the inflammatory response in sepsis development during pulmonary F. novicida infection.  相似文献   

4.
Orchestrated upregulation of cell surface presentation of ganglioside GM1 and homodimeric galectin-1 is the molecular basis for growth regulation of human neuroblastoma (SK-N-MC) cells. Further study led to the discovery of competitive inhibition by galectin-3, prompting us to test tandem-repeat-type galectin-4 (two different lectin domains connected by a 42-amino-acid linker). This lectin bound to cells at comparably high affinity without involvement of the ganglioside, as disclosed by assays in the presence of cholera toxin B-subunit or galectin-1 and blocking glucosylceramide synthesis. Notably, when tested separately, binding of both lectin domains showed partial sensitivity to the bacterial agglutinin. Despite its ability for cross-linking surface association of galectin-4 did not affect proliferation, in contrast to homodimeric galectins. The truncation of linker length from 42 to 16 amino acids altered binding properties to let partial sensitivity to the bacterial lectin emerge. Cross-competition between parental and engineered proteins did not exceed 40%. No effect on cell growth was detected. This study reveals complete functional divergence between galectins differing in the spatial mode of lectin-site presentation and dependence of reactivity to distinct counter-receptor(s) on linker length. Due to the documented presence of galectin-4 in the nervous system and its affinity for sulfatide these in vitro results indicate the potential for a distinct functionality profile of this lectin in vivo, giving further research direction.  相似文献   

5.
Sepsis is a complex immune disorder that is characterized by systemic hyperinflammation. Alarmins, which are multifunctional endogenous factors, have been implicated in exacerbation of inflammation in many immune disorders including sepsis. Here we show that Galectin-9, a host endogenous β-galactoside binding lectin, functions as an alarmin capable of mediating inflammatory response during sepsis resulting from pulmonary infection with Francisella novicida, a Gram negative bacterial pathogen. Our results show that this galectin is upregulated and is likely released during tissue damage in the lungs of F. novicida infected septic mice. In vitro, purified recombinant galectin-9 exacerbated F. novicida-induced production of the inflammatory mediators by macrophages and neutrophils. Concomitantly, Galectin-9 deficient (Gal-9-/-) mice exhibited improved lung pathology, reduced cell death and reduced leukocyte infiltration, particularly neutrophils, in their lungs. This positively correlated with overall improved survival of F. novicida infected Gal-9-/- mice as compared to their wild-type counterparts. Collectively, these findings suggest that galectin-9 functions as a novel alarmin by augmenting the inflammatory response in sepsis development during pulmonary F. novicida infection.  相似文献   

6.
The galectins are a family of animal lectins that possess similar carbohydrate binding specificities and conserved consensus sequences. The biological properties of mammalian galectins include the regulation of inflammation, cell adhesion, cell proliferation and cell death. Evidence suggests that the biological activities of the galectins are related to their multivalent binding properties since most galectins possess two carbohydrate recognition domains and are therefore bivalent. For example, galectin-1, which is dimeric, binds and cross-links specific glycoprotein counter-receptors on the surface of human T-cells leading to apoptosis [J. Immunol. 163 (1999) 3801]. Different galectin-1 counter-receptors associated with specific phosphatase or kinase activities formed separate clusters on the surface of the cells as a result of the lectin binding to the carbohydrate chains of the respective glycoproteins. Importantly, monovalent galectin-1 is inactive in this system. This indicates that the separation and organization of signaling molecules that result from galectin-1 binding is involved in the apoptotic signal. The separation of specific glycoprotein receptors induced by galectin-1 binding was modeled on the basis of molecular and structural studies of the binding of lectins to multivalent carbohydrates resulting in the formation of specific two- and three-dimensional cross-linked lattices [Biochemistry 36 (1997) 15073]. In this article, the binding and cross-linking properties of galectin-1 and other lectins are reviewed as a model for the biological signal transduction properties of the galectin family of animal lectins.  相似文献   

