共查询到20条相似文献,搜索用时 15 毫秒
1.
Nakamura R Furuno T Nakanishi M 《Biochemical and biophysical research communications》2006,347(1):363-368
The Ca(2+)-promoted Ras inactivator (CAPRI), a Ras GTPase-activating protein, is involved in the inactivation of mitogen-activated protein kinase pathway. However, a precise role of CAPRI in immune responses is still unknown. Here we showed that overexpression of CAPRI suppresses antigen-induced degranulation and cytokine production in mast cells (RBL cells). Antigen elicited the translocation of CAPRI to the plasma membrane from the cytoplasm, which was concomitant with the increase in the intracellular Ca(2+) concentration. The nuclear import of extracellular signal-regulated kinase 2 (ERK2) occurred after the re-localization of CAPRI to the cytoplasm in the mast cells, suggesting that the early phase of ERK2 activation is eliminated. A mutant of GAP-related domain, CAPRI(R472S), showed a feeble translocation to the plasma membrane but did not affect the degranulation, ERK2 activation, and cytokine production. The results suggested that the translocation of CAPRI to the plasma membranes regulates crucially cellular responses in mast cells. 相似文献
2.
Reuben P. Siraganian Rodrigo O. de Castro Emilia A. Barbu Juan Zhang 《FEBS letters》2010,584(24):4933-4940
The aggregation by antigen of the IgE bound to its high affinity receptor on mast cells initiates a complex series of biochemical events that result in the release of inflammatory mediators. The essential role of the protein tyrosine kinase Syk has been appreciated for some time, and newer results have defined the mechanism of its activation. The use of siRNA has defined the relative contribution of Syk, Fyn and Gab2 to signaling and has made possible a screening study to identify previously unrecognized molecules that are involved in these pathways. 相似文献
3.
Transient receptor potential melastatin 2 (TRPM2) is an oxidative stress-sensitive Ca2+-permeable channel. In monocytes/macrophages, H2O2-induced TRPM2 activation causes cell death and/or production of chemokines that aggravate inflammatory diseases. However, relatively high concentrations of H2O2 are required for activation of TRPM2 channels in vitro. Thus, in the present study, factors that sensitize TRPM2 channels to H2O2 were identified and subsequent physiological responses were examined in U937 human monocytes. Temperature increase from 30 °C to 37 °C enhanced H2O2-induced TRPM2-mediated increase in intracellular free Ca2+ ([Ca2+]i) in TRPM2-expressing HEK 293 cells (TRPM2/HEK cells). The H2O2-induced TRPM2 activation enhanced by the higher temperature was dramatically sensitized by intracellular Fe2+-accumulation following pretreatment with FeSO4. Thus intracellular Fe2+-accumulation sensitizes H2O2-induced TRPM2 activation at around body temperature. Moreover, intracellular Fe2+-accumulation increased poly(ADP-ribose) levels in nuclei by H2O2 treatment, and the sensitization of H2O2-induced TRPM2 activation were almost completely blocked by poly(ADP-ribose) polymerase inhibitors, suggesting that intracellular Fe2+-accumulation enhances H2O2-induced TRPM2 activation by increase of ADP-ribose production through poly(ADP-ribose) polymerase pathway. Similarly, pretreatment with FeSO4 stimulated H2O2-induced TRPM2 activation at 37 °C in U937 cells and enhanced H2O2-induced ERK phosphorylation and interleukin-8 (CXCL8) production. Although the addition of H2O2 to cells under conditions of intracellular Fe2+-accumulation caused cell death, concentration of H2O2 required for CXCL8 production was lower than that resulting in cell death. These results indicate that intracellular Fe2+-accumulation sensitizes TRPM2 channels to H2O2 and subsequently produces CXCL8 at around body temperature. It is possible that sensitization of H2O2-induced TRPM2 channels by Fe2+ may implicated in hemorrhagic brain injury via aggravation of inflammation, since Fe2+ is released by heme degradation under intracerebral hemorrhage. 相似文献
4.
