首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
We report the solution properties of a new exopolysaccharide (EPS) obtained from a Pseudomonas strain fed with glycerol as the sole source of carbon. This high molecular mass (3 × 106 g mol−1) biopolymer is essentially made of galactose monomers with pyruvate and succinate groups imparting a polyelectrolyte character. The Smidsrod parameter B computed from the ionic strength dependence of the intrinsic viscosity indicates that the EPS backbone is rather flexible. In salt free aqueous solutions, the zero shear viscosity scaling with concentration follows a typical polyelectrolyte behavior in bad solvent, whereas at high ionic strength the rheological response is reminiscent from neutral polymers. Light scattering data indicate that the EPS adopts a globular conformation as a result of hydrophobic interactions. EPS solutions are stable within 4 days as particle sizing does not indicate EPS aggregation. Both globular conformation and stability against precipitation from solution are attributed to the low charge density of the polyelectrolyte.  相似文献   

2.
Klebsiella pneumoniae is a Gram-negative facultative anaerobe that metabolizes glycerol efficiently under both aerobic and anaerobic conditions. This microbe is considered an outstanding biocatalyst for transforming glycerol into a variety of value-added products. Crude glycerol is a cheap carbon source and can be converted by K. pneumoniae into useful compounds such as lactic acid, 3-hydroxypropionic acid, ethanol, 1,3-propanediol, 2,3-butanediol, and succinic acid. This review summarizes glycerol metabolism in K. pneumoniae and its potential as a microbial cell factory for the production of commercially important acids and alcohols. Although many challenges remain, K. pneumoniae is a promising workhorse when glycerol is used as the carbon source.  相似文献   

3.
Ferritin in the field of nanodevices   总被引:2,自引:0,他引:2  
Biomineralization of ferritin core has been extended to the artificial synthesis of homogeneous metal complex nanoparticles (NPs) and semiconductor NPs. The inner cavity of apoferritin is an ideal spatially restricted chemical reaction chamber for NP synthesis. The obtained ferritin (biocomplexes, NP and the surrounding protein shell) has attracted great interest among researchers in the field of nanodevices. Ferritins were delivered onto specific substrate locations in a one-by-one manner or a hexagonally close-packed array through ferritin outer surface interactions. After selective elimination of protein shells from the ferritin, bare NPs were left at the positions where they were delivered. The obtained NPs were used as catalysts for carbon nanotube (CNT) growth and metal induced lateral crystallization (MILC), charge storage nodes of floating gate memory, and nanometer-scale etching masks, which could not be performed by other methods.  相似文献   

4.
In this study, we report the enzymatic production of glycerol acetate from glycerol and methyl acetate. Lipases are essential for the catalysis of this reaction. To find the optimum conditions for glycerol acetate production, sequential experiments were designed. Type of lipase, lipase concentration, molar ratio of reactants, reaction temperature and solvents were investigated for the optimum conversion of glycerol to glycerol acetate. As the result of lipase screening, Novozym 435 (Immobilized Candida antarctica lipase B) was turned out to be the optimal lipase for the reaction. Under the optimal conditions (2.5 g/L of Novozym 435, 1:40 molar ratio of glycerol to methyl acetate, 40 °C and tert-butanol as the solvent), glycerol acetate production was achieved in 95.00% conversion.  相似文献   

5.
6.
7.
The amount of glycerol derived from the biodiesel industry is exponentially increasing. The valorization of glycerol has acquired attention and resources with an obvious economic and environmental interest. Glycerol has the potential to improve the profitability of biodiesel in a biorefinery scenario. Added-value metabolites obtained from glycerol-based fermentations are the target of multiple research studies, primarily chemicals and biopolymers. Pigments and polyunsaturated fatty acids are exceptional examples as they have market presence as nutraceuticals. Most of the studies reviewed have been based on microalgae cultures. Depending on the strain and the engineering aspects of such cultures the final yield suffers notable variations. This is an emerging field which shows great potential from the perspective of a byproduct usage and the increasing yields (value) obtained from the bioprocess.  相似文献   

8.
Specific activities of eight enzymes involved in glycerol metabolism were determined in crude extracts of three strains ofNeurospora crassa after growth on six different carbon sources. One of the strains was wild type, which grew poorly on glycerol as sole carbon source; the other two were mutant strains which were efficient glycerol utilizers. A possible basis for this greater effeciency of glycerol utilization was catabolite repression of glyceraldehyde kinase by glycerol in wild type, and two-fold higher glycerate kinase activity in the mutant strains after growth on glycerol, thus apparently allowing two routes for glyceraldehyde to enter the glycolytic pathway in the mutant strains but only one in wild type. The preferential entry of glyceraldehyde to the glycolytic pathway through glycerate was suggested by the lack of glyceraldehyde kinase in all three strains after growth on one or more of the carbon sources and the generally higher levels of aldehyde dehydrogenase and of glycerate kinase than of glyceraldehyde kinase.  相似文献   