7.
Galectins are widely expressed in epithelial tissues and have been implicated in a variety of cellular processes, including adhesion and polarization. Here we studied the contributions of galectins in cell adhesion and cyst formation of Madin-Darby canine kidney cells. Quantitative single cell force spectroscopy and standard adhesion assays were employed to study both early (<2 min) and long term (90 min) adhesion of cells to different extracellular matrix components. Inhibitors were used to examine the contribution of integrins and galectins in general and RNA interference to specifically address the role of two abundantly expressed galectins, galectin-3 and -9. We found that both galectin-3 and -9 were required for optimal long term cell adhesion to both collagen I and laminin-111. Early adhesion to laminin was found to be integrin-independent and was instead mediated by carbohydrate interactions and galectin-3 and -9. The opposite was observed for early adhesion to collagen. Although similar, the contributions of galectin-3 and -9 to adhesion appeared to be by distinct processes. These defects in adhesion of the two galectin knockdown cell lines may underlie the epithelial phenotypes observed in the cyst assays. Our findings emphasize the complex regulation of epithelial cell functions by galectins.  相似文献   

8.
Galectin-1 is a component of the extracellular matrix as well as a ligand of cell surface counter receptors such as beta-galactoside-containing glycolipids, however, the molecular mechanism of galectin-1 secretion has remained elusive. Based on a nonbiased screen for galectin-1 export mutants we have identified 26 single amino acid changes that cause a defect of both export and binding to counter receptors. When wild-type galectin-1 was analyzed in CHO clone 13 cells, a mutant cell line incapable of expressing functional galectin-1 counter receptors, secretion was blocked. Intriguingly, we also find that a distant relative of galectin-1, the fungal lectin CGL-2, is a substrate for nonclassical export from Chinese hamster ovary (CHO) cells. Alike mammalian galectin-1, a CGL-2 mutant defective in beta-galactoside binding, does not get exported from CHO cells. We conclude that the beta-galactoside binding site represents the primary targeting motif of galectins defining a galectin export machinery that makes use of beta-galactoside-containing surface molecules as export receptors for intracellular galectin-1.  相似文献   

9.
Investigations of human parasitic diseases depend on the availability of appropriate in vivo animal models and ex vivo experimental systems, and are particularly difficult for pathogens whose exclusive natural hosts are humans, such as Entamoeba histolytica, the protozoan parasite responsible for amoebiasis. This common infectious human disease affects the intestine and liver. In the liver sinusoids E. histolytica crosses the endothelium and penetrates into the parenchyma, with the concomitant initiation of inflammatory foci and subsequent abscess formation. Studying factors responsible for human liver infection is hampered by the complexity of the hepatic environment and by the restrictions inherent to the use of human samples. Therefore, we built a human 3D-liver in vitro model composed of cultured liver sinusoidal endothelial cells and hepatocytes in a 3D collagen-I matrix sandwich. We determined the presence of important hepatic markers and demonstrated that the cell layers function as a biological barrier. E. histolytica invasion was assessed using wild-type strains and amoebae with altered virulence or different adhesive properties. We showed for the first time the dependence of endothelium crossing upon amoebic Gal/GalNAc lectin. The 3D-liver model enabled the molecular analysis of human cell responses, suggesting for the first time a crucial role of human galectins in parasite adhesion to the endothelial cells, which was confirmed by siRNA knockdown of galectin-1. Levels of several pro-inflammatory cytokines, including galectin-1 and -3, were highly increased upon contact of E. histolytica with the 3D-liver model. The presence of galectin-1 and -3 in the extracellular medium stimulated pro-inflammatory cytokine release, suggesting a further role for human galectins in the onset of the hepatic inflammatory response. These new findings are relevant for a better understanding of human liver infection by E. histolytica.  相似文献   