Alessandro Pedretti 《生物化学与生物物理学报:生物膜》2009,1788(5):973-19
The aim of this study was to generate a reliable model for the homotetrameric structure of the human TRPM8 cation channel, a temperature sensor involved in innocuous cold perceptions. The described model was generated using a fragmental strategy and its interaction capacities were explored by docking a representative set of ligands. The analysis of the quaternary structure suggests that the N-terminus possesses a solenoidal topology which could be involved in tetramerization due to its electrostatic characteristics. Again, the tetramer model unveils a precise fitting between the segments of neighbouring monomers affording attractive suggestions for the multifaceted mechanism of channel gating. Docking results are in convincing agreement with mutational analyses and confirm that S4 and S4-S5 linker play a key role in channel activation. Overall, the proposed model could find fertile applications to further investigate the gating mechanism and to design truly selective ligands able to clarify the pathophysiological roles of the TRPM8 channel. 相似文献
5.
Zhan-Guo Gao Qiang Wei M. P. Suresh Jayasekara Kenneth A. Jacobson 《Purinergic signalling》2013,9(1):31-40
Mast cell degranulation affects many conditions, e.g., asthma and urticaria. We explored the potential role of the P2Y14 receptor (P2Y14R) and other P2Y subtypes in degranulation of human LAD2 mast cells. All eight P2YRs were expressed at variable levels in LAD2 cells (quantitative real-time RT-PCR). Gene expression levels of ADP receptors, P2Y1R, P2Y12R, and P2Y13R, were similar, and P2Y11R and P2Y4R were highly expressed at 5.8- and 3.8-fold of P2Y1R, respectively. Least expressed P2Y2R was 40-fold lower than P2Y1R, and P2Y6R and P2Y14R were ≤50 % of P2Y1R. None of the native P2YR agonists alone induced β-hexosaminidase (β-Hex) release, but some nucleotides significantly enhanced β-Hex release induced by C3a or antigen, with a rank efficacy order of ATP > UDPG ≥ ADP >> UDP, UTP. Although P2Y11R and P2Y4R are highly expressed, they did not seem to play a major role in degranulation as neither P2Y4R agonist UTP nor P2Y11R agonists ATPγS and NF546 had a substantial effect. P2Y1R-selective agonist MRS2365 enhanced degranulation, but ~1,000-fold weaker compared to its P2Y1R potency, and the effect of P2Y6R agonist 3-phenacyl-UDP was negligible. The enhancement by ADP and ATP appears mediated via multiple receptors. Both UDPG and a synthetic agonist of the P2Y14R, MRS2690, enhanced C3a-induced β-Hex release, which was inhibited by a P2Y14R antagonist, specific P2Y14R siRNA and pertussis toxin, suggesting a role of P2Y14R activation in promoting human mast cell degranulation. 相似文献
6.
Yuyang Sun Pramod Sukumaran Archana Varma Susan Derry Abe E. Sahmoun Brij B. Singh 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2014
Cholesterol has been shown to promote cell proliferation/migration in many cells; however the mechanism(s) have not yet been fully identified. Here we demonstrate that cholesterol increases Ca2 + entry via the TRPM7 channel, which promoted proliferation of prostate cells by inducing the activation of the AKT and/or the ERK pathway. Additionally, cholesterol mediated Ca2 + entry induced calpain activity that showed a decrease in E-cadherin expression, which together could lead to migration of prostate cancer cells. An overexpression of TRPM7 significantly facilitated cholesterol dependent Ca2 + entry, cell proliferation and tumor growth. Whereas, TRPM7 silencing or inhibition of cholesterol synthesis by statin showed a significant decrease in cholesterol-mediated activation of TRPM7, cell proliferation, and migration of prostate cancer cells. Consistent with these results, statin intake was inversely correlated with prostate cancer patients and increase in TRPM7 expression was observed in samples obtained from prostate cancer patients. Altogether, we provide evidence that cholesterol-mediated activation of TRPM7 is important for prostate cancer and have identified that TRPM7 could be essential for initiation and/or progression of prostate cancer. 相似文献
7.
