首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sequence of 1267 nucleotides spanning the replication terminus, terC, of the Bacillus subtilis 168 chromosome has been determined. The site of arrest of the clockwise fork, which defines terC, has been localized to a 30-nucleotide portion (approximately) within this sequence. The arrest site occurs in an A + T-rich region between two open reading frames and very close to one of two imperfect inverted repeats (47-48 nucleotides each) which are separated by 59 nucleotides. The closeness of approach of the arrested clockwise fork to the first imperfect inverted repeat encountered in this region raises the possibility of a role for the inverted repeats in the mechanism of fork arrest.  相似文献   

2.
Primase synthesizes decaribonucleotides for priming of lagging and possibly leading strand synthesis at a replication fork. The sites of initiation by purified mouse primase were shown to be highly specific within the SV40 origin of replication. This study further examines the role of the 27-bp inverted repeat in the origin for initiation. A site is observed on the L-strand template at nucleotide position (np) 22 positioned a similar distance from the 27-bp inverted repeat as sites previously reported on the E-strand. The initiations adjacent to the 27-bp repeat have a higher Km for rATP than other sites. A deletion within the inverted repeat eliminated initiation at sites proximal to the hairpin on both E and L strands but had no effect at more distant sites. A deletion mutant which left the inverted repeat intact but deleted the initiation sites at np 5210-5220 on the E-strand was not active as a template for proximal sites. These results indicate that primase has two modes of recognition, one that requires the SV40 inverted repeat structure and a specific sequence and another that requires sequence alone. Additional regions of the SV40 genome have also been examined and of approximately 2000 nucleotides of single stranded template examined, only one additional site was observed at np 2412 on the E-strand. This indicates that primase initiations are highly specific for the SV40 origin and their potential functional role is discussed.  相似文献   

3.
4.
DNase I footprinting of the interaction between the replication terminator protein (RTP) of Bacillus subtilis and the inverted repeat region (IRR) at the chromosome terminus, to which it binds to block the clockwise replication fork, showed that two major regions of 41 base pairs (bp) were protected from cleavage. These regions corresponded approximately to the imperfect inverted repeats (IRI and IRII) identified previously. Band retardation analyses of the interaction between RTP and portions of the IRR established that each inverted repeat (IRI or IRII) contained two RTP binding sites. By sedimentation equilibrium in the ultracentrifuge, RTP was found to exist as a dimer of 29 kDa at neutral pH and concentrations above 0.2 g/l. Quantitative studies of the RTP-IRR interaction using [3H]RTP and [32P]IRR showed that the fully saturated complex contained eight RTP monomers per IRR. It is concluded that a dimer of RTP binds to each of the four sites in IRR. The apparent dissociation constant for the interaction was estimated (in the presence of 50% glycerol) to be 1.2 x 10(-11) M (dimer of RTP). Glycerol was found to have a marked effect on the affinity of RTP for the IRR and on the relative amounts of the interaction complexes formed; in the absence of glycerol the dissociation constant was approximately 50-fold higher and there was pronounced co-operative binding of RTP dimers to adjacent sites in each inverted repeat. Examination of the DNA sequence in IRI and IRII identified two 8 bp direct repeats in each. The regions protected from DNase I cleavage in each inverted repeat and the protection afforded by a core sequence spanning just one of the 8 bp direct repeats were consistent with each 8 bp repeat representing a recognition sequence for the RTP dimer. A model describing the binding of RTP to the IRR is presented.  相似文献   

5.
The first stage in termination of chromosome replication in Bacillus subtilis involves arrest of the clockwise fork at the inverted repeat region (IRR), comprising the opposed IRI and IRII sequences, adjacent to the upstream region of the rtp gene, which encodes the replication terminator protein RTP. RTP binds to IRI and IRII. The ability of the IRR and its components to function as terminators, in conjunction with RTP, and their polarity of action have now been tested by the use of plasmids replicating in B. subtilis as unidirectional theta structures and into which potential terminator sequences were inserted in alternate orientations relative to fork movement. When the complete IRR was inserted into such plasmids and the new plasmids transferred into a B. subtilis strain overproducing RTP, it was able to block movement of a replication fork approaching from either direction. IRI and IRII were shown to function as polar terminators, each blocking movement of a fork when it approached from one particular direction but not the other. Furthermore, the polarity of action was in accordance with the IRR being able to operate as a replication fork trap. Thus, a fork approaching the IRR would pass through the first terminator encountered (IRI or IRII) and be halted by the second. The previously observed nonfunctioning of a particular orientation of chromosomal IRR as a fork arrest site probably reflects a limiting level of RTP in the cell. Interestingly, a 21 base-pair core sequence spanning a single RTP binding site within IRI (the 47 base-pair IRI contains 2 binding sites) was unable to arrest a fork approaching from either direction in the plasmid system. This suggests that both binding sites within an IR must be filled in order to function as an arrest site. It is possible that co-operative interaction between adjacent dimers within IRI or IRII provides the necessary conformation for causing fork arrest.  相似文献   

