首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Store-operated Ca(2+) entry (SOCE) is a physiologically important process that is triggered by intracellular Ca(2+) depletion. Recently, human Orai1 (the channel-forming subunit) and STIM1 (the calcium sensor) were identified as essential molecules for SOCE. Here, we report the cloning and functional analysis of three murine orthologs of Orai1, termed Orai1, 2, and 3. Among the genes identified, Orai1 contains a distinctive proline- and arginine-rich N-terminal cytoplasmic sequence. Co-expression of STIM1 with Orai1 produced a marked effect on SOCE, while co-expression with Orai2 or Orai3 had little effect. Expression of Orai1 without its N-terminal tail had a marginal effect on SOCE, while chimeric Orai2 containing the Orai1 N-terminus produced a marked increase in SOCE. In addition, a truncated version of Orai1 containing the N-terminus without the pore-forming transmembrane domain had a dominant negative effect on SOCE. These results reveal the essential role of Orai1 and its N-terminal sequence in SOCE.  相似文献   

2.
Using whole-cell recording in Drosophila S2 cells, we characterized a Ca(2+)-selective current that is activated by depletion of intracellular Ca2+ stores. Passive store depletion with a Ca(2+)-free pipette solution containing 12 mM BAPTA activated an inwardly rectifying Ca2+ current with a reversal potential >60 mV. Inward currents developed with a delay and reached a maximum of 20-50 pA at -110 mV. This current doubled in amplitude upon increasing external Ca2+ from 2 to 20 mM and was not affected by substitution of choline for Na+. A pipette solution containing approximately 300 nM free Ca2+ and 10 mM EGTA prevented spontaneous activation, but Ca2+ current activated promptly upon application of ionomycin or thapsigargin, or during dialysis with IP3. Isotonic substitution of 20 mM Ca2+ by test divalent cations revealed a selectivity sequence of Ba2+ > Sr2+ > Ca2+ > Mg2+. Ba2+ and Sr2+ currents inactivated within seconds of exposure to zero-Ca2+ solution at a holding potential of 10 mV. Inactivation of Ba2+ and Sr2+ currents showed recovery during strong hyperpolarizing pulses. Noise analysis provided an estimate of unitary conductance values in 20 mM Ca2+ and Ba2+ of 36 and 420 fS, respectively. Upon removal of all external divalent ions, a transient monovalent current exhibited strong selectivity for Na+ over Cs+. The Ca2+ current was completely and reversibly blocked by Gd3+, with an IC50 value of approximately 50 nM, and was also blocked by 20 microM SKF 96365 and by 20 microM 2-APB. At concentrations between 5 and 14 microM, application of 2-APB increased the magnitude of Ca2+ currents. We conclude that S2 cells express store-operated Ca2+ channels with many of the same biophysical characteristics as CRAC channels in mammalian cells.  相似文献   

3.
In rat basophilic leukemia (RBL) cells and Jurkat T cells, Ca(2+) release-activated Ca(2+) (CRAC) channels open in response to passive Ca(2+) store depletion. Inwardly rectifying CRAC channels admit monovalent cations when external divalent ions are removed. Removal of internal Mg(2+) exposes an outwardly rectifying current (Mg(2+)-inhibited cation [MIC]) that also admits monovalent cations when external divalent ions are removed. Here we demonstrate that CRAC and MIC currents are separable by ion selectivity and rectification properties: by kinetics of activation and susceptibility to run-down and by pharmacological sensitivity to external Mg(2+), spermine, and SKF-96365. Importantly, selective run-down of MIC current allowed CRAC and MIC current to be characterized under identical ionic conditions with low internal Mg(2+). Removal of internal Mg(2+) induced MIC current despite widely varying Ca(2+) and EGTA levels, suggesting that Ca(2+)-store depletion is not involved in activation of MIC channels. Increasing internal Mg(2+) from submicromolar to millimolar levels decreased MIC currents without affecting rectification but did not alter CRAC current rectification or amplitudes. External Mg(2+) and Cs(+) carried current through MIC but not CRAC channels. SKF-96365 blocked CRAC current reversibly but inhibited MIC current irreversibly. At micromolar concentrations, both spermine and extracellular Mg(2+) blocked monovalent MIC current reversibly but not monovalent CRAC current. The biophysical characteristics of MIC current match well with cloned and expressed TRPM7 channels. Previous results are reevaluated in terms of separate CRAC and MIC channels.  相似文献   