Bavencoffe A Kondratskyi A Gkika D Mauroy B Shuba Y Prevarskaya N Skryma R 《The Journal of biological chemistry》2011,286(11):9849-9855
Cold/menthol-activated TRPM8 (transient receptor potential channel melastatin member 8) is primarily expressed in sensory neurons, where it constitutes the principal receptor of environmental innocuous cold. TRPM8 has been shown to be regulated by multiple influences such as phosphorylation, pH, Ca(2+), and lipid messengers. One such messenger is arachidonic acid (AA), which has been shown to inhibit TRPM8 channel activity. However, the physiological pathways mediating the inhibitory effect of AA on TRPM8 still remain unknown. Here, we demonstrate that TRPM8 is regulated via M3 muscarinic acetylcholine receptor-coupled signaling cascade based on the activation of cytosolic phospholipase A2 (cPLA2) and cPLA2-catalyzed derivation of AA. Stimulation of M3 receptors heterologously co-expressed with TRPM8 in HEK-293 cells by nonselective muscarinic agonist, oxotremorine methiodide (Oxo-M), caused inhibition of TRPM8-mediated membrane current, which could be mimicked by AA and antagonized by pharmacological or siRNA-mediated cPLA2 silencing. Our results demonstrate the intracellular functional link between M3 receptor and TRPM8 channel via cPLA2/AA and suggest a novel physiological mechanism of arachidonate-mediated regulation of TRPM8 channel activity through muscarinic receptors. We also summarize the existing TRPM8 regulations and discuss their physiological and pathological significance. 相似文献
8.
《Cell calcium》2020
The ion channel TRPM8 has been identified as the primary cold sensor in humans, but insights into how cold perception is established remained elusive. This has changed now with newly published structures of TRPM8 in different states during channel gating, which help us understand why we feel cold and adapt to it. 相似文献
9.
Hide M Tsutsui T Sato H Nishimura T Morimoto K Yamamoto S Yoshizato K 《Analytical biochemistry》2002,302(1):28-37
Surface plasmon resonance (SPR)-based sensors have been used to detect the binding between interactive molecules. We applied the SPR technology to the analysis of interactions between living cells and molecules reactive to the cells, using mast cells and mast cell-reactive antigens. The exposure of dinitrophenol-human serum albumin (DNP-HSA), an antigen that stimulates mast cells, to IgE-sensitized mast cells induced a robust and long-lasting SPR signal in a dose-dependent manner. The maximal increase in SPR signal induced by 100 ng/ml DNP-HSA was 0.200 +/- 0.120 angle (mean +/- SD, n = 37), about 1000 times larger than the theoretically expected increase for the simple binding of DNP-HSA to Fc(epsilon)RI, the high-affinity IgE receptor. A small, but similarly prolonged signal was observed when the cells were stimulated by an agonist of the adenosine A3 receptor. The signal induced by DNP-HSA was abolished by genistein, and partially inhibited by phorbol 12-myristate 13-acetate and wortmannin. Interestingly, the signal induced by DNP-HSA was only weakly inhibited by DNP-lysine, suggesting that DNP-lysine manifests its action not by inhibiting, but by modulating the crosslinking of Fc(epsilon)RI. We concluded that SPR sensors can detect biologically significant signals in a real-time manner from the interactions between cells and molecules reactive to the cells. 相似文献
10.
