首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evolutionary rate at which DNA sequences evolve is known to differ between different groups of organisms. However, the reasons for these different rates are seldom known. Among plants, the generation-time hypothesis, which states that organisms that reproduce faster also have more DNA substitutions per time, has gained most popularity. We evaluate the generation-time hypothesis using 131 DNA sequences from the plastid trnLF region and the nuclear ribosomal ITS region of the genus Veronica (Plantaginaceae). We also examine the alternative hypothesis that a higher substitution rate is correlated with selfing breeding system. Selfing is associated with annual life history in many organisms and may thus often be the underlying reason for observed correlations of annual life history with other characters. We provide evidence that annual life history is more likely to be the responsible factor for higher substitution rates in Veronica than a selfing breeding system. Nevertheless, the way in which annual life history may influence substitution rate in detail remains unknown, and some possibilities are discussed.  相似文献   

2.

Background  

Rates of molecular evolution vary widely among species. While significant deviations from molecular clock have been found in many taxa, effects of life histories on molecular evolution are not fully understood. In plants, annual/perennial life history traits have long been suspected to influence the evolutionary rates at the molecular level. To date, however, the number of genes investigated on this subject is limited and the conclusions are mixed. To evaluate the possible heterogeneity in evolutionary rates between annual and perennial plants at the genomic level, we investigated 85 nuclear housekeeping genes, 10 non-housekeeping families, and 34 chloroplast genes using the genomic data from model plants including Arabidopsis thaliana and Medicago truncatula for annuals and grape (Vitis vinifera) and popular (Populus trichocarpa) for perennials.  相似文献   

3.
4.
The Cape Floristic Region and the Succulent Karoo in southwestern Africa are both noted for their plant species richness and high levels of endemism. The southwestern tip of Africa is one of the world's five Mediterranean-type climate regions. The biodiversity in the Cape Floristic Region and Succulent Karoo is thought to be at least partly due to changes to the climate of these regions that have occurred since the middle Miocene. Annual species are usually a significant proportion of local flora in Mediterranean-type climate regions. Previous studies of species radiations in the Cape Floristic Region have concentrated on genera that predominantly contain perennial species. Nemesia (Scrophulariaceae) comprises c. 65 species of annual and perennial herbs and sub-shrubs that are native to southern and tropical Africa. Annuals make up a significant proportion (~75%) of Nemesia species. We have reconstructed a phylogeny of 23 Nemesia species using nucleotide sequences of the ITS, ETS and trnL-spacer regions. Species were grouped into five clades, two composed of annual species, one that contained two annual and one perennial species, one that contained one annual and two perennial species, and one that was predominantly composed of perennial species. Phylogenetic dating of the ITS + ETS based phylogenetic tree using penalised likelihood suggested the genus evolved during the Miocene, and that the majority of extant Nemesia species studied radiated during the Pliocene. Ancestral state reconstruction supports at least three separate origins of the annual habit from plants with a perennial life history. One origin can be traced to the late Miocene while the other two transitions occurred more recently during the Pliocene. The transition from perennial to annual life-histories in Nemesia may have been a response to climate change.  相似文献   

5.
Euphorbia (Euphorbiaceae) comprises over 2150 species and is thus the second-largest genus of flowering plants. In Europe, it is represented by more than 100 species with highest diversity in the Mediterranean area; the majority of taxa belong to subgenus Esula Pers., including about 500 taxa. The few available phylogenetic studies yielded contrasting results regarding the monophyly of subg. Esula, and the phylogenetic relationships among its constituents remain poorly understood. We have sampled DNA sequences from the nuclear ribosomal internal transcribed spacer (ITS) and the plastid trnT-trnF region from about 100, predominantly European taxa of subg. Esula in order to infer its phylogenetic history. The plastid data support monophyly of subg. Esula whereas the ITS phylogeny, which is generally less resolved, is indecisive in this respect. Although some major clades have partly incongruent positions in the ITS and plastid phylogenies, the taxonomic content of the major terminal clades is congruent in both trees. As traditional sectional delimitations are largely not corroborated, an improved classification is proposed. Character state reconstruction illustrates that the annual life form developed independently several times in different clades of subgenus Esula from perennial ancestors, and that several morphological traits used in previous classifications of Euphorbia developed in parallel in different lineages.  相似文献   

