首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Membrane proteins participate in nearly all cellular processes; however, because of experimental limitations, their characterization lags far behind that of soluble proteins. Peripheral membrane proteins are particularly challenging to study because of their inherent propensity to adopt multiple and/or transient conformations in solution and upon membrane association. In this review, we summarize useful biophysical techniques for the study of peripheral membrane proteins and their application in the characterization of the membrane interactions of the natively unfolded and Parkinson's disease (PD) related protein, α-synuclein (α-syn). We give particular focus to studies that have led to the current understanding of membrane-bound α-syn structure and the elucidation of specific membrane properties that affect α-syn-membrane binding. Finally, we discuss biophysical evidence supporting a key role for membranes and α-syn in PD pathogenesis. This article is part of a Special Issue entitled: Membrane protein structure and function.  相似文献   

3.
The milk protein β-lactoglobulin (βLG) dominates the properties of whey aggregates in food products. Here we use spectroscopic and calorimetric techniques to elucidate how anionic, cationic and non-ionic surfactants interact with bovine βLG and modulate its heat-induced aggregation. Alkyl trimethyl ammonium chlorides (xTAC) strongly promote aggregation, while sodium alkyl sulfates (SxS) and alkyl maltopyranosides (xM) reduce aggregation. Sodium dodecyl sulfate (SDS) binds to non-aggregated βLG in several steps, but reduction of aggregation was associated with the first binding step, which occurs far below the critical micelle concentration. In contrast, micellar concentrations of xMs are required to reduce aggregation. The ranking order for reduction of aggregation (normalized to their tendency to self-associate) was C10-C12>C8>C14 for SxS and C8>C10>C12>C14>C16 for xM. xTAC promote aggregation in the same ranking order as xM reduce it. We conclude that SxS reduce aggregation by stabilizing the protein's ligand-bound state (the melting temperature t(m) increases by up to 10°C) and altering its charge potential. xM monomers also stabilize the protein's ligand-bound state (increasing t(m) up to 6°C) but in the absence of charged head groups this is not sufficient by itself to prevent aggregation. Although micelles of both anionic and non-ionic surfactants destabilize βLG, they also solubilize unfolded protein monomers, leaving them unavailable for protein-protein association and thus inhibiting aggregation. Cationic surfactants promote aggregation by a combination of destabilization and charge neutralization. The food compatible surfactant sodium dodecanoate also inhibited aggregation well below the cmc, suggesting that surfactants may be a practical way to modulate whey protein properties.  相似文献   

4.
Sigma receptors are small membrane proteins implicated in a number of pathophysiological conditions, including drug addiction, psychosis, and cancer; thus, small molecule inhibitors of sigma receptors have been proposed as potential pharmacotherapeutics for these diseases. We previously discovered that endogenous monochain N-alkyl sphingolipids, including d-erythro-sphingosine, sphinganine, and N,N-dimethylsphingosine, bind to the sigma-1 receptor at physiologically relevant concentrations [Ramachandran, S., et al. (2009) Eur. J. Pharmacol. 609, 19-26]. Here, we investigated several N-alkylamines of varying chain lengths as sigma receptor ligands. Although the K(I) values for N-alkylamines were found to be in the micromolar range, when N-3-phenylpropyl and N-3-(4-nitrophenyl)propyl derivatives of butylamine (1a and 1b, respectively), heptylamine (2a and 2b, respectively), dodecylamine (3a and 3b, respectively), and octadecylamine (4a and 4b, respectively) were evaluated as sigma receptor ligands, we found that these compounds exhibited nanomolar affinities with both sigma-1 and sigma-2 receptors. A screen of high-affinity ligands 2a, 2b, 3a, and 3b against a variety of other receptors and/or transporters confirmed these four compounds to be highly selective mixed sigma-1 and sigma-2 ligands. Additionally, in HEK-293 cells reconstituted with K(v)1.4 potassium channel and the sigma-1 receptor, these derivatives were able to inhibit the outward current from the channel, consistent with sigma receptor modulation. Finally, cytotoxicity assays showed that 2a, 2b, 3a, and 3b were highly potent against a number of cancer cell lines, demonstrating their potential utility as mixed sigma-1 and sigma-2 receptor anticancer agents.  相似文献   

5.
The positive electrostatic potentials (σ-hole) have been found in ylides CH2XH3 (X = P, As, Sb) and CH2YH2 (Y = S, Se, Te), on the outer surfaces of group VA and VIA atoms, approximately along the extensions of the C–X and C–Y bonds, respectively. These electrostatic potentials suggest that the above ylides can interact with nucleophiles to form weak, directional noncovalent interactions similar to halogen bonding interactions. MP2 calculations have confirmed the formation of CH2XH3···HM complexes (X = P, As, Sb; M = BeH, ZnH, MgH, Li, Na). The interaction energies, interaction distances, topological properties (electron density and its Laplacian), and energy properties (kinetic electron energy density and potential electron energy density) at the X(1)···H(10) bond critical points are all correlated with the most negative electrostatic potential value of HM, indicating that electrostatic interactions play an important role in these weak X···H interactions. Similar to the halogen bonding interactions, weak interactions involving ylides may be significant in several areas such as organic synthesis, crystal engineering, and design of new materials.  相似文献   

