首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this project methotrexate (MTX) conjugated albumin based nanoparticles (MTX-BSA) loaded with curcumin (CUR) drug (CUR-MTX-BSA) for simultaneous delivery of multi-chemotherapeutic drugs and combination cancer therapy were designed. Co-delivery is a new strategy which minimize the amount of each drug, reduce of side effects and also to achieve the synergistic effect for cancer therapies. The MTX was conjugated to albumin via covalent bond. Next, this synthesized prodrug loaded with CUR. Afterward, the formulations were evaluated for physical and chemical properties by DLS, TEM, FTIR, UV/Vis, DSC analysis, in vitro cytotoxicity and in vivo biocompatibility studies. Furthermore, the drug loading and release study were evaluated. Proteinase K enzyme was used to break amid bond between MTX and BSA and also amidic bonds in BSA structure. Administration of up to 2000 mg/kg of BSA to healthy animals was non-toxic and all treated mice were still alive after 24 h. The result of this study proved that CUR-MTX-BSA can be used as a proficient vehicle for effective co-delivery of CUR and MTX in the treatment of cancer.  相似文献   

2.
We present the mechanism for the cellular uptake of layered double hydroxide (LDH) nanoparticles that are internalized into MNNG/HOS cells principally via clathrin-mediated endocytosis. The intracellular LDHs are highly colocalized with not only typical endocytic proteins, such as clathrin heavy chain, dynamin, and eps15, but also transferrin, a marker of the clathrin-mediated process, suggesting their specific internalization pathway. LDHs loaded with an anticancer drug (MTX-LDH) were also prepared to confirm the efficacy of LDHs as drug delivery systems. The cellular uptake of MTX was higher in MTX-LDH-treated cells than in MTX-treated cells, giving a lower IC50 value for MTX-LDH than for MTX only. The inhibition of the cell cycle was greater for MTX-LDH than for MTX only. This result clearly shows that the internalization of LDH nanoparticles via clathrin-mediated endocytosis may allow the efficient delivery of MTX-LDH in cells and thus enhance drug efficacy.  相似文献   

3.
Brain tumor treatment employing methotrexate (MTX) is limited by the efflux mechanism of Pg-p on the blood–brain barrier. We aimed to investigate MTX-loaded chitosan or glycol chitosan (GCS) nanoparticles (NPs) in the presence and in the absence of a coating layer of Tween 80 for brain delivery of MTX. The effect of a low Tween 80 concentration was evaluated. MTX NPs were formulated following the ionic gelation technique and size and zeta potential measurements were acquired. Transport across MDCKII-MDR1 monolayer and cytotoxicity studies against C6 glioma cell line were also performed. Cell/particles interaction was visualized by confocal microscopy. The particles were shown to be cytotoxic against C6 cells line and able to overcome MDCKII-MDR1 cell barrier. GCS-based NPs were the most cytotoxic NPs. Confocal observations highlighted the internalization of Tween 80-coated fluorescent NPs more than Tween 80-uncoated NPs. The results suggest that even a low concentration of Tween 80 is sufficient for enhancing the transport of MTX from the NPs across MDCKII-MDR1 cells. The nanocarriers represent a promising strategy for the administration of MTX to brain tumors which merits further investigations under in vivo conditions.  相似文献   

4.
The purpose of this study was to examine chitosan (CS)-carboxymethyl starch (CMS) nanoparticles as drug delivery system to the colon. The 5-aminosalicylic acid (5-ASA) was chosen as model drug molecule. CS-CMS nanoparticles were formulated by a complex coacervation process under mild conditions. The influence of process variables, including the two ionic polymers, on particle size, and nanoparticles entrapment of 5-ASA was studied. In vitro release of 5-ASA was also evaluated, and the integrity of 5-ASA in the release fraction was assessed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The release of 5-ASA from nanoparticle was based on the ion-exchange mechanism. The CS-CMS nanoparticles developed based on the modulation of ratio show promise as a system for controlled delivery of drug to the colon.  相似文献   