10.
Lactoside-binding lectins (galectins) with molecular weights of about 14.5 kDa (galectin-1) and 29–35 kDa (galectin-3) bind preferentially to polylactosaminoglycan-containing glycoconjugates and have been found on the surface of tumour cells and implicated in cell-cell and cell-extracellular matrix adhesion and metastasis. We have demonstrated by immunoblotting that both galectin-1 and galectin-3 are present in extracts of endothelial cells cultured from bovine aorta, rat lung, mouse lung and mouse brain microvessels, whereas mouse hepatic sinusoidal endothelial cells expressed primarily galectin-1. These galectins were also localized by indirect immunofluorescent labelling on the surface of the different endothelial cells in culture and by immunohistochemical staining in human tissuesin vivo. Anti-galectin-1 antibodies inhibited the adhesion of liver-preferring murine RAW117-H10 large-cell lymphoma cells to hepatic sinusoidal endothelial cells or lung microvessel endothelial cellsin vitro. The data indicate that galectin-1 is expressed on the extracellular surface of endothelial cells and can mediate in part the adhesion of RAW117-H10 cells to liver microvessel endothelial cells.  相似文献   

11.
Across mammalian species, human galectin-10 and ovine galectin-14 are unique in their expression in eosinophils and their release into lung and gastrointestinal tissues following allergen or parasite challenge. Recombinant galectin-14 is active in carbohydrate binding assays and has been used in this study to unravel the function of this major eosinophil constituent. In vitro cultures revealed that galectin-14 is spontaneously released by eosinophils isolated from allergen-stimulated mammary gland lavage, but not by resting peripheral blood eosinophils. Galectin-14 secretion from peripheral blood eosinophils can be induced by the same stimuli that induce eosinophil degranulation. Flow cytometric analysis showed that recombinant galectin-14 can bind in vitro to eosinophils, neutrophils and activated lymphocytes. Glycan array screening indicated that galectin-14 recognizes terminal N-acetyllactosamine residues which can be modified with α1-2-fucosylation and, uniquely for a galectin, prefers α2- over α2-sialylation. Galectin-14 showed the greatest affinity for lacto-N-neotetraose, an immunomodulatory oligosaccharide expressed by helminths. Galectin-14 binds specifically to laminin in vitro, and to mucus and mucus producing cells on lung and intestinal tissue sections. In vivo, galectin-14 is abundantly present in mucus scrapings collected from either lungs or gastrointestinal tract following allergen or parasite challenge, respectively. These results suggest that in vivo secretion of eosinophil galectins may be specifically induced at epithelial surfaces after recruitment of eosinophils by allergic stimuli, and that eosinophil galectins may be involved in promoting adhesion and changing mucus properties during parasite infection and allergies.  相似文献   

12.
Cell surface glycans present docking sites to endogenous lectins. With growing insight into the diversity of lectin families it becomes important to answer the question on the activity profiles of individual family members. Focusing on galectins (-galactoside-binding proteins without Ca2+-requirement sharing the jelly-roll-like folding pattern), this study was performed to assess the potency of proto-type galectins (galectins-1 and -7 and CG-16) and the chimera-type galectin-3 to elicit selected cell responses by carbohydrate-dependent surface binding and compare the results. The galectins, except for galectin-1, were found to enhance detergent (SDS)-induced hemolysis of human erythrocytes to different degrees. Their ability to confer increased membrane osmofragility thus differs. Aggregation of neutrophils, thymocytes and platelets was induced by the proto-type galectin-1 but not -7, by CG-16 and also galectin-3. Cell-type-specific quantitative differences and the importance of the fine-specificity of the galectin were clearly apparent. In order to detect cellular responses based on galectin binding and bridging of cells the formation of haptenic-sugar-resistant (HSR) intercellular contacts (an indicator of post-binding signaling) was monitored. It was elicited by CG-16 and galectin-1 but not galectin-3, revealing another level at which activities of individual galectins can differ. Acting as potent elicitor of neutrophil aggregation, CG-16-dependent post-binding effects were further analyzed. Carbohydrate-dependent binding to the neutrophils' surface led to a sustained increase of cytoplasmic Ca2+ concentration in a dose-dependent manner. The ability of CG-16 to activate H2O2 generation by human peripheral blood neutrophils was primed by the Ca2+-ionophor ionomycin and by cytochalasin B. In a general context, these results emphasize that – besides plant lectins as laboratory tools – animal lectins can trigger cell reaction cascades, implying potential in vivo relevance for the measured activities. Within the family of galectins, the activity profiles depend on the target cell type and the individual galectin. Notably, proto-type galectins do not necessarily share a uniform capacity as elicitor.  相似文献   