4.
Depletion of intracellular Ca(2+) stores evokes Ca(2+) entry across the plasma membrane by inducing Ca(2+) release-activated Ca(2+) (CRAC) currents in many cell types. Recently, Orai and STIM proteins were identified as the molecular identities of the CRAC channel subunit and the endoplasmic reticulum Ca(2+) sensor, respectively. Here, extensive database searching and phylogenetic analysis revealed several lineage-specific duplication events in the Orai protein family, which may account for the evolutionary origins of distinct functional properties among mammalian Orai proteins. Based on similarity to key structural domains and essential residues for channel functions in Orai proteins, database searching also identifies a putative primordial Orai sequence in hyperthermophilic archaeons. Furthermore, modern Orai appears to acquire new structural domains as early as Urochodata, before divergence into vertebrates. The evolutionary patterns of structural domains might be related to distinct functional properties of Drosophila and mammalian CRAC currents. Interestingly, Orai proteins display two conserved internal repeats located at transmembrane segments 1 and 3, both of which contain key amino acids essential for channel function. These findings demonstrate biochemical and physiological relevance of Orai proteins in light of different evolutionary origins and will provide novel insights into future structural and functional studies of Orai proteins.  相似文献   

5.
Modulation of calcium signalling by mitochondria   总被引:1,自引:0,他引:1  
Ciara Walsh 《BBA》2009,1787(11):1374-1382
In this review we will attempt to summarise the complex and sometimes contradictory effects that mitochondria have on different forms of calcium signalling. Mitochondria can influence Ca2+ signalling indirectly by changing the concentration of ATP, NAD(P)H, pyruvate and reactive oxygen species — which in turn modulate components of the Ca2+ signalling machinery i.e. buffering, release from internal stores, influx from the extracellular solution, uptake into cellular organelles and extrusion by plasma membrane Ca2+ pumps. Mitochondria can directly influence the calcium concentration in the cytosol of the cell by importing Ca2+ via the mitochondrial Ca2+ uniporter or transporting Ca2+ from the interior of the organelle into the cytosol by means of Na+/Ca2+ or H+/Ca2+ exchangers. Considerable progress in understanding the relationship between Ca2+ signalling cascades and mitochondrial physiology has been accumulated over the last few years due to the development of more advanced optical techniques and electrophysiological approaches.  相似文献   

6.
Activation of the human red cell calcium ATPase by calcium pretreatment   总被引:1,自引:0,他引:1  
Some kinetic parameters of the human red cell Ca2+-ATPase were studied on calmodulin-free membrane fragments following preincubation at 37°C. After 30 min treatment with EGTA(1 mm) plus dithioerythritol (1 mm), a V max of about 0.4 μmol Pi/mg × hr and a K s of 0.3 μm Ca2+ were found. When Mg2+ (10 mm) or Ca2+(10 μm) were also added during preincubation, V maxbut not Kwas altered. Ca2+ was more effective than Mg2+, thus increasing V max to about 1.3 μmol Pi/mg × hr. The presence of both Ca2+ and Mg2+ during pretreatment decreasedKto 0.15 μm, while having no apparent effect on V max. Conversely, addition of ATP (2 mm) with either Ca2+ or Ca2+ plus Mg2+increased Vmax without affecting K. Preincubation with Ca2+ for periods longer than 30 min further increased Vmaxand reduced Kto levels as low as found with calmodulin treatment. The Ca2+ activation was not prevented by adding proteinase inhibitors (iodoacetamide, 10 mm; leupeptin, 200 μm; pepstatinA, 100 μm; phenylmethanesulfonyl fluoride, 100 μm). The electrophoretic pattern of membranes preincubated with or without Mg2+, Ca2+ or Ca2+ plus Mg2+ did not differ significantly from each other. Moreover, immunodetection of Ca2+-ATPase by means of polyclonal antibodiesrevealed no mobility change after the various treatments. The above stimulation was not altered by neomycin (200 μm), washing with EGTA (5 mm) or by both incubating and washing with delipidized serum albumin (1 mg/ml), or omitting dithioerythritol from the preincubation medium. On the other hand, the activation elicited by Ca2+ plus ATP in the presence of Mg2+ was reduced 25–30% by acridine orange (100 μm), compound 48/80 (100 μm) or leupeptin (200 μm) but not by dithio-bis-nitrobenzoic acid (1 mm). The fluorescence depolarization of 1,6-diphenyl-and l-(4-trimethylammonium phenyl)-6-phenyl 1,3,5-hexatriene incorporated into membrane fragments was not affected after preincubating under the different conditions. The results show that proteolysis, fatty acid production, an increased phospholipid metabolism or alteration of membrane fluidity are not involved in the Ca2+ effect. Ca2+ preincubation may stimulate the Ca2+-ATPase activity by stabilizing or promoting the E1 conformation.  相似文献   

