首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The clostridial neurotoxins (CNTs), comprised of tetanus neurotoxin (TeNT) and the seven serotypes of botulinum neurotoxin (BoNT A-G), specifically bind to neuronal cells and disrupt neurotransmitter release by cleaving proteins involved in synaptic vesicle membrane fusion. In this study, multiple CNT sequences were analyzed within the context of the 1277 residue BoNT/A crystal structure to gain insight into the events of binding, pore formation, translocation, and catalysis that are required for toxicity. A comparison of the TeNT-binding domain structure to that of BoNT/A reveals striking differences in their surface properties. Further, the solvent accessibility of a key tryptophan in the C terminus of the BoNT/A-binding domain refines the location of the ganglioside-binding site. Data collected from a single frozen crystal of BoNT/A are included in this study, revealing slight differences in the binding domain orientation as well as density for a previously unobserved translocation domain loop. This loop and the conservation of charged residues with structural proximity to putative pore-forming sequences lend insight into the CNT mechanism of pore formation and translocation. The sequence analysis of the catalytic domain revealed an area near the active-site likely to account for specificity differences between the CNTs. It revealed also a tertiary structure, highly conserved in primary sequence, which seems critical to catalysis but is 30 A from the active-site zinc ion. This observation, along with an analysis of the 54 residue "belt" from the translocation domain are discussed with respect to the mechanism of catalysis.  相似文献   

2.
Jin R  Sikorra S  Stegmann CM  Pich A  Binz T  Brunger AT 《Biochemistry》2007,46(37):10685-10693
Clostridial neurotoxins are the causative agents of the neuroparalytic disease botulism and tetanus. They block neurotransmitter release through specific proteolysis of one of the three soluble N-ethylmaleimide-sensitive-factor attachment protein receptors (SNAREs) SNAP-25, syntaxin, and synaptobrevin, which constitute part of the synaptic vesicle fusion machinery. The catalytic component of the clostridial neurotoxins is their light chain (LC), a Zn2+ endopeptidase. There are seven structurally and functionally related botulinum neurotoxins (BoNTs), termed serotype A to G, and tetanus neurotoxin (TeNT). Each of them exhibits unique specificity for their target SNAREs and peptide bond(s) they cleave. The mechanisms of action for substrate recognition and target cleavage are largely unknown. Here, we report structural and biochemical studies of BoNT/C1-LC, which is unique among BoNTs in that it exhibits dual specificity toward both syntaxin and SNAP-25. A distinct pocket (S1') near the active site likely achieves the correct register for the cleavage site by only allowing Ala as the P1' residue for both SNAP-25 and syntaxin. Mutations of this SNAP-25 residue dramatically reduce enzymatic activity. The remote alpha-exosite that was previously identified in the complex of BoNT/A-LC and SNAP-25 is structurally conserved in BoNT/C1. However, mutagenesis experiments show that the alpha-exosite of BoNT/C1 plays a less stringent role in substrate discrimination in comparison to that of BoNT/A, which could account for its dual substrate specificity.  相似文献   

3.
How botulinum and tetanus neurotoxins block neurotransmitter release   总被引:15,自引:0,他引:15  
Humeau Y  Doussau F  Grant NJ  Poulain B 《Biochimie》2000,82(5):427-446
Botulinum neurotoxins (BoNT, serotypes A-G) and tetanus neurotoxin (TeNT) are bacterial proteins that comprise a light chain (M(r) approximately 50) disulfide linked to a heavy chain (M(r) approximately 100). By inhibiting neurotransmitter release at distinct synapses, these toxins cause two severe neuroparalytic diseases, tetanus and botulism. The cellular and molecular modes of action of these toxins have almost been deciphered. After binding to specific membrane acceptors, BoNTs and TeNT are internalized via endocytosis into nerve terminals. Subsequently, their light chain (a zinc-dependent endopeptidase) is translocated into the cytosolic compartment where it cleaves one of three essential proteins involved in the exocytotic machinery: vesicle associated membrane protein (also termed synaptobrevin), syntaxin, and synaptosomal associated protein of 25 kDa. The aim of this review is to explain how the proteolytic attack at specific sites of the targets for BoNTs and TeNT induces perturbations of the fusogenic SNARE complex dynamics and how these alterations can account for the inhibition of spontaneous and evoked quantal neurotransmitter release by the neurotoxins.  相似文献   