5.
聚乳酸纳米粒穿透血脑屏障的分析电镜研究   总被引:4,自引:0,他引:4  
观察以聚乳酸 (D ,L-polylacticacid,PLA)为材料制备、经吐温-80(T-80)表面改性的纳米粒对血脑屏障的穿透效果并探讨其机制 ,分别将FITC-Dextran、叶绿素铜作为PLA纳米粒的示踪标记 ,应用荧光显微镜、透射电镜及分析电镜观察经静脉注射入小鼠体内的PLA纳米粒在脑组织中的分布、穿透血脑屏障的特性。荧光显微镜观察到小鼠脑组织中散在及沿毛细血管壁分布的荧光颗粒 ,透射电镜可观察到小鼠脑毛细血管内皮细胞及周围脑组织中圆形或类圆形的外源性纳米粒 ;进一步采用分析电镜对颗粒处组织进行能谱分析证实其为叶绿素铜标记的PLA纳米粒。证实了T-80修饰的PLA纳米粒具有穿透血脑屏障的特性 ,机制可能是毛细血管内皮细胞的胞吞转运作用 ,同时 ,为研究纳米粒在组织内的定位提供了新的标记方法.  相似文献   

6.
The blood–brain barrier (BBB) protects the brain from toxic substances within the bloodstream and keeps the brain’s homeostasis stable. On the other hand, it also represents the main obstacle in the treatment of many CNS diseases. Among different techniques, nanoparticles have emerged as promising tools to enhance brain drug delivery of therapeutic molecules. For successful drug delivery, nanoparticles may either modulate BBB integrity or exploit transport systems present on the endothelium. In this review, we present two different nanoparticles to enhance brain drug delivery. Poly(butyl cyanoacrylate) nanoparticles were shown to induce a reversible disruption of the BBB in vitro which may be exploited by simultaneous injection of the drug in question. By coating the poly(butyl cyanoacrylate) nanoparticles with, e.g., ApoE, it is also possible to circumvent the BBB via the LDL-receptor. Another example of the use of receptor-mediated endocytosis to enhance brain uptake of nanoparticles are poly(ethylene glycol)-coated Fe3O4 nanoparticles which are covalently attached to lactoferrin. These nanoparticles have been shown to facilitate the transport via the lactoferrin receptor, and so could then be used for magnetic resonance imaging.  相似文献   

7.
The inhibition of the caspase-3 enzyme is reported to increase neuronal cell survival following cerebral ischemia. The peptide Z-DEVD-FMK is a specific caspase inhibitor, which significantly reduces vulnerability to the neuronal cell death. However, this molecule is unable to cross the blood-brain barrier (BBB) and to diffuse into the brain tissue. Thus, the development of an effective delivery system is needed to provide sufficient drug concentration into the brain to prevent cell death. Using the avidin (SA)-biotin (BIO) technology, we describe here the design of chitosan (CS) nanospheres conjugated with poly(ethylene glycol) (PEG) bearing the OX26 monoclonal antibody whose affinity for the transferrin receptor (TfR) may trigger receptor-mediated transport across the BBB. These functionalized CS-PEG-BIO-SA/OX26 nanoparticles (NPs) were characterized for their particle size, zeta potential, drug loading capacity, and release properties. Fluorescently labeled CS-PEG-BIO-SA/OX26 nanoparticles were administered systemically to mice in order to evaluate their efficacy for brain translocation. The results showed that an important amount of nanoparticles were located in the brain, outside of the intravascular compartment. These findings, which were also confirmed by electron microscopic examination of the brain tissue indicate that this novel targeted nanoparticulate drug delivery system was able to translocate into the brain tissue after iv administration. Consequently, these novel nanoparticles are promising carriers for the transport of the anticaspase peptide Z-DEVD-FMK into the brain.  相似文献   