9.
Glycerol carbonate is a key multifunctional compound employed as solvent, additive, monomer, and chemical intermediate. Enzymatic synthesis of glycerol carbonate from renewable starting materials (glycerol and dimethyl carbonate) was successfully achieved by immobilized lipase from Candida antarctica (CALB, Novozym 435). Addition of molecular sieves as scavenger for the removal of methanol, which was generated from dimethyl carbonate during the reaction, accelerated a reaction rate. After the optimization, the equimolar use of glycerol and dimethyl carbonate in the Novozym 435-catalyzed reaction yielded a glycerol carbonate with almost quantitative yield. The resulting glycerol carbonate from 60 °C reaction has shown the low enantiomeric excess (13% ee) as configuration of (R)-enantiomer.  相似文献   

10.
Biodiesel has emerged as an environmentally friendly alternative to fossil fuels; however, the low price of glycerol feed‐stocks generated from the biodiesel industry has become a burden to this industry. A feasible alternative is the microbial biotransformation of waste glycerol to hydrogen and ethanol. Escherichia coli, a microorganism commonly used for metabolic engineering, is able to biotransform glycerol into these products. Nevertheless, the wild type strain yields can be improved by rewiring the carbon flux to the desired products by genetic engineering. Due to the importance of the central carbon metabolism in hydrogen and ethanol synthesis, E. coli single null mutant strains for enzymes of the TCA cycle and other related reactions were studied in this work. These strains were grown anaerobically in a glycerol‐based medium and the concentrations of ethanol, glycerol, succinate and hydrogen were analysed by HPLC and GC. It was found that the reductive branch is the more relevant pathway for the aim of this work, with malate playing a central role. It was also found that the putative C4‐transporter dcuD mutant improved the target product yields. These results will contribute to reveal novel metabolic engineering strategies for improving hydrogen and ethanol production by E. coli.  相似文献   

11.
Cheng KK  Zhang JA  Liu DH  Sun Y  Yang MD  Xu JM 《Biotechnology letters》2006,28(22):1817-1821
Broth containing 152 g glycerol l−1 from Candida krusei culture was converted to 1,3-propanediol by Klebsiella pneumoniae. Residual glucose in the broth promoted growth of K. pneumoniae while acetate was inhibitory. After desalination treatment of glycerol broth by electrodialysis, the acetate in the broth was removed. A fed-batch culture with electrodialytically pretreated broth as␣substrate was developed giving 53 g 1,3- propanediol l−1 with a yield of 0.41 g g−1 glycerol and a productivity of 0.94 g l−1 h−1.  相似文献   

12.
A cDNA encoding a nicotinamide adenine dinucleotide (NAD+) -dependent glycerol 3-phosphate dehydrogenase (GPDH) has been cloned by rapid amplification of cDNA ends from Dunaliella salina. The cDNA is 3032 base pairs long with an open reading frame encoding a polypeptide of 701 amino acids. The polypeptide shows high homology with published NAD+ -dependent GPDHs and has at its N-terminal a chloroplast targeting sequence. RNA gel blot analysis was performed to study GPDH gene expression under different conditions, and changes of the glycerol content were monitored. The results indicate that the cDNA may encode an osmoregulated isoform primarily involved in glycerol synthesis. The 701-amino-acid polypeptide is about 300 amino acids longer than previously reported plant NAD+ -dependent GPDHs. This 300-amino-acid fragment has a phosphoserine phosphatase domain. We suggest that the phosphoserine phosphatase domain functions as glycerol 3-phosphatase and that, consequently, NAD+ -dependent GPDH from D. salina can catalyze the step from dihydroxyacetone phosphate to glycerol directly. This is unique and a possible explanation for the fast glycerol synthesis found in D. salina.  相似文献   

13.
Abstract A constitutive NAD+-dependent glycerol dehydrogenase activity was detected in Halobacterium salinarium and Halobacterium cutirubrum . Optimal activity was found at 3 M KCl and pH 8–10. No glycerol dehydrogenase activity could be demonstrated in representatives of the genera Haloferax and Haloarcula , even when grown in the presence of glycerol, or in Halobacterium saccharovorum and Halobacterium sodomense . Glycerol kinase activity was shown to be present constitutively in all halophilic archaea examined. The finding that glycerol dehydrogenase is found only in part of the halophilic arachaea makes dihydroxyacetone an improbable candidate as the precursor for the glycerol moiety of halobacterial lipids.  相似文献   

14.
15.
In the current study, the effect of glycerol -as a green solvent- addition into solvent mixture (50:50 ethanol:distilled water), on some biofunctional properties of Origanum onites L. was investigated. Response surface methodology (RSM) was used to detect the optimum conditions for the extraction process. Three variables namely glycerol concentration (X1: 1–9 g), extraction temperature (X2: 25–75 °C) and time (X3:10–30 min) were selected and also total phenolic content, total flavonoid content, antioxidant capacity and antiradical activity of O. onites extracts were determined. Analysis of variance (ANOVA) showed that glycerol incorporation significantly increased the total phenolic content and antioxidant activity (p < 0.05) of the samples. Maximum levels to obtain the highest bioactive properties (highest total phenolic content and antioxidant activity) were determined as to be 9 g of glycerol addition for the extraction conditions as 45.4 °C and 75 min. This study reports the effect of glycerol on bioactive properties of O. onites and suggests that glycerol can be used to produce hydroalcoholic extracts having higher bioactivity from Origanum genus.  相似文献   