6.
We tested the effects of life‐history traits on genetic variation and conducted a comparative analysis of two plant species with differing life‐history traits co‐occurring in the highly endangered renosterveld of South Africa. We selected eighteen renosterveld remnants with varying degrees of size and isolation where populations of the herbaceous, annual and insect‐pollinated Hemimeris racemosa and the shrubby perennial and both wind‐ and insect‐pollinated Eriocephalus africanus occurred. We postulated a lower genetic variation within populations and increased genetic variation between populations in the annual than in the perennial species. Genetic variation was lower within populations of H. racemosa than within E. africanus, as is typical for annual compared to perennial species. Variation within populations was, however, not correlated with fragment size or distance in either of the two species and genetic variation between populations of the two species was comparable (ΦST = 0.10, 0.09).  相似文献   

7.
The evolutionary origin of periodical mass‐flowering plants (shortly periodical plants), exhibiting periodical mass flowering and death immediately after flowering, has not been demonstrated. Within the genus Strobilanthes (Acanthaceae), which includes more than 50 periodical species, Strobilanthes flexicaulis on Okinawa Island, Japan, flowers gregariously every 6 years. We investigated the life history of S. flexicaulis in other regions and that of closely related species together with their molecular phylogeny to reveal the evolutionary origin of periodical mass flowering. S. flexicaulis on Taiwan Island was found to be a polycarpic perennial with no mass flowering and, in the Yaeyama Islands, Japan, a monocarpic perennial with no mass flowering. Molecular phylogenetic analyses indicated that a polycarpic perennial was the ancestral state in this whole group including S. flexicaulis and the closely related species. No distinctive genetic differentiation was found in S. flexicaulis among all three life histories (polycarpic perennial, monocarpic perennial, and periodical plant). These results suggest that among S. flexicaulis, the periodical mass flowering on Okinawa Island had evolved from the polycarpic perennial on Taiwan Island via the monocarpic perennial in the Yaeyama Islands. Thus, the evolution of life histories could have taken at the level of local populations within a species.  相似文献   

8.
Variation in life history strategies is a fundamental question in evolutionary biology, and the cooccurrence of annual and perennial habits in Castilleja and Castillejinae provides the opportunity to study the evolution of plant life history in a phylogenetic context. Molecular phylogenetic analysis of two chloroplast (rps16 and trnL/F) and two nuclear ribosomal (internal and external transcribed spacers) DNA regions support the monophyly of subtribe Castillejinae (Orobanchaceae). A well-supported phylogeny of the six genera (Castilleja [~180 spp.], Clevelandia [1 sp.], Cordylanthus [18 spp.], Ophiocephalus [1 sp.], Orthocarpus [9 spp.], and Triphysaria [5 spp.]) comprising the subtribe is presented, and morphological synapomorphies are identified for the major lineages recovered. Orthocarpus and Triphysaria are both monophyletic; Cordylanthus is biphyletic. Clevelandia and Ophiocephalus are derived from within Castilleja. The perennial Castilleja clade (~160 spp.) is derived from a grade of annual taxa including Castilleja sect. Oncorhynchus (16 spp.), Cordylanthus, Orthocarpus, and Triphysaria. This suggests that the perennial habit evolved a single time from an annual ancestral lineage that persisted throughout the diversification of Castillejinae, contrary to classical interpretations of life history evolution in plants. Given the prevalence of polyploidy among perennial Castilleja species, perenniality may have played an important role in the origin and establishment of polyploidy in Castilleja.  相似文献   

9.
Plant defenses against herbivores are predicted to change as plant lineages diversify, and with domestication and subsequent selection and breeding in the case of crop plants. We addressed whether defense against a specialist herbivore declined coincidently with life history evolution, domestication, and breeding within the grass genus Zea (Poaceae). For this, we assessed performance of corn leafhopper (Dalbulus maidis) following colonization of one of four Zea species containing three successive transitions: the evolutionary transition from perennial to annual life cycle, the agricultural transition from wild annual grass to primitive crop cultivar, and the agronomic transition from primitive to modern crop cultivar. Performance of corn leafhopper was measured through seven variables relevant to development speed, survivorship, fecundity, and body size. The plants included in our study were perennial teosinte (Zea diploperennis), Balsas teosinte (Zea mays parviglumis), a landrace maize (Zea mays mays), and a hybrid maize. Perennial teosinte is a perennial, iteroparous species, and is basal in Zea; Balsas teosinte is an annual species, and the progenitor of maize; the landrace maize is a primitive, genetically diverse cultivar, and is ancestral to the hybrid maize; and, the hybrid maize is a highly inbred, modern cultivar. Performance of corn leafhopper was poorest on perennial teosinte, intermediate on Balsas teosinte and landrace maize, and best on hybrid maize, consistent with our expectation of declining defense from perennial teosinte to hybrid maize. Overall, our results indicated that corn leafhopper performance increased most with the agronomic transition, followed by the life history transition, and least with the domestication transition.  相似文献   