7.
Persistent tumour necrosis factor alpha (TNF-alpha) exposure uncouples proximal T-cell receptor (TCR)-signalling events. Here, we demonstrate that chronic TNF-alpha exposure also attenuates signalling distal to the TCR, by specifically inhibiting Ca2+ influx evoked by thapsigargin in CD4+ T-cells. Mitogen-induced Ca2+ responses were impaired in a dose dependent manner, and TCR-induced Ca2+ responses were also significantly reduced. The impairment of Ca2+ influx strongly correlated with poor function as proliferative responses to both mitogen and anti-CD3/CD28 stimulation were suppressed. Our findings show that persistent TNF-alpha exposure of T-cells specifically inhibits store operated Ca2+ influx. This may affect gene activation and contribute to the poor T-cell function in chronic inflammatory disease.  相似文献   

8.
Summary The kinetic and steady-state characteristics of calcium currents in cultured bovine adrenal chromaffin cells were analyzed by the patch-clamp technique. Whole cell inward Ca2+ currents, recorded in the presence of either 5.2 or 2.6mm Ca2+ exhibited a single, noninactivating component. To analyze the effects of Ca2+ and Bay K-8644 on the kinetics of the Ca2+ currents, we used a modified version of the Hodgkin-Huxley empirical model. At physiological [Ca2+] (2.5mm) the midpoint of the steady-state Ca2+-channel activation curve lay at –6.9 mV. Increasing the [Ca2+] to 5.2mm shifted the midpoint by –4.3 mV along the voltage axis. At the midpoint, changes in potential of 7.8 mV (for 5.2mm Ca2+) and 9.2 mV (for 2.5mm Ca2+) induced ane-fold change in the activation of the current. Increasing [Ca2+]0 from 2.5 to 5.2mm induced a marked increase in the rate constant for turning on the Ca2+ permeability. Conductances were estimated from the slope of the linear part of the currentvoltage relationships as 8.7 and 4.2 nS in the presence of 5.2 and 2.5mm Ca2+, respectively. Incubation of the cells in the presence of Bay K-8644 at increasing concentrations from 0.001 to 0.1 m increased the slope conductance from 4.2 to 9.6 nS. Further increases in the concentration of Bay K-8644 from 1 to 100 m induced a marked reduction in the conductance to 1.1 nS. In the presence of Bay K-8644 (0.1 m) the midpoint of the activation curve was shifted by 6.1 mV towards more negative potentials, i.e., from –6.9 to –13 mV. At the midpoint potential of –13 mV, a change in potential of 6.9 mV caused ane-fold change in Ca2+ permeability. The kinetic analysis showed that Bay K-8644 significantly reduced the size of the rate constant for turning off the Ca2+ permeability.  相似文献   