8.
Ruan Y  Yao L  Zhang B  Zhang S  Guo J 《Peptides》2011,32(7):1526-1529
Neurotoxin-1 (NT) is an analgesic peptide which is endowed an exceptional specificity of action that blocks transmission of the nerve impulse. The aim of this study was to evaluate the potential application of nanoparticles technology as drug carrier system for the nasal delivery of NT. Mice were administered intranasally (i.n.) with NT (NT-P-NP), free NT solution (F-NT) and intravenously (i.v.) with NT (IV-NT) respectively. The NT levels in animal brain and antinociceptive activity of NT were analyzed. The result on brain transport showed that nanoparticles could exert enhanced delivery of NT into the brain significantly after i.n. administration. The results of antinociceptive activity showed that NT-P-NP increased immobility in the open-field test, both phases of formalin test were significantly inhibited by the NT-P-NP and NT-P-NP significantly inhibited the reaction time to thermal stimuli at 60 and 90 min. Both NT-P-NP and IV-NT were able to inhibit constrictions in acetic acid-induced writhing reaction. These data suggest that NT-loaded nanoparticles coated with polysorbate-80 could generate a significant improvement of drug levels in the brain. Intranasal administration of Neurotoxin-1 entrapped in nanoparticles coated with polysorbate-80 is an attractive alternative to intravenous administration.  相似文献   

9.
Our objective was to prepare nanoparticulate system using a simple yet attractive innovated method as an ophthalmic delivery system for fluocinolone acetonide to improve its ocular bioavailability. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles were prepared by adopting thin film hydration method using PLGA/poloxamer 407 in weight ratios of 1:5 and 1:10. PLGA was used in 75/25 and 50/50 copolymer molar ratio of DL-lactide/glycolide. Results revealed that using PLGA with lower glycolic acid monomer ratio exhibited high particle size (PS), zeta potential (ZP) and drug encapsulation efficiency (EE) values with slow drug release pattern. Also, doubling the drug concentration during nanoparticles preparation ameliorated its EE to reach almost 100%. Furthermore, studies for separating the un-entrapped drug in nanoparticles using centrifugation method at 20,000 rpm for 30 min showed that the separated clear supernatant contained nanoparticles encapsulating an important drug amount. Therefore, separation of un-entrapped drug was carried out by filtrating the preparation using 20–25 μm pore size filter paper to avoid drug loss. Aiming to increase the PLGA nanoparticles mucoadhesion ability, surface modification of selected formulation was done using different amount of stearylamine and chitosan HCl. Nanoparticles coated with 0.1% w/v chitosan HCl attained most suitable results of PS, ZP and EE values as well as high drug release properties. Transmission electron microphotographs illustrated the deposition of chitosan molecules on the nanoparticles surfaces. Pharmacokinetic studies on Albino rabbit’s eyes using HPLC indicated that the prepared novel chitosan-coated PLGA nanoparticles subjected to separation by filtration showed rapid and extended drug delivery to the eye.  相似文献   

10.
Darunavir has a low oral bioavailability (37%) due to its lipophilic nature, metabolism by cytochrome P450 enzymes and P-gp efflux. Lipid nanoparticles were prepared in order to overcome its low bioavailability and to increase the binding efficacy of delivery system to the lymphoid system. Darunavir-loaded lipid nanoparticles were prepared using high-pressure homogenization technique. Hydrogenated castor oil was used as lipid. Peptide, having affinity for CD4 receptors, was grafted onto the surface of nanoparticles. The nanoparticles were evaluated for various parameters. The nanoparticles showed size of less than 200 nm, zeta potential of ? 35.45 mV, and a high drug entrapment efficiency (90%). 73.12% peptide was found conjugated to nanoparticles as studied using standard BSA calibration plot. Permeability of nanoparticles in Caco-2 cells was increased by 4-fold in comparison to plain drug suspension. Confocal microscopic study revealed that the nanoparticles showed higher uptake in HIV host cells (Molt-4 cells were taken as model containing CD4 receptors) as compared to non-CD4 receptor bearing Caco-2 cells. In vivo pharmacokinetic in rats showed 569% relative increase in bioavailability of darunavir as compared to plain drug suspension. The biodistribution study revealed that peptide-grafted nanoparticles showed higher uptake in various organs (also in HIV reservoir organs namely the spleen and brain) except the liver compared to non-peptide-grafted nanoparticles. The prepared nanoparticles resulted in increased binding with the HIV host cells and thus could be promising carrier in active targeting of the drugs to the HIV reservoir.  相似文献   

