首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
The importance of Ca2+ signaling in astrocytes is undisputed but a potential role of Ca2+ influx via L-channels in the brain in vivo is disputed, although expression of these channels in cultured astrocytes is recognized. This study shows that an increase in free cytosolic Ca2+ concentration ([Ca2+]i) in astrocytes in primary cultures in response to an increased extracellular K+ concentration (45 mM) is inhibited not only by nifedipine (confirming previous observations) but also to a very large extent by ryanodine, inhibiting ryanodine receptor-mediated release of Ca2+, known to occur in response to an elevation in [Ca2+]i. This means that the actual influx of Ca2+ is modest, which may contribute to the difficulty in demonstrating L-channel-mediated Ca2+ currents in astrocytes in intact brain tissue. Chronic treatment with any of the 3 conventional anti-bipolar drugs lithium, carbamazepine or valproic acid similarly causes a pronounced inhibition of K+-mediated increase in [Ca2+]i. This is shown to be due to an inhibition of capacitative Ca2+ influx, reflected by decreased mRNA and protein expression of the ‘transient receptor potential channel’ (TRPC1), a constituent of store-operated channels (SOCEs). Literature data are cited (i) showing that depolarization-mediated Ca2+ influx in response to an elevated extracellular K+ concentration is important for generation of Ca2+ oscillations and for the stimulatory effect of elevated K+ concentrations in intact, non-cultured brain tissue, and (ii) that Ca2+ channel activity is dependent upon availability of metabolic substrates, including glycogen. Finally, expression of mRNA for Cav1.3 is demonstrated in freshly separated astrocytes from normal brain.  相似文献   

2.
The effect of ceramide on the cytoplasmic Ca2+ concentration ([Ca2+]i) varies depending on the cell type. We have found that in Jurkat human T cells ceramide increases the [Ca2+]i from a thapsigargin-sensitive calcium pool and the subsequent activation of a capacitative Ca2+ entry. This effect occurs both in the presence and in the absence of extracellular calcium. Addition of ceramine, a non-hydrolysable analogue of ceramide, reproduced its effect on the [Ca2+]i ruling out that this is due to the conversion of ceramide to sphingosine. The effect of ceramide was additive to that obtained by sphingosine, but not to the Jurkat T cells specific antibody OKT3. However, different to the latter, ceramide do not induced an elevation of InsP3. The opening of a store operated Ca2+ channel by ceramide was corroborated by experiments of Fura-2 quenching, using Mn2+ as a surrogate for Ca2+ and confirmed by whole-cell recording patch clamp techniques.  相似文献   

3.
The clinical use of doxorubicin (DXR) is limited by cardiotoxicity partially due to interference with intracellular Ca(2+) homeostasis and involving the activation of the sarcoplasmic reticulum (SR) Ca(2+) release channels. It is known that docosahexaenoic acid (DHA) is able to potentiate the sensitivity of cancer cells to DXR. The aim of our study was to further evaluate the effects of DHA on [Ca(2+)](i) overload induced by DXR in adult rat ventricular cardiomyocytes in order to verify if DHA interferes with DXR-induced cardiotoxicity too. [Ca(2+)](i) was measured by microfluorimetry. Our data demonstrated that 100 microM DXR induced a statistically significant [Ca(2+)](i)-increase in cardiomyocytes perfused with CaCl(2) Krebs solution (from 135.7 +/- 15 nM to 560.2 +/- 49 nM, n = 9, p < 0.01) and with Ca(2+)-free Krebs solution (from 89.3 +/- 15 nM to 551.1 +/- 35 nM, n = 9, p < 0.01). Treatment with 10 microM DHA for 20 min significantly suppressed DXR [Ca(2+)](i)- increase in cells perfused with CaCl(2) Krebs solution (142.3 +/- 12 nM, n = 9, p < 0.01) and in Ca(2+)-free procedures (100.4 +/- 12 nM, n = 9, p < 0.01). Caffeine 10 mM significantly increased [Ca(2+)](i) in cardiomyocytes perfused with CaCl(2) Krebs solution (from 135.7 +/- 15 nM to 979.2 +/- 17.8 nM, n = 9, p < 0.01) and with Ca(2+)-free Krebs solution (from 89.3 +/- 15 nM to 891.1 +/- 30 nM, n = 9, p < 0.01). Treatment with 10 microM DHA for 20 min suppressed caffeine [Ca(2+)](i)-increase in cardiomyocytes perfused with CaCl(2) Krebs solution (174.2 +/- 28 nM, n = 9, p < 0.01) and in Ca(2+)-free procedures (161.9 +/- 34 nM, n = 9, p < 0.01). In conclusion, our results suggest that DHA is able to prevent acute modifications of calcium homeostasis induced by DXR probably interfering with SR Ca(2+) release channels.  相似文献   