9.
Intracellular calcium (Ca(2+)) homeostasis is very strictly regulated, and the activation of G-protein-coupled receptor (GPCR) can cause two different calcium changes, intracellular calcium release, and calcium influx. In this study, we investigated the possible role of lysophosphatidic acid (LPA) on GPCR-induced Ca(2+) signaling. The addition of exogenous LPA induced dramatic Ca(2+) influx but not intracellular Ca(2+) release in U937 cells. LPA-induced Ca(2+) influx was not affected by pertussis toxin and phospholipase C inhibitor (U73122), ruling out the involvement of pertussis toxin-sensitive G-proteins, and phospholipase C. Stimulation of U937 cells with Trp-Lys-Tyr-Met-Val-D-Met (WKYMVm), which binds to formyl peptide receptor like 1, enhanced phospholipase A(2) and phospholipase D activation, indicating LPA formation. The inhibition of LPA synthesis by phospholipase A(2)-specific inhibitor (MAFP) or n-butanol significantly inhibited WKYMVm-induced Ca(2+) influx, suggesting a crucial role for LPA in the process. Taken together, we suggest that LPA mediates WKYMVm-induced Ca(2+) influx.  相似文献   

10.
Local Ca2+ transfer between adjoining domains of the sarcoendoplasmic reticulum (ER/SR) and mitochondria allows ER/SR Ca2+ release to activate mitochondrial Ca2+ uptake and to evoke a matrix [Ca2+] ([Ca2+]m) rise. [Ca2+]m exerts control on several steps of energy metabolism to synchronize ATP generation with cell function. However, calcium signal propagation to the mitochondria may also ignite a cell death program through opening of the permeability transition pore (PTP). This occurs when the Ca2+ release from the ER/SR is enhanced or is coincident with sensitization of the PTP. Recent studies have shown that several pro-apoptotic factors, including members of the Bcl-2 family proteins and reactive oxygen species (ROS) regulate the Ca2+ sensitivity of both the Ca2+ release channels in the ER and the PTP in the mitochondria. To test the relevance of the mitochondrial Ca2+ accumulation in various apoptotic paradigms, methods are available for buffering of [Ca2+], for dissipation of the driving force of the mitochondrial Ca2+ uptake and for inhibition of the mitochondrial Ca2+ transport mechanisms. However, in intact cells, the efficacy and the specificity of these approaches have to be established. Here we discuss mechanisms that recruit the mitochondrial calcium signal to a pro-apoptotic cascade and the approaches available for assessment of the relevance of the mitochondrial Ca2+ handling in apoptosis. We also present a systematic evaluation of the effect of ruthenium red and Ru360, two inhibitors of mitochondrial Ca2+ uptake on cytosolic [Ca2+] and [Ca2+]m in intact cultured cells.  相似文献   

11.
The present studies were conducted to investigate the mechanisms underlying the 1,25-dihydroxycholecalciferol (1,25(OH)2D3)-induced increase in intracellular Ca2+ ([Ca2+] i ) in individual CaCo-2 cells. In the presence of 2mm Ca2+, 1,25(OH)2D3-induced a rapid transient rise in [Ca2+] i in Fura-2-loaded cells in a concentration-dependent manner, which decreased, but did not return to baseline levels. In Ca2+-free buffer, this hormone still induced a transient rise in [Ca2+] i , although of lower magnitude, but [Ca2+] i then subsequently fell to baseline. In addition, 1,25(OH)2D3 also rapidly induced45Ca uptake by these cells, indicating that the sustained rise in [Ca2+] i was due to Ca2+ entry. In Mn2+-containing solutions, 1,25(OH)2D3 increased the rate of Mn2+ influx which was temporally preceded by an increase in [Ca2+] i . The sustained rise in [Ca2+] i was inhibited in the presence of external La3+ (0.5mm). 1,25(OH)2D3 did not increase Ba2+ entry into the cells. Moreover, neither high external K+ (75mm), nor the addition of Bay K 8644 (1 μm), an L-type, voltage-dependent Ca2+ channel agonist, alone or in combination, were found to increase [Ca2+] i , 1,25(OH)2D3 did, however, increase intracellular Na+ in the absence, but not in the presence of 2mm Ca2+, as assessed by the sodium-sensitive dye, sodium-binding benzofuran isophthalate. These data, therefore, indicate that CaCo-2 cells do not express L-type, voltage-dependent Ca2+ channels. 1,25(OH)2D3 does appear to activate a La3+-inhibitable, cation influx pathway in CaCo-2 cells.  相似文献   