11.
Dendritic nanostructures can play a key role in drug delivery, due to the high density and variety of surface functional groups that can facilitate and modulate the delivery process. We have investigated the effect of dendrimer end-functionality on the activity of polyamido amine (PAMAM) dendrimer-methotrexate (MTX) conjugates in MTX-sensitive and MTX-resistant human acute lymphoblastoid leukemia (CCRF-CEM) and Chinese hamster ovary (CHO) cell lines. Two amide-bonded PAMAM dendrimer-MTX conjugates were prepared using a dicyclohexylcarbodiimide (DCC) coupling reaction: one between a carboxylic acid-terminated G2.5 dendrimer and the amine groups of the MTX (conjugate A) and another between an amine-terminated G3 dendrimer and the carboxylic acid group of the MTX (conjugate B). Our studies suggest that conjugate A showed an increased drug activity compared to an equimolar amount of free MTX toward both sensitive and resistant cell lines, whereas conjugate B did not show significant activity on any of the cell lines. Despite substantially impaired MTX transport by MTX-resistant CEM/MTX and RII cells, conjugate A showed sensitivity increases of approximately 8- and 24-fold (based on IC50 values), respectively, compared to free MTX. Co-incubation of the cells with adenosine and thymidine along with either conjugate A or MTX resulted in almost complete protection, suggesting that the conjugate achieves its effect on dihyrofolate reductase (DHFR) enzyme through the same mechanism as that of MTX. The differences in cytotoxicity of these amide-bonded conjugates may be indicative of differences in the intracellular drug release from the cationic dendrimer (conjugate B) versus the anionic dendrimer (conjugate A), perhaps due to the differences in lysosomal residence times dictated by the surface functionality. These findings demonstrate the feasibility of using dendrimers as drug delivery vehicles for achieving higher therapeutic effects in chemotherapy, especially in drug-resistant cells.  相似文献   

12.
This work presents the potential use of novel nanohybrid based on chitosan-g-glycolic acid and Pt-Fe(3)O(4) composite nanoparticles in drug delivery and tissue engineering applications. The Pt-Fe(3)O(4) hybrid nanoparticles are prepared by thermal decomposition of H(2)PtCl(6)·6H(2)O at high temperature. The prepared nanoparticles were characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and physical property measurement system (PPMS). Next step of this paper reveals the potential use of novel hybrids of chitosan-g-glycolic acid and Pt-Fe(3)O(4) hybrid nanoparticles in controlled drug delivery applications. The drug loaded nanohybrid scaffold is prepared by freeze drying of grafted polymer solution. Drug loading and grafting of chitosan was characterized by Fourier transform infrared spectroscopy (FTIR). The cell proliferation also shows that the prepared nanohybrids are biocompatible. The nanohybrid was found to be stable regardless of pH of the medium. Therefore, Pt-Fe(3)O(4) hybrid nanoparticles are viable additive for sustained drug delivery and it could be applied in the field of biomedical.  相似文献   

13.
The objective of this study was to develop a nanodelivery system containing a mucoadhesive polymer hyaluronic acid (HA) for oral delivery. Metformin was used as a model drug. Blank and drug-loaded HA nanostructures were prepared by precipitation method and characterized for particle size (PS), zeta potential (ZP), physical stability (over 65 days), surface morphology, moisture content, and physical state of the drug in the nanostructures. The cytotoxicity and hemolysis potential of the delivery system was assessed in Caco-2 cells and whole human blood, respectively. The in vitro release of metformin and its uptake in Caco-2 cells was evaluated using high-performance liquid chromatography. Ex vivo permeability of metformin was measured through goat intestinal membrane. The nanoparticles were physically stable and neutrally charged with an average PS of 114.53?±?12.01 nm. This nanodelivery system existed as nanofibers containing metformin in a crystalline state. This delivery system released the drug rapidly with >?50% of metformin released within 1 h. Cellular uptake studies on Caco-2 cells indicated higher uptake of metformin from nanoparticle as compared to metformin in solution, up to first 45 min. Ex vivo permeability studies on the other hand showed a higher metformin permeability from solution relative to that from nanoparticles through the goat intestinal membrane. Metformin nanoparticles were non-toxic at therapeutic concentrations in Caco-2 cells and showed no hemolytic effect to RBCs. This study indicates the preparation, characterization, as well as the potential use of HA nanostructures for oral delivery.  相似文献   