4.
The phosphoinositide 3-kinases (PI3K/Akt) dependent signaling pathway plays an important role in cardiac function, specifically cardiac contractility. We have reported that sepsis decreases myocardial Akt activation, which correlates with cardiac dysfunction in sepsis. We also reported that preventing sepsis induced changes in myocardial Akt activation ameliorates cardiovascular dysfunction. In this study we investigated the role of PI3K/Akt on cardiomyocyte function by examining the role of PI3K/Akt-dependent signaling on [Ca2+]i, Ca2+ transients and membrane Ca2+ current, ICa, in cultured murine HL-1 cardiomyocytes. LY294002 (1–20 μM), a specific PI3K inhibitor, dramatically decreased HL-1 [Ca2+]i, Ca2+ transients and ICa. We also examined the effect of PI3K isoform specific inhibitors, i.e. α (PI3-kinase α inhibitor 2; 2–8 nM); β (TGX-221; 100 nM) and γ (AS-252424; 100 nM), to determine the contribution of specific isoforms to HL-1 [Ca2+]i regulation. Pharmacologic inhibition of each of the individual PI3K isoforms significantly decreased [Ca2+]i, and inhibited Ca2+ transients. Triciribine (1–20 μM), which inhibits AKT downstream of the PI3K pathway, also inhibited [Ca2+]i, and Ca2+ transients and ICa. We conclude that the PI3K/Akt pathway is required for normal maintenance of [Ca2+]i in HL-1 cardiomyocytes. Thus, myocardial PI3K/Akt-PKB signaling sustains [Ca2+]i required for excitation-contraction coupling in cardiomyoctyes.  相似文献   

5.
目的:本实验通过对平滑肌细胞行GCs快速预处理,拟证实糖皮质激素对平滑肌细胞内[Ca2+]i浓度升高有快速抑制作用,并初步探讨该现象的可能分子机制。方法:原代培养的大鼠平滑肌细胞,应用Fura-2/AM显微荧光检测技术,检测肌细胞内[Ca2+]i在受到激动剂刺激后的浓度变化;比较不同浓度地塞米松预处理后10min与对照组之间游离钙上升情况的区别。用Western blot方法,分析气道平滑肌细胞内抑制型磷脂酶C(phospho-PLCβ-ser1105)含量的变化。设立RU486及CHX对照组,排除基因组作用在该反应中的影响。结果:GCs温浴10min,能够明显降低乙酰胆碱引起的ASMCs细胞内[Ca2+]i峰值。并能够明显上调ASMCs内抑制型PLC含量。这些反应不受RU486和CHX影响。结论:GCs能够通过非基因组作用快速抑制刺激物引起的气道平滑肌的收缩反应,这一效应的实现可能是通过抑制PLC分子活性,使其下游的[Ca2+]i浓度降低实现的。  相似文献   

6.
We previously found that Endothelin-1(1-31) (ET-1(1-31)) exhibited a pro-arrhythmogenic effect in isolated rat hearts. In this study, we further investigated the effects of ET-1(1-31) on a cell viability and observed [Ca(2+)](i) in cultured cardiomyocytes. Cultured neonatal rat cardiomyocytes were treated with 0.1, 1, and 10 nM ET-1(1-31) for 24h in the presence or absence of ET(A) receptor antagonist (BQ(123)) or phosphoramidon, a NEP/ECE inhibitor. Cell injury was evaluated by supernatant lactate dehydrogenase (LDH) assay, superoxide dismutase (SOD) activity, and malondialdehyde (MDA) content. Cell viability was assessed by MTT assay. [Ca(2+)](i) was measured with Fluo-3/AM under a laser confocal microscope. 1) ET-1(1-31) dose-dependently increased LDH release and decreased cell viability. 2) LDH and MDA levels were significantly elevated and SOD activity decreased after administration of 1 nM ET-1(1-31) for 24h, and these changes were markedly attenuated by 1 uM BQ(123). 3) Exposure to 10 nM ET 1(1-31) caused a continuous increase in [Ca(2+)](i) to cultured beating cardiomyocytes and termination of [Ca(2+)](i) transient within 6 min, and this change was reversed by 1 uM BQ(123) and attenuated by 0.5 mM phosphoramidon. These results suggest that ET-1(1-31) could cause cell injury, and that the effect of ET-1(1-31) on [Ca(2+)](i) transients is mainly mediated by ET(A) receptor and partially attributed to the conversion of ET-1(1-31) to ET-1(1-21).  相似文献   