6.
DIR: a novel DNA rearrangement associated with inverted repeats.   总被引:1,自引:0,他引:1       下载免费PDF全文
A novel DNA rearrangement has been characterised that is both a direct and inverted repeat.This rearrangement involves the 2-fold duplication of a plasmid sequence adjacent to the site of insertion of a long palindrome.The sequence of this rearrangement suggests that it has arisen by strand slippage from the leading to the lagging strand of the replication fork as a consequence of the presence of the long palindrome.  相似文献   

7.
The frequencies of deletion of short sequences (mutation inserts) inserted into the chloramphenicol acetyl-transferase (CAT) gene were measured for pBR325 and pBR523, in which the orientation of the CAT gene was reversed, in Escherichia coli. Reversal of the CAT gene changes the relationship between the transcribed strand and the leading and lagging strands of the DNA replication fork in pBR325-based plasmids. Deletion of these mutation inserts may be mediated by slipped misalignment during DNA replication. Symmetrical sequences, in which the same potential DNA structural misalignment can form in both the leading and lagging strands, exhibited an approximately twofold difference in the deletion frequencies upon reversal of the CAT gene. Sequences that contained an inverted repeat that was asymmetric with respect to flanking direct repeats were designed. With asymmetric mutation inserts, different misaligned structural intermediates could form in the leading and lagging strands, depending on the orientation of the insert and/or of the CAT gene. When slippage could be stabilized by a hairpin in the lagging strand, thereby forming a three-way junction, deletion occurred by up to 50-fold more frequently than when this structure formed in the leading strand. These results support the model that slipped misalignment involving DNA secondary structure occurs preferentially in the lagging strand during DNA replication.  相似文献   

8.
When replication stalls and forks disassemble, the restart primosome is required to reload the replicative helicase so that chromosomal replication can be reinitiated. We have taken a photo-cross-linking approach, using model replication forks containing a phenyl diazirine placed at single locations, to determine the positions of primosomal protein binding and changes in interactions that occur during the assembly reaction. This approach revealed a novel mode for single-stranded DNA-binding protein (SSB)-DNA binding, in which SSB interacts with both the leading and lagging single-strand segments and the parental duplex of the fork. Cross-linking to a novel region within SSB is observed only when it is bound to forked structures. This binding mode is also followed by PriB. PriA binds to the fork, excluding SSB and PriB, interacting with the primer terminus, single-stranded leading and lagging strands and duplex in immediate proximity of the fork. SSB binds to flanking single-stranded segments distal to the fork in the presence of PriA. The addition of PriB or DnaT to a PriA-SSB-fork complex does not lead to cross-linking or displacement, suggesting that their association is through protein-protein interactions at early stages of the reaction. Upon addition of DnaC and the DnaB helicase in the presence of ATPγS, helicase is assembled, leading to contacts within the duplex region on the tracking (lagging) strand and strong contacts with the displaced leading single strand near the fork. PriA is displaced from DNA upon helicase assembly.  相似文献   

9.
One of the main causes of bacterial chromosome asymmetry is replication-associated mutational pressure. Different rates of nucleotide substitution accumulation on leading and lagging strands implicate qualitative and quantitative differences in the accumulation of mutations in protein coding sequences lying on different DNA strands. We show that the divergence rate of orthologs situated on leading strands is lower than the divergence rate of those situated on lagging strands. The ratio of the mutation accumulation rate for sequences lying on lagging strands to that of sequences lying on leading strands is rather stable and time-independent. The divergence rate of sequences which changed their positions, with respect to the direction of replication fork movement, is not stable—sequences which have recently changed their positions are the most prone to mutation accumulation. This effect may influence estimations of evolutionary distances between species and the topology of phylogenetic trees. Received: 24 July 2000 / Accepted: 16 January 2001  相似文献   