14.
The objective of the present investigation was to optimize diazepam (Dzp)-loaded poly(lactic-co-glycolic acid) nanoparticles (NP) to achieve delivery in the brain through intranasal administration. Dzp nanoparticles (DNP) were formulated by nanoprecipitation and optimized using Box-Behnken design. The influence of various independent process variables (polymer, surfactant, aqueous to organic (w/o) phase ratio, and drug) on resulting properties of DNP (z-average and drug entrapment) was investigated. Developed DNP showed z-average 148–337 d.nm, polydispersity index 0.04–0.45, drug entrapment 69–92%, and zeta potential in the range of −15 to −29.24 mV. Optimized DNP were further analyzed by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), ex-vivo drug release, and in-vitro cytotoxicity. Ex-vivo drug release study via sheep nasal mucosa from DNP showed a controlled release of 64.4% for 24 h. 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay performed on Vero cell line showed less toxicity for DNP as compared to Dzp suspension (DS). Gamma scintigraphy and biodistribution study of DNP and DS was performed on Sprague-Dawley rats using technetium-99m-labeled (99mTc) Dzp formulations to investigate the nose-to-brain drug delivery pathway. Brain/blood uptake ratios, drug targeting efficiency, and direct nose-to-brain transport were found to be 1.23–1.45, 258, and 61% for 99mTc-DNP (i.n) compared to 99mTc-DS (i.n) (0.38–1.06, 125, and 1%). Scintigraphy images showed uptake of Dzp from nose-to-brain, and this observation was in agreement with the biodistribution results. These results suggest that the developed poly(D,L-lactide-co-glycolide) (PLGA) NP could serve as a potential carrier of Dzp for nose-to-brain delivery in outpatient management of status epilepticus.KEY WORDS: controlled release, nanoparticles, process optimization, scintigraphy  相似文献   

15.
The ability of monocytes and monocyte-derived macrophages (MDM) to travel towards chemotactic gradient, traverse tissue barriers, and accumulate precisely at diseased sites makes them attractive candidates as drug carriers and therapeutic gene delivery vehicles targeting the brain, where treatments are often hampered by the blockade of the blood brain barrier (BBB). This study was designed to fully establish an optimized cell-based delivery system using monocytes and MDM, by evaluating their homing efficiency, engraftment potential, as well as carriage and delivery ability to transport nano-scaled particles and exogenous genes into the brain, following the non-invasive intravenous (IV) cell adoptive transfer in an acute neuroinflammation mouse model induced by intracranial injection of Escherichia coli lipopolysaccharides. We demonstrated that freshly isolated monocytes had superior inflamed-brain homing ability over MDM cultured in the presence of macrophage colony stimulating factor. In addition, brain trafficking of IV infused monocytes was positively correlated with the number of adoptive transferred cells, and could be further enhanced by transient disruption of the BBB with IV administration of Mannitol, Bradykinin or Serotonin right before cell infusion. A small portion of transmigrated cells was detected to differentiate into IBA-1 positive cells with microglia morphology in the brain. Finally, with the use of superparamagnetic iron oxide nanoparticles SHP30, the ability of nanoscale agent-carriage monocytes to enter the inflamed brain region was validated. In addition, lentiviral vector DHIV-101 was used to introduce green fluorescent protein (GFP) gene into monocytes, and the exogenous GFP gene was detected in the brain at 48 hours following IV infusion of the transduced monocytes. All together, our study has set up the optimized conditions for the more-in-depth tests and development of monocyte-mediated delivery, and our data supported the notion to use monocytes as a non-invasive cell-based delivery system for the brain.  相似文献   