12.
Oscillations in intracellular free Ca2+ concentration ([Ca2+]i) have been observed in a variety of cell types. In the present study, we constructed a mathematical model to simulate the caffeine-induced [Ca2+]i oscillations based on experimental data obtained from isolated type I horizontal cell of carp retina. The results of model analysis confirm the notion that the caffeine-induced [Ca2+]i oscillations involve a number of cytoplasmic and endoplasmic Ca2+ processes that interact with each other. Using this model, we evaluated the importance of store-operated channel (SOC) in caffeine-induced [Ca2+]i oscillations. The model suggests that store-operated Ca2+ entry (SOCE) is elicited upon depletion of the endoplasmic reticulum (ER). When the SOC conductance is set to 0, caffeine-induced [Ca2+]i oscillations are abolished, which agrees with the experimental observation that [Ca2+]i oscillations were abolished when SOC was blocked pharmacologically, verifying that SOC is necessary for sustained [Ca2+]i oscillations.  相似文献   

13.
The basal 45Ca2+ influx in human red blood cells (RBC) into intact RBC was measured. 45Ca2+ was equilibrated with cells with t1/2=15-20 s and the influx reached the steady state value in about 90-100 s and the steady state level was 1.5±0.2 μmol/lpacked cells (n=6) at 37 °C. The average value of the Ca2+ influx rate was 43.2±8.9 μmol/lpacked cells hour. The rate of the basal influx was pH-dependent with a pH optimum at pH 7.0 and on the temperature with the temperature optimum at 25 °C. The basal Ca2+ influx was saturable with Ca2+ up to 5 mmol/l but at higher extracellular Ca2+ concentrations caused further increase of basal Ca2+ influx. The 45Ca2+ influx was stimulated by addition of submicromolar concentrations of phorbol esters (phorbol 12-myristate-13-acetate (PMA) and phorbol-12,13-dibutyrate (PDBu)) and forskolin. Uncoupler (3,3′,4′,5-tetrachloro-salicylanilide (TCS) 10−6-10−5 mol/l) inhibited in part the Ca2+ influx. The results show that the basal Ca2+ influx is mediated by a carrier and is under control of intracellular regulatory circuits. The effect of uncoupler shows that the Ca2+ influx is in part driven by the proton-motive force and indicates that the influx and efflux of Ca2+ are coupled via the RBC H+ homeostasis.  相似文献   

14.
Calcium influx is critical for T cell activation. Evidence has been presented that T cell receptor-stimulated calcium influx in helper T lymphocytes occurs via channels activated as a consequence of depletion of intracellular calcium stores, a mechanism known as capacitative Ca(2+) entry (CCE). However, two key questions have not been addressed. First, the mechanism of calcium influx in cytotoxic T cells has not been examined. While the T cell receptor-mediated early signals in helper and cytotoxic T cells are similar, the physiology of the cells is strikingly different, raising the possibility that the mechanism of calcium influx is also different. Second, contact of T cells with antigen-presenting cells or targets involves a host of intercellular interactions in addition to those between antigen-MHC and the T cell receptor. The possibility that calcium influx pathways in addition to those activated via the T cell receptor may be activated by contact with relevant cells has not been addressed. We have used imaging techniques to show that target-cell-stimulated calcium influx in CTLs occurs primarily through CCE. We investigated the permeability of the CTL influx pathway for divalent cations, and compared it to the permeability of CCE in Jurkat human leukemic T cells. CCE in CTLs shows a similar ability to discriminate between calcium, barium, and strontium as CCE in Jurkat human leukemic T lymphocytes, where CCE is likely to mediated by Ca(2+) release-activated Ca(2+) current (CRAC) channels, suggesting that CRAC channels also underlie CCE in CTLs. These results are the first determination of the mechanism of calcium influx in cytotoxic T cells and the first demonstration that cell contact-mediated calcium signals in T cells occur via depletion-activated channels.  相似文献   