The effects of pharmacological stimulation of skin ion channels TRPA1, TRPM8, TRPV1 on the immune response are presented. These effects are compared with the effects of different types of temperature exposures - skin cooling, deep cooling, and deep heating. This analysis allows us to clear the differences in the influence on the immune response of thermosensitive ion channels localized in the skin; (2) whether the changes in the immune response under temperature exposures are due to these thermosensitive ion channels. Experiments were performed on Wistar rats. For stimulation of TRPM8 ion channel, an application to the skin of 1% menthol was used, for TRPA1 - 0.04% allylisotiocianate, and for TRPV1 - capsaicin in a concentration of 0.001.The antigen binding in the spleen was two-times stimulated by activation of the cold-sensitive ion channel TRPM8 and much weaker by activation of warm-sensitive TRPV1 (by 15%), and another cold-sensitive ion channel TRPA1 (by 40%). Only the stimulation of TRPA1 significantly (by 140%) increased antibody formation in the spleen, while TRPM8 had practically no effect on this process, and activation of TRPV1 significantly (by 60%) inhibited antibody formation. Stimulation of the TRPM8 ion channel significantly (by 60%) reduced the level of IgG in the blood, which is believed to control of infectious diseases.The obtained results show that pharmacological activation of the skin TRPA1, TRPM8, TRPV1 ion channels can differently affect the immune system. At the epicenter of changes there were the antigen binding and antibody formation in the spleen, as well as the level of IgG in the blood. Exactly stimulation of the TRPM8 ion channel determines the changes in the immune response when only the skin is cooling, while at deep body heating, the changes in the immune response are mostly determined by the activation of the skin TRPV1 ion channel. 相似文献
11.
12.
María Pertusa Alejandro González Paulina Hardy Rodolfo Madrid Félix Viana 《The Journal of biological chemistry》2014,289(32):21828-21843
TRPM8, a nonselective cation channel activated by cold, voltage, and cooling compounds such as menthol, is the principal molecular detector of cold temperatures in primary sensory neurons of the somatosensory system. The N-terminal domain of TRPM8 consists of 693 amino acids, but little is known about its contribution to channel function. Here, we identified two distinct regions within the initial N terminus of TRPM8 that contribute differentially to channel activity and proper folding and assembly. Deletion or substitution of the first 40 residues yielded channels with augmented responses to cold and menthol. The thermal threshold of activation of these mutants was shifted 2 °C to higher temperatures, and the menthol dose-response curve was displaced to lower concentrations. Site-directed mutagenesis screening revealed that single point mutations at positions Ser-26 or Ser-27 by proline caused a comparable increase in the responses to cold and menthol. Electrophysiological analysis of the S27P mutant revealed that the enhanced sensitivity to agonists is related to a leftward shift in the voltage dependence of activation, increasing the probability of channel openings at physiological membrane potentials. In addition, we found that the region encompassing positions 40–60 is a key element in the proper folding and assembly of TRPM8. Different deletions and mutations within this region rendered channels with an impaired function that are retained within the endoplasmic reticulum. Our results suggest a critical contribution of the initial region of the N-terminal domain of TRPM8 to thermal and chemical sensitivity and the proper biogenesis of this polymodal ion channel. 相似文献
13.
14.
Mast cells are well known as effector cells in a variety of inflammatory diseases, including asthma as well as other allergic disorders. The precise role of 9-cis retinoic acid (9CRA) in mast cells is not understood despite the accepted fact that 9CRA regulates inflammatory responses and neutrophil differentiation. In this study, we investigated the effects of 9CRA on the expression of CC chemokine receptors in the human mast cell line, HMC-1. 9CRA selectively inhibits the CCR2 mRNA level and increases the CCR3 mRNA level in both a time and dose dependent manner. Other CC chemokine receptors, including CCR1, CCR4 and CCR5 are not altered by treatment with 9CRA. Both TNF-alpha and LPS, known pro-inflammatory molecules, have no effect on mRNA levels of CC chemokine receptors. For surface expression, 9CRA decreased the CCR2 level but had no effect on the CCR3 level. 9CRA inhibited the chemotactic activity in response to the CCR2-dependent chemokine, MCP-1/CCL2 but not in response to CCR3-specific chemokine, eotaxin/CCL11. 9CRA decreased spontaneous homotype clustering. Therefore, our results demonstrate that 9CRA differentially decreases both CCR2 expression and chemotactic ability of HMC-1 cells, and may regulate the inflammatory effects of mast cells. 相似文献
15.