10.
W Seufert  W Messer 《The EMBO journal》1986,5(12):3401-3406
The start sites for leading and lagging DNA strands were determined in vitro with minichromosomes as templates. Fragments from replication intermediates were analyzed by hybridization to single-stranded probes. Leading strand synthesis in the counterclockwise direction was found to originate in or close to (position 248 to -44) the minimal origin. Complementary lagging strand synthesis started several positions to the left outside of oriC. The results suggest in addition a concerted synthesis of leading and lagging strands following the dnaA directed assembly of initiation proteins at double-stranded oricC DNA (pre-replisome). In addition, DNA synthesis could initiate at protein n' recognition sequences located within and clockwise to the asnA gene. Initiation at n' sites was dependent on protein i activity, whereas leading and lagging strand initiation in the oriC region was not affected by protein i. Our results argue against an involvement of the phi X174-type primosome in the initiation of discontinuous DNA synthesis at oriC. An alternative function is suggested.  相似文献   

11.
K. Weston-Hafer  D. E. Berg 《Genetics》1991,127(4):649-655
We test here whether a class of deletions likely to result from errors during DNA replication arise preferentially during synthesis of either the leading or the lagging DNA strand. Deletions were obtained by reversion of particular insertion mutant alleles of the pBR322 amp gene. The alleles contain insertions of palindromic DNAs bracketed by 9-bp direct repeats of amp sequence; in addition, bp 2 to 5 in one arm of the palindrome form a direct repeat with 4 bp of adjoining amp sequence. Prior work had shown that reversion to Ampr results from deletions with endpoints in the 8- or 4-bp repeat, and that the 4-bp repeats are used preferentially because one of them is in the palindrome. To test the role of leading and lagging strand synthesis in deletion formation, we reversed the direction of replication of the amp gene by inverting the pBR322 replication origin, and also constructed new mutant alleles with a 4-bp repeat starting counterclockwise rather than clockwise of the insertion. In both cases the 4-bp repeats were used preferentially as deletion endpoints. A model is presented in which deletions arise during elongation of the strand that copies the palindrome before the adjoining 4-bp repeat, and in which preferential use of the 4-bp repeats independent of the overall direction of replication implies that deletions arise during syntheses of both leading and lagging strands.  相似文献   

12.
13.
The blockage of replication forks can result in the disassembly of the replicative apparatus and reversal of the fork to form a DNA junction that must be processed in order for replication to restart and sister chromatids to segregate at mitosis. Fission yeast Mus81-Eme1 and budding yeast Mus81-Mms4 are endonucleases that have been implicated in the processing of aberrant DNA junctions formed at stalled replication forks. Here we have investigated the activity of purified Mus81-Eme1 and Mus81-Mms4 on substrates that resemble DNA junctions that are expected to form when a replication fork reverses. Both enzymes cleave Holliday junctions and substrates that resemble normal replication forks poorly or not at all. However, forks where the equivalents of either both the leading and lagging strands or just the lagging strand are juxtaposed at the junction point, or where either the leading or lagging strand has been unwound to produce a fork with a single-stranded tail, are cleaved well. Cleavage sites map predominantly between 3 and 6 bp 5' of the junction point. For most substrates the leading strand template is cleaved. The sole exception is a fork with a 5' single-stranded tail, which is cleaved in the lagging strand template.  相似文献   

14.
To ascertain a leading or lagging strand preference for duplication mutations, several short DNA sequences, i.e. mutation inserts, were designed that should demonstrate an asymmetric propensity for duplication mutations in the two complementary DNA strands during replication. The design of the mutation insert involved a 7-bp quasi inverted repeat that forms a remarkably stable hairpin in one DNA strand, but not the other. The inverted repeat is asymmetrically placed between flanking direct repeats. This sequence was cloned into a modified chloramphenicol acetyltransferase (CAT) gene containing a −1 frameshift mutation. Duplication of the mutation insert restores the reading frame of the CAT gene resulting in a chloramphenicol resistant phenotype. The mutation insert showed greater than a 200-fold preference for duplication mutations during leading strand, compared with lagging strand, replication. This result suggests that misalignment stabilized by DNA secondary structure, leading to duplication between direct repeats, occurred preferentially during leading strand synthesis.  相似文献   