15.
Fibroblast proliferation and procollagen production are central features of tissue repair and fibrosis. In addition to its role in blood clotting, the coagulation cascade proteinase thrombin can contribute to tissue repair by stimulating fibroblasts via proteolytic activation of proteinase-activated receptor-1 (PAR1). During hemostasis, the coagulation cascade proteinase factor X is converted into factor Xa. We have previously shown that factor Xa upregulates fibroblast proliferation via production of autocrine PDGF. In this study, we further examined the effects of factor Xa on fibroblast function and aimed to identify its signaling receptor. We showed that factor Xa stimulates procollagen promoter activity and protein production by human and mouse fibroblasts. This effect was independent of PDGF and thrombin production, but dependent on factor Xa proteolytic activity. We also showed that PAR1-deficient mouse fibroblasts did not upregulate procollagen production, mobilize cytosolic calcium, or proliferate in response to factor Xa. Desensitization techniques and PAR1-specific agonists and inhibitors were used to demonstrate that PAR1 mediates factor Xa signaling in human fibroblasts. This is the first report that factor Xa stimulates extracellular matrix production. In contrast with endothelial cells and vascular smooth muscle cells, fibroblasts appear to be the only cell type in which the effects of factor Xa are mediated mainly via PAR1 and not PAR2. These findings are critical for our understanding of tissue repair and fibrotic mechanisms, and for the design of novel approaches to inhibit the profibrotic effects of the coagulation cascade without compromising blood hemostasis.  相似文献   

16.
K. R. Robinson 《Planta》1977,136(2):153-158
The effect of external calcium and sodium ion concentrations on the calcium fluxes on the Pelvetia fastigiata De Toni egg was measured. Decreasing external [Ca2+] greatly increased the permeability of the eggs to Ca2+; at 1 mM external Ca2+ this permeability was 60 times as great as it was at the normal [Ca2+] of 10 mM. Lowering the external [Na+] also increased Ca2+ influx; at 2 mM Na+, the Ca2+ influx was 2–3 times as great as it was at the normal [Na+] if choline was used as a Na+ substitute. Lithium was less effective as a Na+ substitute in increasing Ca2+ influx. The extra Ca2+ influx in low [Na+] seemed to be dependent on internal [Na+]. The Ca2+ efflux increased transiently and then declined in low Na+ media.  相似文献   

17.
Summary Regulation of passive potassium ion transport by the external calcium concentration and temperature was studied on cell cultures of 3T3 mouse cells and their DNA-virus transformed derivatives. Upon lowering of external calcium concentration, passive potassium efflux generally exhibits a sharp increase at about 0.1mm. The fraction of calcium-regulated potassium efflux is largely independent of temperature in the cases of the transformed cells, but shows a sharp increase for 3T3 cells upon increasing temperature above 32°C. In the same range of temperature, the 3T3 cells exhibit the phenomenon of high-temperature inactivation of the residual potassium efflux at 1mm external calcium. At comparable cellular growth densities, the transformed cell lines do not show high-temperature inactivation of residual potassium efflux. These results are consistent with the notion of a decisive role of the internal K+ concentration in the cell-density dependent regulation of cell proliferation. In particular, the growth-inhibiting effect of lowering the external Ca2+ concentrations is considered as largely due to a rise of passive K+ efflux and a subsequent decrease of internal K+ concentration. The experimental data on the Ca2+ dependence of passive K+ flux are quantitatively described by a theoretical model based on the constant field relations including negative surface charges on the external face of the membrane, which cooperatively bind Ca2+ ions and may concomitantly undergo a lateral redistribution. The present evidence is consistent with acidic phospholipids as representing these negative surface charges.This work is dedicated to the memory of Max Delbrück (deceased March 10, 1981), in whose laboratory in 1966 the earlier version of the present theoretical model was developed by one of the authors.  相似文献   