The protein inhibitor of nitric oxide synthase (PIN) was independently identified as an inhibitor of nitric oxide (NO) produced by neuronal nitric oxide synthase (nNOS), and as a member of the cellular dynein light chain family, dynein light chain 8 (LC8), responsible for intracellular protein trafficking. Mast cells (MC) are involved in several homeostatic and pathological processes and can be regulated by NO. This study describes the expression of PIN/LC8 in the human MC line HMC-1. We also studied if PIN/LC8 binds nNOS, and what role this might have in leukotriene (LT) production. We found that PIN/LC8 mRNA and protein was expressed in HMC-1. Using a GST-PIN construct, we showed PIN binds to nNOS, but not endothelial (e)NOS in HMC-1; in our studies HMC-1 did not express inducible (i)NOS. Intracellular delivery of anti-PIN/LC8 antibody enhanced ionophore (A23187)-induced LT production through an unknown mechanism. Thus we established for the first time expression of PIN/LC8 in human MC, its ability to bind nNOS, and the effect that blocking it has on LT production in a human MC lines. 相似文献
16.
We previously reported that rhIL-4 induced apoptosis and rhIL-6 mediated protection of human mast cells derived from cord blood mononuclear cells. Based on the result, we attempted to obtain the phenotypes and differentiation of CD3+ cells from cord blood by investigating their cell surface markers in the presence of rhSCF plus rhIL-4. The effect of co-cultured CD3+ cells on fetal liver mast cells (FLMCs) was also determined. Phenotypes from cord blood-derived cells were analyzed by flow cytometry and cell numbers were determined. Fetal liver mast cells were cultured with cord blood-derived cells (mainly CD3+) in the presence of rhSCF and/or rhIL-4 and were analyzed to determine cell number and expression of Kit+ and FcepsilonR1. The percentage of CD3+ cells from cord blood-derived cells on day 0 was about 41 +/- 13.5%, following monocytes and granulocytes. CD3+ cells increased in number (1.5-fold) and purity (90%), whereas other cell types did not survive. More than 60% of CD3+ cells from cord blood at day 0 were CD4(-)CD8-. These double-negative cells dramatically decreased by 1 week of culture, while CD4+CD8+ cells increased in number and purity through 3 weeks of culture, and then decreased as greater numbers of single-positive T cells emerged. We also found that FcepsilonR expression on FLMC increased in the presence of rhIL-4, but was not affected by the T cells that developed from cord blood mononuclear cells. The results indicate that IL-4, a Th2 type cytokine, together with rhSCF, can induce T cell proliferations, differentiation, and maturation from cord blood progenitor cells. 相似文献
17.
Yeranddy A. Alpizar Alicia SanchezAhmed Radwan Islam RadwanThomas Voets Karel Talavera 《Cell calcium》2013
It is often observed in intracellular Ca2+ imaging experiments that the amplitudes of the Ca2+ signals elicited by newly characterized TRP agonists do not correlate with the amplitudes of the responses evoked subsequently by a specific potent agonist. We investigated this rather controversial phenomenon by first testing whether it is inherent to the comparison of the effects of weak and strong stimuli. Using five well-characterized TRP channel agonists in commonly used heterologous expression systems we found that the correlation between the amplitudes of the Ca2+ signals triggered by two sequentially applied stimuli is only high when both stimuli are strong. Using mathematical simulations of intracellular Ca2+ dynamics we illustrate that the innate heterogeneity in expression and functional properties of Ca2+ extrusion (e.g. plasma membrane Ca2+ ATPase) and influx (TRP channels) pathways across a cellular population is a sufficient condition for low correlation between the amplitude of Ca2+ signals elicited by weak and strong stimuli. Taken together, our data demonstrate that this phenomenon is an expected outcome of intracellular Ca2+ imaging experiments that cannot be taken as evidence for lack of specificity of low-efficacy stimuli, or as an indicator of the need of other cellular components for channel stimulation. 相似文献
18.