13.
Recruitment of neutrophils from blood vessels to sites of infection represents one of the most important elements of innate immunity. Movement of neutrophils across blood vessel walls to the site of infection first requires that the migrating cells firmly attach to the endothelial wall. Generally, neutrophil extravasation is mediated at least in part by two classes of adhesion molecules, beta(2) integrins and selectins. However, in the case of streptococcal pneumonia, recent studies have revealed that a significant proportion of neutrophil diapedesis is not mediated by the beta(2) integrin/selectin paradigm. Galectin-3 is a beta-galactoside-binding lectin implicated in inflammatory responses as well as in cell adhesion. Using an in vivo streptococcal pneumonia mouse model, we found that accumulation of galectin-3 in the alveolar space of streptococcus-infected lungs correlates closely with the onset of neutrophil extravasation. Furthermore, immunohistological analysis of infected lung tissue revealed the presence of galectin-3 in the lung tissue areas composed of epithelial and endothelial cell layers as well as of interstitial spaces. In vitro, galectin-3 was able to promote neutrophil adhesion to endothelial cells. Promotion of neutrophil adhesion by galectin-3 appeared to result from direct cross-linking of neutrophils to the endothelium and was dependent on galectin-3 oligomerization. Together, these results suggest that galectin-3 acts as an adhesion molecule that can mediate neutrophil adhesion to endothelial cells. However, accumulation of galectin-3 in lung was not observed during neutrophil emigration into alveoli induced by Escherichia coli infection, where the majority of neutrophil emigration is known to be beta(2) integrin dependent. Thus, based on our results, we propose that galectin-3 plays a role in beta(2) integrin-independent neutrophil extravasation, which occurs during alveolar infection with Streptococcus pneumoniae.  相似文献   

14.
Hanses F  Park S  Rich J  Lee JC 《PloS one》2011,6(8):e23633
Diabetes is a frequent underlying medical condition among individuals with Staphylococcus aureus infections, and diabetic patients often suffer from chronic inflammation and prolonged infections. Neutrophils are the most abundant inflammatory cells during the early stages of bacterial diseases, and previous studies have reported deficiencies in neutrophil function in diabetic hosts. We challenged age-matched hyperglycemic and normoglycemic NOD mice intraperitoneally with S. aureus and evaluated the fate of neutrophils recruited to the peritoneal cavity. Neutrophils were more abundant in the peritoneal fluids of infected diabetic mice by 48 h after bacterial inoculation, and they showed prolonged viability ex vivo compared to neutrophils from infected nondiabetic mice. These differences correlated with reduced apoptosis of neutrophils from diabetic mice and were dependent upon the presence of S. aureus and a functional neutrophil respiratory burst. Decreased apoptosis correlated with impaired clearance of neutrophils by macrophages both in vitro and in vivo and prolonged production of proinflammatory tumor necrosis factor alpha by neutrophils from diabetic mice. Our results suggest that defects in neutrophil apoptosis may contribute to the chronic inflammation and the inability to clear staphylococcal infections observed in diabetic patients.  相似文献   