10.
Molecular evolutionary rate varies significantly among species and a strict global molecular clock has been rejected across the tree of life. Generation time is one primary life‐history trait that influences the molecular evolutionary rate. Theory predicts that organisms with shorter generation times evolve faster because of the accumulation of more DNA replication errors per unit time. Although the generation‐time effect has been demonstrated consistently in plants and animals, the evidence of its existence in bacteria is lacking. The bacterial phylum Firmicutes offers an excellent system for testing generation‐time effect because some of its members can enter a dormant, nonreproductive endospore state in response to harsh environmental conditions. It follows that spore‐forming bacteria would—with their longer generation times—evolve more slowly than their nonspore‐forming relatives. It is therefore surprising that a previous study found no generation‐time effect in Firmicutes. Using a phylogenetic comparative approach and leveraging on a large number of Firmicutes genomes, we found sporulation significantly reduces the genome‐wide spontaneous DNA mutation rate and protein evolutionary rate. Contrary to the previous study, our results provide strong evidence that the evolutionary rates of bacteria, like those of plants and animals, are influenced by generation time.  相似文献   

11.
Genetic variation within two closely related Diplotaxis species was studied as indicated by isozymes and RAPDs. These species differ in their mating systems, their life forms, and in their evolutionary history, but both are successful colonisers. The diploid perennial D. tenuifolia is an outbreeder, the allotetraploid annual to biennial D. muralis is predominantly selfing. D. muralis was nearly devoid of genetic variation due to a young phylogenetic age and/or population history. Estimations of genetic variation within D. tenuifolia and F-statistics indicated random mating at the species and population level and confirms obligate outbreeding. However, influence of genetic drift relative to gene flow was high and mirrors colonisation processes as indicated by considerable heterogeneity across populations and the lack of correlation between population divergence and geographic distance.  相似文献   

12.
Phylogenetic relationships within the complex genus Lupinus are estimated from internal transcribed spacer (ITS) sequences of the nuclear ribosomal DNA repeat. The molecular data supports Lupinus as a distinct monophyletic group within the tribe Genisteae. Different geographical lineages are revealed within Lupinus, which are each restricted to either the Old or the New World. In the New World, the ITS data support an eastern-western geographic disjunction of the lupines and the recognition of some well-supported clades. In the Old World, almost all the previously recognized taxa are taxonomically well differentiated. The homogeneous African rough-seeded lupines, Scabrispermae, are strongly supported as a monophyletic group, which is distinct from the diverse and heterogeneous circum-Mediterranean smooth-seeded ones. The latter appear to have evolved as two lineages, in which are revealed some intersectional relationships. Also ITS data allow the assessment of the phylogenetic position of the newly discovered species, L. anatolicus (in the Old World) and L. jaimehintoniana (the Mexican tree lupin). The ITS phylogeny suggests a rapid initial radiation of the lupines subsequent to their divergence from a common ancestor. Moreover, the results indicate that the annual and perennial habits have evolved many times in Lupinus and suggest a role for generation time in affecting the evolutionary history of lupines. Data on adaptive processes and character evolution are re-examined and discussed in the light of the ITS phylogeny.These studies were supported by the research unit UMR-CNRS 6553 Ecobio – University of Rennes (France), and by the NSERC of Canada (grant to R.J. Bayer, at the University of Alberta). They are greatfully acknowledged. All the persons that have contributed in different ways to this work on Lupinus, summarized in this presentation, are greatly thanked. Particularly, we would like to mention Malika Aïnouche, Roland Greinwald, André Huon, W.K. Swiecicki, Billie L. Turner and Ludger Witte for their contributions.  相似文献   