16.
The major goal of this work was to design a new nanoparticle drug delivery system for desoxycholate amphotericin B (D-AMB), based on controlled particle size, looking for the most successful release of the active agents in order to achieve the best site-specific action of the drug at the therapeutically optimal rate and dose regimen. For this, AMB nanoencapsulated in poly(lactic-co-glycolic acid) (PLGA) and dimercaptosuccinic acid (DMSA) nanoparticles (Nano-D-AMB) has been developed, and its efficacy was evaluated in the treatment of experimental cutaneous leishmaniasis in C57BL/6 mice, to test if our nano-drug delivery system could favor the reduction of the dose frequency required to achieve the same therapeutic level of free D-AMB, and so, an extended dosing interval. Magnetic citrate-coated maghemite nanoparticles were added to this nanosystem (Nano-D-AMB-MG) aiming to increase controlled release of AMB by magnetohyperthermia. Female mice (N = 6/group) were infected intradermally in the right footpad with promastigotes of Leishmania amazonensis in the metacyclic phase, receiving the following intraperitoneal treatments: 1% PBS for 10 consecutive days; D-AMB at 2 mg/kg/day for 10 days (totalizing 20 mg/kg/animal); Nano-D-AMB and Nano-D-AMB-MG at 6 mg/kg on the 1st, 4th and 7th days and at 2 mg/kg on the 10th day, also totalizing 20 mg/kg/animal by treatment end. The Nano-D-AMB-MG group was submitted to an AC magnetic field, allowing the induction of magnetohyperthermia. The evaluations were through paw diameter measurements; parasite number and cell viability were investigated by limiting dilution assay. D-AMB-coated PLGA–DMSA nanoparticles showed the same efficacy as free D-AMB to reduce paw diameter; however, the Nano-D-AMB treatment also promoted a significantly greater reduction in parasite number and cell viability compared with free D-AMB. The nano-drug AMB delivery system appeared more effective than free D-AMB therapy to reduce the dose frequency required to achieve the same therapeutic level. It thus favors a longer interval between doses, as expected with development of a new nano drug delivery system, and may be useful in the treatment of many different pathologies, from cancer to neurodegenerative diseases.  相似文献   

17.
The uptake of iron is increased by cancer cells. Iron magnetic nanoparticles (MNP) can be used as a nanovehicle for immobilization of anticancer medicines and to integrate them at a target site. The anticancer medicines doxorubicin (DOX) and methotrexate (MTX) were immobilized separately and in combination onto MNP by a glutaraldehyde activation method and confirmed by magnetic nanoparticles linked immunosorbent assay (MagLISA) and Fourier-transform infrared (FTIR) spectroscopy. The phenol peaks of DOX and MTX at 2896.6 cm?1 to 2912.5 cm?1 in FTIR spectra of immobilized medicines indicated the conjugation. Affinity-purified anti-DOX and anti-MTX antibodies were used to evaluate the coupling of DOX and MTX onto MNP, and the binding was found 34.6% to 37.2% and 51.8% to 54.3% separately, respectively. The immobilization of DOX and MTX in combination onto MNP was 18% and 27%, respectively. HeLa and B cells were cultured with DOX-MNP, MTX-MNP, and DOX-MNP-MTX separately, and MagLISA indicated that the binding of DOX-MNP/MTX-MNP was 41.5% to 45% with HeLa cells and 20% to 26% with B cells. No significant difference was observed in binding of DOX-MNP-MTX with HeLa and B cells. Results also indicated that the release of medicines at pH 5.0 is more (39% to 44%) than at pH 7.4 (3.7% to 10.2%). Sixteen to 22% more killing effect was observed on HeLa cells than on B cells. In immunohistochemical staining, more deposition of brown color on HeLa cells than on B cells may be due to more expression of iron-binding sites on cancer cells. The dual property of MNP can be used for binding of medicines and for targeting drug delivery.  相似文献   