4.
Clostridial neurotoxins embrace a family of extremely potent toxins comprised of tetanus toxin (TeNT) and seven different serotypes of botulinum toxin (BoNT/A-G). The beta-trefoil subdomain of the C-terminal part of the heavy chain (H(C)), responsible for ganglioside binding, is the most divergent region in clostridial neurotoxins with sequence identity as low as 15%. We re-examined the alignment between family sequences within this subdomain, since in this region all alignments published to date show obvious inconsistencies with the beta-trefoil fold. The final alignment was obtained by considering the general constraints imposed by this fold, and homology modeling studies based on the TeNT structure. Recently solved structures of BoNT/A confirm the validity of this structure-based approach. Taking into account biochemical data and crystal structures of TeNT and BoNT/A, we also re-examined the location of the putative ganglioside binding site and, using the new alignment, characterized this site in other BoNT serotypes.  相似文献   

5.
The clostridial neurotoxins (CNTs) are the most toxic proteins for humans and include botulinum neurotoxins (BoNT) and tetanus neurotoxin (TeNT). CNT neurotropism is based upon the preferred binding and entry into neurons and specific cleavage of neuronal SNARE proteins. While chemically inactive TeNT toxoid remains an effect vaccine, the current pentavalent vaccine against botulism is in limited supply. Recent advances have facilitated the development of the next generation of BoNT vaccines, utilizing non-catalytic full-length BoNT or a subunit vaccine composed of the receptor binding domain of BoNT as immunogens. This review describes the issues and progress towards the production of a vaccine against botulism that will be effective against natural BoNT variants.  相似文献   

6.
Botulinum neurotoxins (BoNTs) and tetanus neurotoxin (TeNT) inhibit neurotransmitter release by proteolyzing a single peptide bond in one of the three soluble N-ethylmaleimide-sensitive factor attachment protein receptors SNAP-25, syntaxin, and vesicle-associated membrane protein (VAMP)/synaptobrevin. TeNT and BoNT/B, D, F, and G of the seven known BoNTs cleave the synaptic vesicle protein VAMP/synaptobrevin. Except for BoNT/B and TeNT, they cleave unique peptide bonds, and prior work suggested that different substrate segments are required for the interaction of each toxin. Although the mode of SNAP-25 cleavage by BoNT/A and E has recently been studied in detail, the mechanism of VAMP/synaptobrevin proteolysis is fragmentary. Here, we report the determination of all substrate residues that are involved in the interaction with BoNT/B, D, and F and TeNT by means of systematic mutagenesis of VAMP/synaptobrevin. For each of the toxins, three or more residues clustered at an N-terminal site remote from the respective scissile bond are identified that affect solely substrate binding. These exosites exhibit different sizes and distances to the scissile peptide bonds for each neurotoxin. Substrate segments C-terminal of the cleavage site (P4-P4') do not play a role in the catalytic process. Mutation of residues in the proximity of the scissile bond exclusively affects the turnover number; however, the importance of individual positions at the cleavage sites varied for each toxin. The data show that, similar to the SNAP-25 proteolyzing BoNT/A and E, VAMP/synaptobrevin-specific clostridial neurotoxins also initiate substrate interaction, employing an exosite located N-terminal of the scissile peptide bond.  相似文献   

7.
The very high toxicity of tetanus neurotoxin (TeNT) and botulinum neurotoxin (BoNT) are related to their nature of zinc metallopeptidases able to selectively cleave small proteins involved in neurotransmitters exocytosis. At this time, there is no efficient and selective therapy towards tetanos and tobulism as well as protection against a possible spreading of the toxins. We have therefore investigated the minimum sequences of TeNT and BoNT substrates allowing an efficient and simple fluorescent dosage of the enzymatic activity to be developed. Using synaptobrevin (93 amino acids) as substrate of TeNT and several fragments synthesised by solid phase method, we have shown that the clostridial neurotoxins behave as allosteric-type enzymes. This is the first example in zinc metallopeptidases. Based on these results a strategy, including the use of combinatorial chemistry, was carried out issuing in the design of the first potent inhibitors of TeNT and BoNT.  相似文献   