13.
 The internal transcribed spacers (ITS1 and ITS2) of nuclear ribosomal DNA were amplified and sequenced from 19 samples representing all species of the genus Mercurialis and two outgroup species, Ricinus communis and Acalypha hispida. The length of ITS1 in the ingroups ranged from 223 to 246 bp and ITS2 from 210 to 218 bp. Sequence divergence between pairs of species ranged from 1.15% to 25.88% among the ingroup species in the combined data of ITS1 and ITS2. Heuristic phylogenetic analyses using Fitch parsimony on the combined data of ITS1 and ITS2 with gaps treated as missing generated 45 equally parsimonious trees. The strict consensus tree was principally concordant with morphological classification. Within the genus, the ITS sequences recognised two main infrageneric clades: the M. perennis complex including three Eurasian stoloniferous species (M.␣leiocarpa, M. ovata and M. perennis) and the western Mediterranean group including eight both annual and perennial species. Of the western Mediterranean clade, the annual and perennial species grouped respectively into two different groups, and the annual life form is revealed as a synapomorphic character derived from perennial, whereas in the Eurasian clade ITS phylogeny suggested M. leiocarpa as basal clade sister to M.␣perennis and M. ovata. ITS phylogeny failed to resolve the relationships among the different cytotypes of M. ovata and M. perennis. ITS phylogeny also suggested rapid karyotypic evolution for the genus. The karyotypic divergence among the perennial species of western Mediterranean region did not corroborate the nucleotide sequence divergence among the species. Optimisation of chromosome numbers onto the ITS phylogeny suggested x=8 to be the ancestral basic chromosome number of the genus. ITS phylogeny confirmed that the androdioecy of M. ambigua is derived from dioecy. The nucleotide heterozygosity and additivity in ITS sequences clearly confirm the interspecific hybridisation in the genus Mercurialis. Received December 22, 2001; accepted May 21, 2002?Published online: November 14, 2002 Address of the authors: Martin Kr?henbühl, Yong-Ming Yuan (correspondence) and Philippe Küpfer, Institut de Botanique, Laboratoire de botanique évolutive, Université de Neuchatel, Emile-Argand 11, CH-2007 Neuchatel, Suisse. (e-mail: yong-ming.yuan@unine.ch)  相似文献   

14.
Heterogeneous DNA substitution rates were found in the 18S-26S nuclear ribosomal DNA internal transcribed spacer (ITS) and external transcribed spacer (ETS) regions of Sidalcea (Malvaceae), a putatively young genus of annuals and perennials. The majority of comparisons revealed that the annual species had significantly higher molecular evolutionary rates than the perennials, whereas rates were consistently homogenous between obligate annual species. These findings led us to conclude that generation time or possibly another biological factor distinguishing annuals and perennials has influenced rates of molecular evolution in SIDALCEA: The congruence of relative-rate test results across both spacer regions reinforced the association between life history and rate of rDNA evolution across lineages of checker mallows. Evolutionary rate variation within perennials mainly involved three basally divergent lineages. The faster rate in one lineage, Sidalcea stipularis, compared with other perennials may be the result of genetic drift in the only known, small, population. The other two basally divergent lineages had slower evolutionary rates compared with the remaining perennials; possible explanations for these differences include rate-reducing effects of a suffrutescent (rather than herbaceous) habit and seed dormancy.  相似文献   

15.
Hybrid sterility is an important species barrier, especially in plants where hybrids can often form between divergent taxa. Here we explore how life history affects the acquisition of hybrid sterility in two groups in the sunflower family. We analyzed genetic distance and F1 pollen sterility for interspecific crosses in annual and perennial groups. We find that reproductive isolation is acquired in a steady manner and that annual species acquire hybrid sterility barriers faster than perennial species. Potential causes of the observed sterility pattern are discussed.  相似文献   

16.
17.
Investment in reproduction and growth represent a classic tradeoff with implication for life history evolution. The local environment can play a major role in the magnitude and evolutionary consequences of such a tradeoff. Here, we examined the investment in reproductive and vegetative tissue in 40 maternal half‐sib families from four different populations of the herb Plantago coronopus growing in either a dry or wet greenhouse environment. Plants originated from populations with an annual or a perennial life form, with annuals prevailing in drier habitats with greater seasonal variation in both temperature and precipitation. We found that water availability affected the expression of the tradeoff (both phenotypic and genetic) between reproduction and growth, being most accentuated under dry condition. However, populations responded very differently to water treatments. Plants from annual populations showed a similar response to drought condition with little variation among maternal families, suggesting a history of selection favouring genotypes with high allocation to reproduction when water availability is low. Plants from annual populations also expressed the highest level of plasticity. For the perennial populations, one showed a large variation among maternal families in resource allocation and expressed significant negative genetic correlations between reproductive and vegetative biomass under drought. The other perennial population showed less variation in response to treatment and had trait values similar to those of the annuals, although it was significantly less plastic. We stress the importance of considering intraspecific variation in response to environmental change such as drought, as conspecific plants exhibited very different abilities and strategies to respond to high versus low water availability even among geographically close populations.  相似文献   