18.
A self-assembled nanoparticulate system composed of a folate-conjugated heparin-poly(β-benzyl-l-aspartate) (HP) amphiphilic copolymer was proposed for targeted delivery of the antineoplastic drug paclitaxel (PTX). PTX was incorporated into three types of heparin-based nanoparticles, including HP, folate-conjugated HP (FHP), and folate-polyethylene glycol (PEG)-conjugated HP (FPHP), using a simple dialysis method. The PTX-loaded nanoparticles were then characterized according to particle size (140-190 nm) and size distribution, drug-loading content and efficiency, and in vitro release behavior. In the cellular uptake study using KB cells positive for the folate-receptor (FR), FHP and FPHP nanoparticles showed a much higher cellular uptake than did unconjugated HP nanoparticles. Specifically, when the PEG spacer was inserted between the folate ligand and heparin backbone, FPHP nanoparticles had a greater cellular uptake than did FHP nanoparticles. The in vitro cytotoxicity of PTX-loaded HP, FHP, and FPHP nanoparticles was studied in KB cells and FR-negative A549 cells. Compared with the cytotoxicity in A549 cells, PTX-loaded FHP and FPHP nanoparticles exhibited more potent cytotoxicity in KB cells than did PTX-loaded HP nanoparticles and free-PTX, suggesting that the presence of folate enhanced intracellular uptake via FR-mediated endocytosis. In addition, FPHP nanoparticles exhibited much greater cytotoxicity in KB cells than did FHP nanoparticles. These results suggest that PTX-loaded folate-conjugated HP nanoparticles are a potentially useful delivery system for cancer cells positive for the folate-receptor.  相似文献   

19.
Efficient intracellular targeting of drugs and drug delivery systems (DDSs) is a major challenge that should be overcome to enhance the therapeutic efficiency of biopharmaceuticals and other intracellularly-acting drugs. Studies that quantitatively assess the mechanisms, barriers, and efficiency of intracellular drug delivery are required to determine the therapeutic potential of intracellular targeting of nano-delivery systems. In this study we report development and application of a novel ‘IntraCell’ plugin for ImageJ that is useful for quantitative assessment of uptake and intracellular localization of the drug/DDS and estimation of targeting efficiency. The developed plugin is based on threshold-based identification of borders of cell and of the individual organelles on confocal images and pixel-by-pixel analysis of fluorescence intensities.We applied the developed ‘IntraCell’ plugin to investigate uptake and intracellular targeting of novel endoplasmic reticulum (ER)-targeted delivery system based on PLGA nanoparticles decorated with ER-targeting or control peptides and encapsulating antigenic peptide and fluorescent marker. Decoration of the nanoparticles with peptidic residues affected their uptake and intracellular trafficking in HeLa cells, indicating that the targeting peptide was identified as ER-targeting signal by the intracellular trafficking mechanisms in HeLa cells and that these mechanisms can handle nano-DDS of the size comparable to some intracellular vesicles (hundreds of nanometers in diameter).We conclude that decoration of nanoparticles with peptidic residues affects their intracellular localization and trafficking and can be potentially used for intracellularly-targeted drug delivery. ‘IntraCell’ plugin is an useful tool for quantitative assessment of efficiency of uptake and intracellular drug targeting. In combination with other experimental approaches, it will be useful for the development of intracellularly-targeted formulations with enhanced and controlled drug pharmacological activities, such as delivery of antigenic peptides for anticancer vaccination and for other applications.  相似文献   

20.
Modeling the influence of a technology such as nanoparticle systems on drug delivery is beneficial in rational formulation design. While there are many studies showing drug delivery enhancement by nanoparticles, the literature provides little guidance regarding when nanoparticles are useful for delivery of a given drug. A model was developed predicting intracellular drug concentration in cultured cells dosed with nanoparticles. The model considered drug release from nanoparticles as well as drug and nanoparticle uptake by the cells as the key system processes. Mathematical expressions for these key processes were determined using experiments in which each process occurred in isolation. In these experiments, intracellular delivery of saquinavir, a low solubility drug dosed as a formulation of poly(ethylene oxide)-modified poly(epsilon- caprolactone) (PEO-PCL) nanoparticles, was studied in THP-1 human monocyte/macrophage (Mo/Mac) cells. The model accurately predicted the enhancement in intracellular concentration when drug was administered in nanoparticles compared to aqueous solution. This simple model highlights the importance of relative kinetics of nanoparticle uptake and drug release in determining overall enhancement of intracellular drug concentration when dosing with nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号