8.
The striking differences between the clinical symptoms of tetanus and botulism have been ascribed to the different fate of the parental neurotoxins once internalised in motor neurons. Tetanus toxin (TeNT) is known to undergo transcytosis into inhibitory interneurons and block the release of inhibitory neurotransmitters in the spinal cord, causing a spastic paralysis. In contrast, botulinum neurotoxins (BoNTs) block acetylcholine release at the neuromuscular junction, therefore inducing a flaccid paralysis. Whilst overt experimental evidence supports the sorting of TeNT to the axonal retrograde transport pathway, recent findings challenge the established view that BoNT trafficking is restricted to the neuromuscular junction by highlighting central effects caused by these neurotoxins. These results suggest a more complex scenario whereby BoNTs also engage long-range trafficking mechanisms. However, the intracellular pathways underlying this process remain unclear. We sought to fill this gap by using primary motor neurons either in mass culture or differentiated in microfluidic devices to directly monitor the endocytosis and axonal transport of full length BoNT/A and BoNT/E and their recombinant binding fragments. We show that BoNT/A and BoNT/E are internalised by spinal cord motor neurons and undergo fast axonal retrograde transport. BoNT/A and BoNT/E are internalised in non-acidic axonal carriers that partially overlap with those containing TeNT, following a process that is largely independent of stimulated synaptic vesicle endo-exocytosis. Following intramuscular injection in vivo, BoNT/A and TeNT displayed central effects with a similar time course. Central actions paralleled the peripheral spastic paralysis for TeNT, but lagged behind the onset of flaccid paralysis for BoNT/A. These results suggest that the fast axonal retrograde transport compartment is composed of multifunctional trafficking organelles orchestrating the simultaneous transfer of diverse cargoes from nerve terminals to the soma, and represents a general gateway for the delivery of virulence factors and pathogens to the central nervous system.  相似文献   

9.
Chen S  Karalewitz AP  Barbieri JT 《Biochemistry》2012,51(18):3941-3947
The clostridial neurotoxins are among the most potent protein toxins for humans and are responsible for botulism, a flaccid paralysis elicited by the botulinum toxins (BoNT), and spastic paralysis elicited by tetanus toxin (TeNT). Seven serotypes of botulinum neurotoxins (A-G) and tetanus toxin showed different toxicities and cleave their substrates with different efficiencies. However, the molecular basis of their different catalytic activities with respect to their substrates is not clear. BoNT/B light chain (LC/B) and TeNT light chain (LC/T) cleave vesicle-associated membrane protein 2 (VAMP2) at the same scissile bond but possess different catalytic activities and substrate requirements, which make them the best candidates for studying the mechanisms of their different catalytic activities. The recognition of five major P sites of VAMP2 (P7, P6, P1, P1', and P2') and fine alignment of sites P2 and P3 and sites P2 and P4 by LC/B and LC/T, respectively, contributed to their substrate recognition and catalysis. Significantly, we found that the S1 pocket mutation LC/T(K(168)E) increased the rate of native VAMP2 cleavage so that it approached the rate of LC/B, which explains the molecular basis for the lower k(cat) that LC/T possesses for VAMP2 cleavage relative to that of LC/B. This analysis explains the molecular basis underlying the VAMP2 recognition and cleavage by LC/B and LC/T and provides insight that may extend the pharmacologic utility of these neurological reagents.  相似文献   