15.
The obligate intracellular bacterium Chlamydia trachomatis is the most common bacterial agent of sexually transmitted disease world-wide. Chlamydia trachomatis primarily infects epithelial cells of the genital tract but the infection may be associated with ascending infection. Infection-associated inflammation can cause tissue damage resulting in female infertility and ectopic pregnancy. The precise mechanism of inflammatory tissue damage is unclear but earlier studies implicate the chlamydial cryptic plasmid as well as responding neutrophils. We here rebuilt the interaction of Chlamydia trachomatis-infected epithelial cells and neutrophils in-vitro. During infection of human (HeLa) or mouse (oviduct) epithelial cells with Chlamydia trachomatis, a soluble factor was produced that attracted neutrophils and prolonged neutrophil survival, independently of Toll-like receptor signaling but dependent on the chlamydial plasmid. A number of cytokines, but most strongly GM-CSF, were secreted at higher amounts from cells infected with plasmid-bearing, compared to plasmid-deficient, bacteria. Blocking GM-CSF removed the secreted pro-survival activity towards neutrophils. A second, neutrophil TNF-stimulatory activity was detected in supernatants, requiring MyD88 or TRIF independently of the plasmid. The results identify two pro-inflammatory activities generated during chlamydial infection of epithelial cells and suggest that the epithelial cell, partly through the chlamydial plasmid, can initiate a myeloid immune response and inflammation.  相似文献   

16.
The carbohydrate binding specificities of the galectin family of animal lectins has been the source of intense recent investigations. Isothermal titration microcalorimetry (ITC) provides direct determination of the thermodynamics of binding of carbohydrates to lectins, and has provided important insights into the fine carbohydrate binding specificities of a wide number of plant and animal lectins. Recent ITC studies have been performed with galectin-1, galectin-3 and galectin-7 and their interactions with sialylated and non-sialylated carbohydrates. The results show important differences in the specificities of these three galectins toward poly-N-acetyllactosamine epitopes found on the surface of cells. Published in 2004.  相似文献   

17.
Although protein-carbohydrate interactions are supposed to play key roles in cell adhesion, signalling and growth control. Their exact role in skin physiology has only recently been investigated. The endogenous lectins galectin-1 and galectin-3 have been identified in skin including hair follicles. Here, we analyzed the expression and distribution of these galectins and their binding sites in C57BL/6 mice during hair cycle. The expression of galectin-1 and galectin-3 binding sites was found to be predominantly hair cycle-dependent showing some overlapping to the expression of galectin-1 and -3. The outer root sheath (ORS) expressed galectin-1 binding sites during anagen IV to VI and in early catagen, whereas galectin-1 was expressed from early anagen to late catagen. The ORS expressed galectin-3 binding sites during catagen transition corresponding to a galectin-3 expression during anagen V and catagen. The innermost layer of the ORS expressed galectin-3 binding sites during anagen VI until catagen VIII, but galectin-3 during anagen III to IV and catagen. The inner root sheath (IRS) expressed galectin-3 binding sites only in anagen IV but missed expression of any of the two galectins. The matrix cells expressed galectin-3 binding sites in catagen II-III as well as galectin-3 during anagen V to catagen IV. The present study provides the first evidence for a cycle-related expression of both galectin-1 and -3 and their binding sites during murine hair cycle.  相似文献   

18.
Adhesion and spreading of retinal pigment epithelial (RPE) cells on fibronectin-rich extracellular matrices is a crucial event in the pathogenesis of proliferative vitreoretinopathy (PVR). In the present study we explored the capacity of galectin-3, a β-galactoside-binding endogenous lectin, to inhibit early PVR-associated cellular events from a therapeutic perspective. We assessed the relative expression levels of galectin-3 in native RPE and dedifferentiated, cultured RPE. Galectin-3 was constitutively expressed under in vivo and in vitro conditions and was abundant in cultured cells. Treatment of human RPE cells with soluble galectin-3 disclosed no toxicity within control limits up to 250 μg/ml. When added to the medium, galectin-3 dose-dependently inhibited attachment and spreading of the cells on fibronectin by more than 75%. When coated on the plastic surface, galectin-3 alone impaired attachment and spreading of RPE cells, and reduced attachment but not spreading on fibronectin. Galectin-3 bound to the cell surface, and, as determined by the use of the competing sugar β-lactose, galectin-3-mediated effects were dependent on carbohydrate binding. To ascertain the role of the ability of galectin-3 to form pentamers, we proteolytically removed the N-terminal, cross-linking section. The remaining C-terminal carbohydrate-binding domain alone failed to bind to cells and was functionally inactive. These results emphasize the relevance of both properties, i.e., glycan-binding and cross-linking of glycan moieties, for the inhibitory activity of galectin-3. Incubation of mobilized RPE cells with galectin-3 significantly disturbed microfilament assembly and, in correlation with decreased attachment, inhibited ERK phosphorylation. Therefore, galectin-3, acting as a cross-linking lectin on the cell surface, negatively regulates attachment and spreading of RPE cells in vitro. This effect, at least in part, is attributed to an inhibition of the ERK-MAPK pathway, which prevents cytoskeletal rearrangements needed for RPE cell attachment and spreading. Further investigation at this pathway may disclose a promising nouveau perspective for treatment and prophylaxis of early PVR.  相似文献   