16.
Glycerol, a co-product of biodiesel production, was evaluated as carbon source for biosurfactant production. For this reason, seven non-pathogenic biosurfactant-producing Bacillus strains, isolated from the tank of chlorination at the Wastewater Treatment Plant at Federal University of Ceara, were screened. The production of biosurfactant was verified by determining the surface tension value, as well as the emulsifying capacity of the free-cell broth against soy oil, kerosene and N-hexadecane. Best results were achieved when using LAMI005 and LAMI009 strains, whose biosurfactant reduced the surface tension of the broth to 28.8?±?0.0 and 27.1?±?0.1?mN?m(-1), respectively. Additionally, at 72?h of cultivation, 441.06 and 267.56?mg?L(-1) of surfactin were produced by LAMI005 and LAMI009, respectively. The biosurfactants were capable of forming stable emulsions with various hydrocarbons, such as soy oil and kerosene. Analyses carried out with high performance liquid chromatography (HPLC) showed that the biosurfactant produced by Bacillus subtilis LAMI009 and LAMI005 was compatible with the commercially available surfactin standard. The values of minimum surface tension and the CMC of the produced biosurfactant indicated that it is feasible to produce biosurfactants from a residual and renewable and low-cost carbon source, such as glycerol.  相似文献   

17.
As climate change is an important environmental issue, the conventional petrochemical-based processes to produce valuable chemicals are being shifted toward eco-friendly biological-based processes. In this study, 3-hydroxypropionic acid (3-HP), an industrially important three carbon (C3) chemical, was overproduced by metabolically engineered Escherichia coli using glycerol as a sole carbon source. As the first step to construct a glycerol-dependent 3-HP biosynthetic pathway, the dhaB1234 and gdrAB genes from Klebsiella pneumoniae encoding glycerol dehydratase and glycerol reactivase, respectively, were introduced into E. coli to convert glycerol into 3-hydroxypropionaldehyde (3-HPA). In addition, the ydcW gene from K. pneumoniae encoding γ-aminobutyraldehyde dehydrogenase, among five aldehyde dehydrogenases examined, was selected to further convert 3-HPA to 3-HP. Increasing the expression level of the ydcW gene enhanced 3-HP production titer and reduced 1,3-propanediol production. To enhance 3-HP production, fed-batch fermentation conditions were optimized by controlling dissolved oxygen (DO) level and employing different feeding strategies including intermittent feeding, pH-stat feeding, and continuous feeding strategies. Fed-batch culture of the final engineered E. coli strain with DO control and continuous feeding strategy produced 76.2 g/L of 3-HP with the yield and productivity of 0.457 g/g glycerol and 1.89 g·L−1·h−1, respectively. To the best of our knowledge, this is the highest 3-HP productivity achieved by any microorganism reported to date.  相似文献   

18.
Petroleum is the main energy source utilized in the world, but its availability is limited and the search for new renewable energy sources is of major interest. Biofuels, such as ethanol and biodiesel, are among the most promising sources for the substitution of fossil fuels. Biodiesel can replace petroleum diesel, as it is produced from animal fats and vegetable oils, which generate about 10% (w/w) glycerol as the main by-product. The excess glycerol generated may become an environmental problem, since it cannot be disposed of in the environment. One of the possible applications is its use as carbon and energy source for microbial growth in industrial microbiology. Glycerol bioconversion in valuable chemicals, such as 1,3-propanediol, dihydroxyacetone, ethanol, succinate etc. is discussed in this review article.  相似文献   

19.
20.
The quantitative importance of photosynthetically produced dissolved organic carbon (PDOC) released from phytoplankton as a source of carbon for pelagic, heterotrophic bacteria was investigated in four temperate Swedish lakes, of which two had low (≈20 mg Pt 1−1), and two moderately high (60–80 mg Pt 1−1) humic content. The bacterial assimilation of PDOC was estimated with the 14C method, and the total production of the heterotrophic bacteria was estimated with the [3H]thymidine incorporation method. The release of PDOC from natural communities of phytoplankton was not restricted to periods of photosynthesis, but often continued during periods of darkness. Heterotrophic bacteria often assimilated the labile components of the PDOC at high rates (up to 73% of the released PDOC was assimilated during the incubation in our experiments). The contribution of PDOC to bacterial production exhibited large within-lake seasonal variations, but PDOC was at certain times, both in humic and non-humic lakes, a quantitatively very important carbon source for the heterotrophic bacteria. Under periods of comparatively low primary production, heterotrophic bacteria in humic lakes appear to utilize allochthonous, humic substances as a substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号