18.
The Ins(1,4,5)P3 receptor acts as a central hub for Ca2+ signaling by integrating multiple signaling modalities into Ca2+ release from intracellular stores downstream of G-protein and tyrosine kinase-coupled receptor stimulation. As such, the Ins(1,4,5)P3 receptor plays fundamental roles in cellular physiology. The regulation of the Ins(1,4,5)P3 receptor is complex and involves protein-protein interactions, post-translational modifications, allosteric modulation, and regulation of its sub-cellular distribution. Phosphorylation has been implicated in the sensitization of Ins(1,4,5)P3-dependent Ca2+ release observed during oocyte maturation. Here we investigate the role of phosphorylation at T-930, a residue phosphorylated specifically during meiosis. We show that a phosphomimetic mutation at T-930 of the rat Ins(1,4,5)P3 receptor results in decreased Ins(1,4,5)P3-dependent Ca2+ release and lowers the Ins(1,4,5)P3 binding affinity of the receptor. These data, coupled to the sensitization of Ins(1,4,5)P3-dependent Ca2+ release during meiosis, argue that phosphorylation within the coupling domain of the Ins(1,4,5)P3 receptor acts in a combinatorial fashion to regulate Ins(1,4,5)P3 receptor function.  相似文献   

19.
Ca(2+) channel inactivation in the neurons of the freshwater snail, Lymnaea stagnalis, was studied using patch-clamp techniques. In the presence of a high concentration of intracellular Ca(2+) buffer (5 mM EGTA), the inactivation of these Ca(2+) channels is entirely voltage dependent; it is not influenced by the identity of the permeant divalent ions or the amount of extracellular Ca(2+) influx, or reduced by higher levels of intracellular Ca(2+) buffering. Inactivation measured under these conditions, despite being independent of Ca(2+) influx, has a bell-shaped voltage dependence, which has often been considered a hallmark of Ca(2+)-dependent inactivation. Ca(2+)-dependent inactivation does occur in Lymnaea neurons, when the concentration of the intracellular Ca(2+) buffer is lowered to 0.1 mM EGTA. However, the magnitude of Ca(2+)-dependent inactivation does not increase linearly with Ca(2+) influx, but saturates for relatively small amounts of Ca(2+) influx. Recovery from inactivation at negative potentials is biexponential and has the same time constants in the presence of different intracellular concentrations of EGTA. However, the amplitude of the slow component is selectively enhanced by a decrease in intracellular EGTA, thus slowing the overall rate of recovery. The ability of 5 mM EGTA to completely suppress Ca(2+)-dependent inactivation suggests that the Ca(2+) binding site is at some distance from the channel protein itself. No evidence was found of a role for serine/threonine phosphorylation in Ca(2+) channel inactivation. Cytochalasin B, a microfilament disrupter, was found to greatly enhance the amount of Ca(2+) channel inactivation, but the involvement of actin filaments in this effect of cytochalasin B on Ca(2+) channel inactivation could not be verified using other pharmacological compounds. Thus, the mechanism of Ca(2+)-dependent inactivation in these neurons remains unknown, but appears to differ from those proposed for mammalian L-type Ca(2+) channels.  相似文献   

20.
Collet C  Ma J 《Biophysical journal》2004,87(1):268-275
Activation of store-operated Ca2+ entry (SOCE) into the cytoplasm requires retrograde signaling from the intracellular Ca2+ release machinery, a process that involves an intimate interaction between protein components on the intracellular and cell surface membranes. The cellular machinery that governs the Ca2+ movement in muscle cells is developmentally regulated, reflecting maturation of the junctional membrane structure as well as coordinated expression of related Ca2+ signaling molecules. Here we demonstrate the existence of SOCE in freshly isolated skeletal muscle cells obtained from embryonic days 15 and 16 of the mouse embryo, a critical stage of muscle development. SOCE in the fetal muscle deactivates incrementally with the uptake of Ca2+ into the sarcoplasmic reticulum (SR). A novel Ca2+-dependent facilitation of SOCE is observed in cells transiently exposed to high cytosolic Ca2+. Our data suggest that cytosolic Ca2+ can facilitate SOCE whereas SR luminal Ca2+ can deactivate SOCE in the fetal skeletal muscle. This cooperative mechanism of SOCE regulation by Ca2+ ions not only enables tight control of SOCE by the SR membrane, but also provides an efficient mechanism of extracellular Ca2+ entry in response to physiological demand. Such Ca2+ signaling mechanism would likely contribute to contraction and development of the fetal skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号