Oxysterols activating liver X receptors (LXRs) repress expression of pro-inflammatory genes and have anti-inflammatory effects. Here, we show for the first time that bone marrow-derived murine mast cells (BMMCs) predominantly express LXRβ. 25-hydroxycholesterol, a representative LXR activating oxysterol, suppressed IL-6 production and degranulation response in BMMCs following engagement of high-affinity IgE receptor (FcεRI). Interestingly, 25-hydroxycholesterol reduced cell-surface FcεRI expression by inhibiting assembly of FcεRIα and FcεRIβ. We demonstrate that LXR activation was involved in the suppression of IL-6 production in BMMCs, but that reduced FcεRI expression and degranulation response was mediated in an LXR-independent manner. 相似文献
19.
Effects of hydrogen peroxide on MAPK activation, IL-8 production and cell viability in primary cultures of human bronchial epithelial cells 总被引:2,自引:0,他引:2
Pelaia G Cuda G Vatrella A Gallelli L Fratto D Gioffrè V D'Agostino B Caputi M Maselli R Rossi F Costanzo FS Marsico SA 《Journal of cellular biochemistry》2004,93(1):142-152
The airway epithelium is continuously exposed to inhaled oxidants, including airborne pollutants and cigarette smoke, which can exert harmful proinflammatory and cytotoxic effects. Therefore, the aim of our study was to investigate, in primary cultures of human bronchial epithelial cells (HBEC), the signal transduction pathways activated by increasing concentrations (0.25, 0.5, and 1 mM) of hydrogen peroxide (H(2)O(2)), as well as their effects on IL-8 production and cell viability. The reported results show that H(2)O(2) elicited, in a concentration-dependent fashion, a remarkable increase in phosphorylation-dependent activation of mitogen-activated protein kinases (MAPKs), associated with a significant induction of IL-8 synthesis and a dramatically enhanced cell death. Pre-treatment of HBEC with MAPK inhibitors was able to significantly inhibit the effects of H(2)O(2) on IL-8 secretion, and to effectively prevent cell death. Therefore, these findings suggest that MAPKs play a key role as molecular transducers of the airway epithelial injury triggered by oxidative stress, as well as potential pharmacologic targets for indirect antioxidant intervention. 相似文献
20.
Silveira e Souza AM Mazucato VM de Castro RO Matioli F Ciancaglini P de Paiva Paulino T Jamur MC Oliver C 《Experimental cell research》2008,314(13):2515-2528
Gangliosides are complex glycosphingolipids that are important in many biological processes. The present study investigated the role of gangliosides in the organization of lipid rafts in RBL-2H3 mast cells and in the modulation of mast cell degranulation via FcRI. The role of gangliosides was examined using two ganglioside deficient cell lines (B6A4A2III-E5 and B6A4C1III-D1) as well as the parent cell line (RBL-2H3). All three cell lines examined express FcRI, Lyn, Syk and LAT. However, only in RBL-2H3 cells were FcRI, LAT and α-galactosyl derivatives of ganglioside GD1b mobilized to lipid raft domains following FcRI stimulation. The inhibition of glycosphingolipid synthesis in RBL-2H3 cells also resulted in a decrease in the release of β-hexosaminidase activity after FcRI activation. The two mutant cell lines have a reduced release of β-hexosaminidase activity after FcRI stimulation, but not after exposure to calcium ionophore. These results indicate that the α-galactosyl derivatives of ganglioside GD1b are important in the initial events of FcRI signaling upstream of Ca2+ influx. Since the initial signaling events occur in lipid rafts and in the mutant cell lines the rafts are disorganized, these results also suggest that these gangliosides contribute to the correct assembly of lipid rafts and are essential for mast cell activation via FcRI. 相似文献