6.
7.
Di(2-ethylhexyl) phthalate (DEHP) is the most widely plasticizer for polyvinyl chloride (PVC) that is used in plastic tubes, in medical and paramedical devices as well as in food storage packaging. The toxicological profile of DEHP has been evaluated in a number of experimental animal models and has been extensively documented. Its toxicity is in part linked to the activation of the peroxisome proliferator-activated receptor α (PPARα). As a response, an intensive research for a new, biologically inert plasticizer has been initiated. Among the alternative studied, tri(2-ethylhexyl) trimellitate (TEHTM) or trioctyl trimellitate (TOTM) has attracted increasing interest. However, very little information is available on their biological effects. We proceeded to dock TOTM, DEHP and its metabolites in order to identify compounds that are likely to interact with PPARα and PPARγ binding sites. The results obtained hint that TOTM is not able to bind to PPARs and should therefore be safer than DEHP.  相似文献   

8.
9.
10.
The nonenzymic hydrolysis of
and
were studied by infrared (IR) spectroscopy. Protons resulting from hydrolysis of ATP are not bound to the N1 atoms of the adenine residues. With hydrolysis of
, these protons are partially bound to the terminal phosphate group of ADP, namely,
,
,
, and
, present after hydrolysis. With decreasing pH or when Mg2+ ions are present, all hydrolysis protons are attached to the orthophosphate molecules.With hydrolysis of
the pH decreases up to 40% degree of hydrolysis. Then the system becomes self-buffered in the physiological pH region. A similar pH decrease is found with hydrolysis of
. With these systems, however, the pH decreases slightly also at degrees of hydrolysis larger than 40%. No other systems show pronounced pH changes during hydrolysis; in other words, they are buffer systems.The IR bands demonstrate that mesomeric bond resonance in the phosphate groups strongly depends on whether protons are present at these groups. Regarding the equilibria of proton attachment mentioned above, mesomeric bond resonance in these groups strongly depends on pH and on the presence of
ions.With hydrolysis of ATP, two POH groups are formed that bind H2O molecules via strong hydrogen bonds, changing the solvate structure. Finally, easily polarizable hydrogen bonds are formed, for instance,
bonds with the hydrolysis of
, and
bonds with the hydrolysis of
. These bonds strongly interact with their environment. The formation of these hydrogen bonds strongly depends on pH and the presence of
ions.All these effects, especially the intermolecular ones, contribute to the change of free energy during ATP hydrolysis.  相似文献   

11.
Oligomeric interactions of TGF-β and BMP receptors   总被引:1,自引:0,他引:1  
Ehrlich M  Gutman O  Knaus P  Henis YI 《FEBS letters》2012,586(14):1885-1896
  相似文献   

12.
The aggregation of crystallins in lenses is associated with cataract formation. We previously reported that mutant crystallins are associated with an increased abundance of histones in knock-in and knockout mouse models. However, very little is known about the specific interactions between lens crystallins and histones. Here, we performed in vitro analyses to determine whether α-crystallin interacts with histones directly. Isothermal titration calorimetry revealed a strong histone–α-crystallin binding with a Kd of 4 × 10?7 M, and the thermodynamic parameters suggested that the interaction was both entropy and enthalpy driven. Size-exclusion chromatography further showed that histone–α-crystallin complexes are water soluble but become water insoluble as the concentration of histones is increased. Right-angle light scattering measurements of the water-soluble fractions of histone–α-crystallin mixtures showed a decrease in the oligomeric molecular weight of α-crystallin, indicating that histones alter the oligomerization of α-crystallin. Taken together, these findings reveal for the first time that histones interact with and affect the solubility and aggregation of α-crystallin, indicating that the interaction between α-crystallin and histones in the lens is functionally important.  相似文献   

13.
14.
Filamentous biopolymers such as F-actin, vimentin, fibrin and collagen that form networks within the cytoskeleton or the extracellular matrix have unusual rheological properties not present in most synthetic soft materials that are used as cell substrates or scaffolds for tissue engineering. Gels formed by purified filamentous biopolymers are often strain stiffening, with an elastic modulus that can increase an order of magnitude at moderate strains that are relevant to cell and tissue deformation in vivo. This review summarizes some experimental studies of non-linear rheology in biopolymer gels, discusses possible molecular mechanisms that account for strain stiffening, and explores the possible relevance of non-linear rheology to the interactions between cell and extracellular matrices.  相似文献   