7.
This study examined [Ca2+]i oscillations in the human salivary gland cell lines, HSY and HSG. Relatively low concentrations of carbachol (CCh) induced oscillatory, and higher [CCh] induced sustained, steady-state increases in [Ca2+]i and K Ca currents in both cell types. Low IP3, but not thapsigargin (Tg), induced [Ca2+]i oscillations, whereas Tg blocked CCh-stimulated [Ca2+]i oscillations in both cell types. Unlike in HSG cells, removal of extracellular Ca2+ from HSY cells (i) did not affect CCh-stimulated [Ca2+]i oscillations or internal Ca2+ store refill, and (ii) converted high [CCh]-induced steady-state increase in [Ca2+]i into oscillations. CCh- or thapsigargin-induced Ca2+ influx was higher in HSY, than in HSG, cells. Importantly, HSY cells displayed relatively higher levels of sarcoendoplasmic reticulum Ca2+ pump (SERCA) and inositoltrisphosphate receptors (IP3Rs) than HSG cells. These data demonstrate that [Ca2+]i oscillations in both HSY and HSG cells are primarily determined by the uptake of Ca2+ from, and release of Ca2+ into, the cytosol by the SERCA and IP3R activities, respectively. In HSY cells, Ca2+ influx does not acutely contribute to this process, although it determines the steady-state increase in [Ca2+]i. In HSG cells, [Ca2+]i oscillations directly depend on Ca2+ influx; Ca2+ coming into the cell is rapidly taken up into the store and then released into the cytosol. We suggest that the differences in the mechanism of [Ca2+]i oscillations HSY and HSG cells is related to their respective abilities to recycle internal Ca2+ stores. Received: 30 October 2000/Revised: 26 February 2001  相似文献   

8.
Zhang ZX  Qi XY  Xu YQ 《生理学报》2003,55(1):24-28
应用全细胞膜片钳及激光共聚焦技术 ,研究银杏苦内酯B(ginkgolideB ,GB)对豚鼠心室肌细胞L 型钙电流及胞内游离钙的作用 ,并探讨GB心肌保护作用的机制。实验结果显示 ,在指令电压为 0mV时 ,GB对生理状态下豚鼠心室肌细胞L 型钙电流无明显作用。在模拟缺血状态下 ,L 型钙峰值电流减小 3 7 71% ,但加入 1μmol/LGB后 ,可逆转缺血引起的L 型钙电流的降低 ,与缺血对照组比较 ,有显著性差异 (P <0 0 5 )。 1μmol/LGB能使由于模拟缺血而上移的L 型钙电流 电压曲线回复正常。在生理状态下 ,0 1、1、10mol/LGB分别使心肌细胞内游离钙降低 10 5 8%(n =12 )、17 2 7% (n =12 )、16 3 5 % (n =10 ) ,与对照组相比有非常显著性差异。模拟缺血液灌流 12min时 ,细胞内游离钙浓度增加 2 0 15 % ,在模拟缺血液中分别加入 1μmol/Lnifedipine或 5mmol/LNiCl2 ,结果显示 :模拟缺血液灌流 12min ,与正常对照组相比细胞内钙分别增加 18 18% (P >0 0 5 )与 11% (P <0 0 5 )。在模拟缺血液中加入1mol/LGB灌流 12min时细胞内钙仅增加 9 60 % (n =12 ,P <0 0 0 1) ,与缺血对照组相比有显著性差异 (P <0 0 5 )。结果表明 ,GB可逆转模拟缺血造成L 型钙电流的降低 ,同时可部分减轻由于缺血所造成的细胞内钙的超载  相似文献   

9.
Sphingolipids comprise a very important class of second messengers involved in cell growth, differentiation, and apoptosis, among other different functions. Recently, these lipids have been implicated in calcium mobilization in different cell lines, including Jurkat T-lymphocytes. However, the effect of each particular sphingolipid appears to be cell-line specific. Among them, the least studied is ceramide-1-P (Cer-1-P). Here, we show that Cer-1-P increased the intracellular Ca(2+) concentration in Jurkat T-cells. Furthermore, laser-scanning confocal microscopy indicated that Ca(2+) is released from the endoplasmic reticulum. An effect on store-operated Ca(2+) channels was evidenced by whole-cell "patch clamp" measurements after Cer-1-P induced Ca(2+) store depletion. The mechanism of action of Cer-1-P resembles that of the Jurkat anti-TCR antibody, but differs from that of ceramide, since Cer-1-P induced an increase in Ins(1,4,5)-P(3).  相似文献   