18.
Chromosomal inversions can play an important role in adaptation, but the mechanism of their action in many natural populations remains unclear. An inversion could suppress recombination between locally beneficial alleles, thereby preventing maladaptive reshuffling with less‐fit, migrant alleles. The recombination suppression hypothesis has gained much theoretical support but empirical tests are lacking. Here, we evaluated the evolutionary history and phenotypic effects of a chromosomal inversion which differentiates annual and perennial forms of Mimulus guttatus. We found that perennials likely possess the derived orientation of the inversion. In addition, this perennial orientation occurs in a second perennial species, M. decorus, where it is strongly associated with life history differences between co‐occurring M. decorus and annual M. guttatus. One prediction of the recombination suppression hypothesis is that loci contributing to local adaptation will predate the inversion. To test whether the loci influencing perenniality pre‐date this inversion, we mapped QTLs for life history traits that differ between annual M. guttatus and a more distantly related, collinear perennial species, M. tilingii. Consistent with the recombination suppression hypothesis, we found that this region is associated with life history in the absence of the inversion, and this association can be broken into at least two QTLs. However, the absolute phenotypic effect of the LG8 inversion region on life history is weaker in M. tilingii than in perennials which possess the inversion. Thus, while we find support for the recombination suppression hypothesis, the contribution of this inversion to life history divergence in this group is likely complex.  相似文献   

19.
Eastern Asian-eastern North American disjuncts in four genera were examined for allozyme divergence and sequence divergence of the internal transcribed spacers (ITS) of nuclear ribosomal DNA. The disjunct pairs of taxa include Caulophyllum robustum-C. thalictroid.es, Menispermum dauricum-M. canadense, Penthorum chinense-P. sedoides, and Phryma leptostachya var. asiatica-P. leptostachya var. leptostachya. Allozyme divergence was comparable in Caulophyllum and Penthorum (genetic identities of 0.534 and 0.546) and was considerably higher than between pairs of taxa in Menispermum (0.273) and Phryma (0.291). Caulophyllum and Penthorum, which have the highest genetic identities at allozyme loci, also have low ITS sequence divergences (1.30 and 1.65%, respectively). Phryma, which has low isozyme identity, also has the highest ITS sequence divergence (4.46%). The two taxa of Menispermum have low ITS sequence divergence (0.93%) despite having a low identity (0.273) at allozyme loci. The results suggest that divergence between the taxa in the four genera are not the result of a single historical event. Estimated divergence times are reasonably consistent with a late Miocene disjunction for Caulophyllum and Penthorum, whereas the age of the Phryma disjunction is calculated at over 20 million years. The nonconcordant divergences between allozymes and ITS sequences in Menispermum may be caused by concerted evolution in the latter or possibly longer generation time in the woody plants. Additional molecular data are needed to clarify the situation.  相似文献   

20.
Internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA from 44 taxa of the genus Lupinus and five outgroup taxa were used for phylogenetic analysis. Lupinus appears as a strongly supported monophyletic genus, which is unambiguously part of the Genisteae. The lupines are distributed into five main clades in general accordance with their geographical origin. In the Old World, almost all the recognized taxonomic units are well resolved. The ITS data reveal an unexpectedly close relationship between the diverse sections Angustifoli and Lutei. The ITS results suggest a geographical division between the western New World lupines and the eastern ones. They also indicate the presence of some moderately to strongly supported groups of taxa, such as the Microcarpi-Pusilli group, the L. spariflorus-L. arizonicus group, the L. mexicanus-L. elegans group in the western New World, and the notable L. multiflorus-L. paraguariensis group in the eastern New World. The latter group strongly suggests that the eastern South American compound- and simple-leaved perennial lupines derive from a common ancestor. However, apart from some exceptions, relationships within the genus still remain largely unresolved based on ITS data. The lack of resolution at the base of the genus is suggestive of a rapid initial radiation of the lupines subsequent to the dispersal of their common ancestor. Relative rate tests demonstrate the presence of rate heterogeneity of ITS sequences within Lupinus. In many pairwise comparisons between taxa, substitution rate inequalities are correlated with the habit (annual, perennial), suggesting some role for the generation time effects in the evolutionary history of lupines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号