15.
α‐Synuclein function is thought to be related to its membrane binding ability. Solution NMR studies have identified several α‐synuclein‐membrane interaction modes in small unilamellar vesicles (SUVs), but how membrane properties affect binding remains unclear. Here, we use 19F NMR to study α‐synuclein‐membrane interactions by using 3‐fluoro‐L‐tyrosine (3FY) and trifluoromethyl‐L‐phenylalanine (tfmF) labeled proteins. Our results indicate that the affinity is affected by both the head group and the acyl chain of the SUV. Negatively charged head groups have higher affinity, but different head groups with the same charge also affect binding. We show that the saturation of the acyl chain has a dramatic effect on the α‐synuclein‐membrane interactions by studying lipids with the same head group but different chains. Taken together, the data show that α‐synuclein's N‐terminal region is the most important determinate of SUV binding, but its C‐terminal region also modulates the interactions. Our data support the existence of multiple tight phospholipid‐binding modes, a result incompatible with the model that α‐synuclein lies solely on the membrane surface.  相似文献   

16.
Fluorescence and force-based single-molecule studies of protein–nucleic acid interactions continue to shed critical insights into many aspects of DNA and RNA processing. As single-molecule assays are inherently low-throughput, obtaining statistically relevant datasets remains a major challenge. Additionally, most fluorescence-based single-molecule particle-tracking assays are limited to observing fluorescent proteins that are in the low-nanomolar range, as spurious background signals predominate at higher fluorophore concentrations. These technical limitations have traditionally limited the types of questions that could be addressed via single-molecule methods. In this review, we describe new approaches for high-throughput and high-concentration single-molecule biochemical studies. We conclude with a discussion of outstanding challenges for the single-molecule biologist and how these challenges can be tackled to further approach the biochemical complexity of the cell.  相似文献   

17.
18.
Cation–π interaction is a non-covalent binding force that plays a significant role in protein stability and drug–receptor interactions. In this work, we have investigated the structural role of cation–π interactions in sugar-binding proteins (SBPs). We observed 212 cation–π interactions in 53 proteins out of 59 SBPs in dataset. There is an average one energetically significant cation–π interaction for every 66 residues in SBPs. In addition, Arg is highly preferred to form cation–π interactions, and the average energy of Arg-Trp is high among six pairs. Long-range interactions are predominant in the analyzed cation–π interactions. Comparatively, all interaction pairs favor to accommodate in strand conformations. The analysis of solvent accessible area indicates that most of the aromatic residues are found on buried or partially buried whereas cationic residues were found mostly on the exposed regions of protein. The cation–π interactions forming residues were found that around 43% of cation–π residues had highly conserved with the conservation score ≥6. Almost cationic and π-residues equally share in the stabilization center. Sugar-binding site analysis in available complexes showed that the frequency of Trp and Arg is high, suggesting the potential role of these two residues in the interactions between proteins and sugar molecules. Our observations in this study could help to further understand the structural stability of SBPs.  相似文献   

19.
Plant cortical microtubules have crucial roles in cell wall development. Cortical microtubules are tightly anchored to the plasma membrane in a highly ordered array, which directs the deposition of cellulose microfibrils by guiding the movement of the cellulose synthase complex. Cortical microtubules also interact with several endomembrane systems to regulate cell wall development and other cellular events. Recent studies have identified new factors that mediate interactions between cortical microtubules and endomembrane systems including the plasma membrane, endosome, exocytic vesicles, and endoplasmic reticulum. These studies revealed that cortical microtubule-membrane interactions are highly dynamic, with specialized roles in developmental and environmental signaling pathways. A recent reconstructive study identified a novel function of the cortical microtubule-plasma membrane interaction, which acts as a lateral fence that defines plasma membrane domains. This review summarizes recent advances in our understanding of the mechanisms and functions of cortical microtubule-membrane interactions.  相似文献   

20.
β-Lactams are the most successful antibacterials, yet their use is threatened by resistance, importantly as caused by β-lactamases. β-Lactamases fall into two mechanistic groups: the serine β-lactamases that utilise a covalent acyl-enzyme mechanism and the metallo β-lactamases that utilise a zinc-bound water nucleophile. Achieving simultaneous inhibition of both β-lactamase classes remains a challenge in the field. Vaborbactam is a boronate-based inhibitor that reacts with serine-β-lactamases to form covalent complexes that mimic tetrahedral intermediates in catalysis. Vaborbactam has recently been approved for clinical use in combination with the carbapenem meropenem. Here we show that vaborbactam moderately inhibits metallo-β-lactamases from all 3 subclasses (B1, B2 and B3), with a potency of around 20–100 fold below that by which it inhibits its current clinical targets, the Class A serine β-lactamases. This result contrasts with recent investigations of bicyclic boronate inhibitors, which potently inhibit subclass B1 MBLs but which presently lack activity against B2 and B3 enzymes. These findings indicate that cyclic boronate scaffolds have the potential to inhibit the full range of β-lactamases and justify further work on the development of boronates as broad-spectrum β-lactamase inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号