19.
Trichomoniasis is the most common non-viral sexually transmitted infection caused by the vaginotropic extracellular protozoan parasite Trichomonas vaginalis. The infection is recurrent, with no lasting immunity, often asymptomatic, and linked to pregnancy complications and risk of viral infection. The molecular mechanisms of immune evasion by the parasite are poorly understood. We demonstrate that galectin-1 and -3 are expressed by the human cervical and vaginal epithelial cells and act as pathogen-recognition receptors for the ceramide phosphoinositol glycan core (CPI-GC) of the dominant surface protozoan lipophosphoglycan (LPG). We used an in vitro model with siRNA galectin knockdown epithelial clones, recombinant galectins, clinical Trichomonas isolates, and mutant protozoan derivatives to dissect the function of galectin-1 and -3 in the context of Trichomonas infection. Galectin-1 suppressed chemokines that facilitate recruitment of phagocytes, which can eliminate extracellular protozoa (IL-8) or bridge innate to adaptive immunity (MIP-3α and RANTES (regulated on activation normal T cell expressed and secreted)). Silencing galectin-1 increased and adding exogenous galectin-1 suppressed chemokine responses to Trichomonas or CPI-GC/LPG. In contrast, silencing galectin-3 reduced IL-8 response to LPG. Live Trichomonas depleted the extracellular levels of galectin-3. Clinical isolates and mutant Trichomonas CPI-GC that had reduced affinity to galectin-3 but maintained affinity to galectin-1 suppressed chemokine expression. Thus via CPI-GC binding, Trichomonas is capable of regulating galectin bioavailability and function to the benefit of its parasitic survival. These findings suggest novel approaches to control trichomoniasis and warrant further studies of galectin-binding diversity among clinical isolates as a possible source for symptom disparity in parasitic infections.  相似文献   

20.
Galectins are a family of mammalian beta-galactoside-binding proteins that positively and negatively regulate T cell death. Extracellular galectin-1 directly induces death of T cells and thymocytes, while intracellular galectin-3 blocks T cell death. In contrast to the antiapoptotic function of intracellular galectin-3, we demonstrate that extracellular galectin-3 directly induces death of human thymocytes and T cells. However, events in galectin-3- and galectin-1-induced cell death differ in a number of ways. Thymocyte subsets demonstrate different susceptibility to the two galectins: whereas galectin-1 kills double-negative and double-positive human thymocytes with equal efficiency, galectin-3 preferentially kills double-negative thymocytes. Galectin-3 binds to a complement of T cell surface glycoprotein receptors distinct from that recognized by galectin-1. Of these glycoprotein receptors, CD45 and CD71, but not CD29 and CD43, appear to be involved in galectin-3-induced T cell death. In addition, CD7 that is required for galectin-1-induced death is not required for death triggered by galectin-3. Following galectin-3 binding, CD45 remains uniformly distributed on the cell surface, in contrast to the CD45 clustering induced by galectin-1. Thus, extracellular galectin-3 and galectin-1 induce death of T cells through distinct cell surface events. However, as galectin-3 and galectin-1 cell death are neither additive nor synergistic, the two death pathways may converge inside the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号