10.
The effects of extracellular ATP on ion fluxes and the intracellular free Ca2+ concentration ([Ca2+]i) were examined using a suspension of rat parotid acinar cells and were contrasted with the effects of the muscarinic agonist carbachol. Although ATP and carbachol both rapidly increased [Ca2+]i about threefold above the resting level (200-250 nM), the effect of ATP was due primarily to an influx of Ca2+ across the plasma membrane, while the initial response to carbachol was due to a release of Ca2+ from intracellular stores. Within 10 s, ATP (1 mM) and carbachol (20 microM) reduced the cellular Cl- content by 39-50% and cell volume by 15-25%. Both stimuli reduced the cytosolic K+ content by 57-65%, but there were marked differences in the rate and pattern of net K+ movement as well as the effects of K+ channel inhibitors on the effluxes initiated by the two stimuli. The maximum rate of the ATP-stimulated K+ efflux (approximately 2,200 nmol K+/mg protein per min) was about two-thirds that of the carbachol-initiated efflux rate, and was reduced by approximately 30% (vs. 60% for the carbachol-stimulated K+ efflux) by TEA (tetraethylammonium), an inhibitor of the large conductance (BK) K+ channel. Charybdotoxin, another K+ channel blocker, was markedly more effective than TEA on the effects of both agonists, and reduced the rate of K+ efflux initiated by both ATP and carbachol by approximately 80%. The removal of extracellular Ca2+ reduced the ATP- and the carbachol-stimulated rates of K+ efflux by 55 and 17%, respectively. The rate of K+ efflux initiated by either agonist was reduced by 78-95% in cells that were loaded with BAPTA to slow the elevation of [Ca2+]i. These results indicated that ATP and carbachol stimulated the efflux of K+ through multiple types of K(+)-permeable channels, and demonstrated that the relative proportion of efflux through the different pathways was different for the two stimuli. ATP and carbachol also stimulated the rapid entry of Na+ into the parotid cell, and elevated the intracellular Na+ content to 4.4 and 2.6 times the normal level, respectively. The rate of Na+ entry through Na(+)-K(+)-2Cl- cotransport and Na(+)-H+ exchange was similar whether stimulated by ATP, carbachol, or ionomycin, and uptake through these two carrier-mediated transporters accounted for 50% of the ATP-promoted Na+ influx. The remainder may be due to a nonselective cation channel and an ATP-gated cation channel that is also permeable to Ca2+.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
This study investigated the signaling pathways responsible for ketamine-induced cardiac depression in guinea pigs. The left ventricular development pressure (LVDP), velocity of the change in pressure (dP/dt), and heart rate (HR) accompanied with the total magnesium efflux ([Mg]e) were measured simultaneously in perfused hearts. The level of activation of the extracellular signal-regulated kinases 1/2 (ERK 1/2) and p38 mitogen-activated protein (MAP) kinase. The intracellular ionized magnesium concentration ([Mg2+]i) was measured using Mag-fura 2 AM in a single cardiomyocyte. Ketamine produced reversible decreases in the LVDP, dP/dt, and HR accompanied by increases in the [Mg]e. Ketamine also produced significant activation of p38 MAP kinase and ERK 1/2, and produced a dose-dependent increase in the [Mg2+]i, which was inhibited SB203580 and PD98059. These results suggest that ketamine-induced cardiac depression can be partly responsible for the increase in [Mg2+]i and [Mg]e, accompanied by the activation of p38 MAP kinase and ERK 1/2 in guinea pigs.  相似文献   

12.
Autophagy is usually up‐regulated to provide more ATP in response to starvation or OGD (oxygen‐glucose deprivation), but the relationship between autophagy and ATP, [Ca2+]i (intracellular free Ca2+ concentration) or MMP (mitochondrial membrane potential) during reoxygenation is not yet fully clear. The role of autophagy is unknown in PC12 cells subjected to 2 h OGD with different time points of reoxygenation. In the present study, we showed that Beclin‐1 was up‐regulated beginning at 0 h reoxygenation peaking at 24 h and lasting for 48 h. Cell viability was decreased from 0 to 48 h reoxygenation, reaching its minimum at 10 h reoxygenation. ATP was decreased from 0 to 10 h reoxygenation, reaching its minimum at 4 h reoxygenation. A significant negative correlation was observed between ATP and Beclin‐1 (r = ?0.61, P<0.05) at 0 h reoxygenation, but ATP was not significant related (r = 0.24, P>0.05) to Beclin‐1 at 24 h reoxygenation. Besides, Nimodipine, a calcium antagonist, significantly reduced [Ca2+]i and Beclin‐1, but increased MMP in OGD/R‐treated cells. At 24 h reoxygenation, Beclin‐1 expression reached its maximum, cell viability continued to increase, and ATP was higher than that before OGD. These results suggest that energy metabolism dysfunction can induce autophagy during OGD in PC12 cells. Increased [Ca2+]i and decreased MMP may induce autophagy during reoxygenation in PC12 cells. Autophagy may be a protective effect on PC12 cells treated with different time points of reoxygenation after 2 h OGD.  相似文献   