15.
DNA replication forks pause in front of lesions on the template, eventually leading to cytotoxic chromosomal rearrangements. The in vivo structure of damaged eukaryotic replication intermediates has been so far elusive. Combining electron microscopy (EM) and two-dimensional (2D) gel electrophoresis, we found that UV-irradiated S. cerevisiae cells uncouple leading and lagging strand replication at irreparable UV lesions, thus generating long ssDNA regions on one side of the fork. Furthermore, small ssDNA gaps accumulate along replicated duplexes, likely resulting from repriming events downstream of the lesions on both leading and lagging strands. Translesion synthesis and homologous recombination counteract gap accumulation, without affecting fork progression. The DNA damage checkpoint contributes to gap repair and maintains a replication-competent fork structure. We propose that the coordinated action of checkpoint, recombination, and translesion synthesis-mediated processes at the fork and behind the fork preserves the integrity of replicating chromosomes by allowing efficient replication restart and filling the resulting ssDNA gaps.  相似文献   

16.
Every unit of the rRNA gene cluster of Saccharomyces cerevisiae contains a unique site, termed the replication fork barrier (RFB), where progressing replication forks are stalled in a polar manner. In this work, we determined the positions of the nascent strands at the RFB at nucleotide resolution. Within an HpaI-HindIII fragment essential for the RFB, a major and two closely spaced minor arrest sites were found. In the majority of molecules, the stalled lagging strand was completely processed and the discontinuously synthesized nascent lagging strand was extended three bases farther than the continuously synthesized leading strand. A model explaining these findings is presented. Our analysis included for the first time the use of T4 endonuclease VII, an enzyme recognizing branched DNA molecules. This enzyme cleaved predominantly in the newly synthesized homologous arms, thereby specifically releasing the leading arm.  相似文献   

17.
The DNA sequence of the F plasmid origin of conjugal DNA transfer, oriT , has been determined. The origin lies in an intercistronic region which contains several inverted repeat sequences and a long AT-rich tract. Introduction of a nick into one of the DNA strands in the oriT region precedes the initiation of conjugal DNA replication, and the position of the strand-specific nicks acquired by a lambda oriT genome upon propagation in Flac-carrying cells has been determined. The nicks were not uniquely positioned, rather there was a cluster of three major and up to 20 minor sites: the biological significance of this observation is not yet fully clear. Nine independent point mutations which inactivate oriT function have been sequenced and found to alter one or other of two nucleotide positions which lie 14 and 19 bp to one side of the rightmost (as drawn) major nick site. These key nucleotides may lie in a recognition sequence for the oriT endonuclease, since mutations at these sites prevent nicking at oriT .  相似文献   

18.
19.
G Prelich  B Stillman 《Cell》1988,53(1):117-126
Proliferating cell nuclear antigen (PCNA) is a cell cycle and growth regulated protein required for replication of SV40 DNA in vitro. Its function was investigated by comparison of the replication products synthesized in its presence or absence. In the completely reconstituted replication system that contains PCNA, DNA synthesis initiates at the origin and proceeds bidirectionally on both leading and lagging strands around the template DNA to yield duplex, circular daughter molecules. In contrast, in the absence of PCNA, early replicative intermediates containing short nascent strands accumulate. Replication forks continue bidirectionally from the origin, but surprisingly, only lagging strand products are synthesized. Thus two stages of DNA synthesis have been defined, with the second stage requiring PCNA for coordinated leading and lagging strand synthesis at the replication fork. We suggest that during eukaryotic chromosome replication there is a switch to a PCNA-dependent elongation stage that requires two distinct DNA polymerases.  相似文献   

20.
Despite the scrutiny that has been directed for years at the yeast genome, relatively little is known about the impact of replication on the substitution dynamics in Saccharomyces cerevisiae. Here, we show that the mutation rate increases with the replication timing by more than 30% between the earliest and the latest replicating regions. In addition, we found a mutational asymmetry associated with the polarity of replication resulting in higher rates of substitutions toward C and A than toward G and T in leading strands (reciprocally more substitutions toward G and T in lagging strands). Such mutational asymmetries applied over long evolutionary periods should generate compositional skews between the two DNA strands. Thus, we show that the leading replicating strands present an excess of C over G and of A over T in the genome of S. cerevisiae (reciprocally an excess of G + T over C + A in lagging strands). We also show that the nucleotide frequencies at mutational equilibrium predict a compositional skew at equilibrium very close to the observed skew between leading and lagging strands, suggesting that compositional equilibrium has been nearly attained in the present day genome of S. cerevisiae. Surprisingly, the direction of this skew is inverted compared with the one in the human genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号