13.
14.
U. Russ  F. Grolig  G. Wagner 《Planta》1991,184(1):105-112
The fluorescent calcium-sensitive dye 1-[2-amino-5-(6-carboxyindol-2-yl)-phenoxy]-2-(2-amino-5-methylphenoxy)-ethane-N,N,N,N-tetraacetic acid (indo-1) was loaded by a transplasmalemma pH gradient into filamentous cells and protoplasts of Mougeotia scalaris, such that most of the indo-1 fluorescence originated from the cytoplasm. Incubation of M. scalaris filaments in ethylene glycol-bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid (EGTA)-buffered media (-log [Ca2+] (=pCa) 8 versus pCa 3) caused a consistent and significant decrease in the cytoplasmic free [Ca2+]. Pulses of the fluorescence excitation light (UV-A 365 nm, 0.7 s) caused an increase in cytoplasmic free [Ca2+] in M. scalaris that was nearly independent of the external [Ca2+] and of chloroplast dislocation by centrifugation. This calcium flux, highest in UV-A light, compared with blue or red light, probably resulted from a release of Ca2+ from intracellular stores. Increased cytoplasmic [Ca2+] may affect the velocity of chloroplast rotation since UV-A-light-mediated chloroplast movement was faster than in blue or red light. Consistently, the calcium ionophore A23187 and the calcium-channel agonist Bay-K8644 both increased the velocity of the red-light-mediated chloroplast rotation. Based on these and other observations, a Ca2+-induced decrease in cytoplasmic viscosity in Mougeotia is presumed to occur.Abbreviations EGTA ethylene glycol-bis-(-aminoethyl ether)N,N,N,N-tetraacetic acid - indo-1 1-[2-amino-5-(6-carboxyindol-2-yl)-phenoxy]-2-(2-amino-5-methylphenoxy)-ethane-N,N,N,Ntetraacetic acid - pCa log [Ca2+] - Pfr far-red-absorbing form of phytochrome - Pr red-absorbing form of phytochrome - xG geometric mean Dedicated to Professor Wolfgang Haupt on the occasion of his 70th birthdayThis paper is part of the Ph.D. thesis of U. Russ at the Justus-Liebig-Universitat Giessen (FRG). Part of this work has been presented at a meeting on Calcium and intracellular signalling in plants in Plymouth, UK, Dec. 1990We are indebted to Dr. G. Seibold and Dipl. Phys. H. Weintraut for their advice on the technique of microspectrofluorometry and for allowing access to the microspectrophotometric facilities in the Strahlenzentrum der Justus-Liebig-Universität, Giessen, FRG. We thank Mrs. A. Quanz for reliable culture of the algae and evaluation of the videotapes. Bay-K8644 was a generous gift of Bayer AG, Wuppertal, FRG. U. russ was supported by a scholarship according to the Hessisches Graduierten Förderungsgesetz. This work was supported by the Deutsche Forschungsgemeinschaft.  相似文献   

15.
The Orai1 Ca2+ permeable ion channel is an important component of store operated Ca2+ entry (SOCE) in cells. It’s over-expression in basal molecular subtype breast cancers has been linked with poor prognosis, making it a potential target for drug development. We pharmacologically characterised a number of reported inhibitors of SOCE in MDA-MB-231 breast cancer cells using a convenient Fluorescence Imaging Plate Reader (FLIPR) assay, and show that the rank order of their potencies in this assay is the same as those reported in a wide range of published assays. The assay was also used in a screening project seeking novel inhibitors. Following a broad literature survey of classes of calcium channel inhibitors we used simplified ligand structures to query the ZINC on-line database, and following two iterations of refinement selected a novel Orai1-selective dichlorophenyltriazole hit compound. Analogues of this were synthesized and evaluated in the FLIPR assay to develop structure–activity relationships (SAR) for the three domains of the hit; triazole (head), dichlorophenyl (body) and substituted phenyl (tail). For this series, the results suggested the need for a lipophilic tail domain and an out-of-plane twist between the body and tail domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号