10.
BoNTs (botulinum neurotoxins) are both deadly neurotoxins and natural toxins that are widely used in protein therapies to treat numerous neurological disorders of dystonia and spinal spasticity. Understanding the mechanism of action and substrate specificity of BoNTs is a prerequisite to develop antitoxin and novel BoNT-derived protein therapy. To date, there is a lack of detailed information with regard to how BoNTs recognize and hydrolyse the substrate VAMP-2 (vesicle-associated membrane protein 2), even though it is known to be cleaved by four of the seven BoNT serotypes, B, D, F, G and TeNT (tetanus neurotoxin). In the present study we dissected the molecular mechanisms of VAMP-2 recognition by BoNT serotype F for the first time. The initial substrate recognition was mediated through sequential binding of VAMP-2 to the B1, B2 and B3 pockets in LC/F (light chain of BoNT serotype F), which directed VAMP-2 to the active site of LC/F and stabilized the active site substrate recognition, where the P2, P1' and P2' sites of VAMP-2 were specifically recognized by the S2, S1' and S2' pockets of LC/F to promote substrate hydrolysis. The understanding of the molecular mechanisms of LC/F substrate recognition provides insights into the development of antitoxins and engineering novel BoNTs to optimize current therapy and extend therapeutic interventions.  相似文献   

11.
Clostridial neurotoxins are comprised of botulinum (BoNT) and tetanus (TeNT), which share significant structural and functional similarity. Crystal structures of the binding domain of TeNT complexed with disialyllactose (DiSia) and a tri-peptide Tyr-Glu-Trp (YEW) have been determined to 2.3 and 2.2 A, respectively. Both DiSia and YEW bind in a shallow cleft region on the surface of the molecule in the beta-trefoil domain, interacting with a set of common residues, Asp1147, Asp1214, Asn1216, and Arg1226. DiSia and YEW binding at the same site in tetanus toxin provides a putative site that could be occupied either by a ganglioside moiety or a peptide. Soaking experiments with a mixture of YEW and DiSia show that YEW competes with DiSia, suggesting that YEW can be used to block ganglioside binding. A comparison with the TeNT binding domain in complex with small molecules, BoNT/A and /B, provides insight into the different modes of ganglioside binding.  相似文献   

12.
Tetanus and botulinum toxins bind and are internalized at the neuromuscular junction. Botulinum neurotoxins (BoNTs) enter the cytosol at the motor nerve terminal; tetanus neurotoxin (TeNT) proceeds retroaxonally inside the motor axon to reach the spinal cord inhibitory interneurons. Although the major target of BoNTs is the peripheral cholinergic terminals, CNS neurons are susceptible to intoxication as well. We investigated the route of entry and the proteolytic activity of BoNT/B and BoNT/F in cultured hippocampal neurons and astrocytes. We show that, differently from TeNT, which enters hippocampal neurons via the process of synaptic vesicle (SV) recycling, BoNTs are internalized and cleave the substrate synaptobrevin/VAMP2 via a process independent of synaptic activity. Labeling of living neurons with Texas Red-conjugated BoNTs and fluoresceinated dextran revealed that these toxins enter hippocampal neurons via endocytic processes not mediated by SV recycling. Botulinum toxins also exploit endocytosis to enter cultured astrocytes, where they partially cleave cellubrevin, a ubiquitous synaptobrevin/VAMP isoform. These results indicate that, in spite of their closely related protein structure, TeNT and BoNTs use different routes to penetrate hippocampal neurons. These findings bear important implications for the identification of the protein receptors of clostridial toxins.  相似文献   

13.
Mechanism of action of tetanus and botulinum neurotoxins   总被引:23,自引:0,他引:23  
The clostridial neurotoxins responsible for tetanus and botulism are metallo-proteases that enter nerve cells and block neurotransmitter release via zinc-dependent cleavage of protein components of the neuroexocytosis apparatus. Tetanus neurotoxin (TeNT) binds to the presynaptic membrane of the neuromuscular Junction and is internalized and transported retroaxonally to the spinal cord. Whilst TeNT causes spastic paralysis by acting on the spinal inhibitory interneurons, the seven serotypes of botullnum neurotoxins (BoNT) induce a flaccid paralysis because they intoxicate the neuromuscular junction. TeNT and BoNT serotypes B, D, F and G specifically cleave VAMP/synaptobrevin, a membrane protein of small synaptic vesicles, at different single peptide bonds. Proteins of the presynaptic membrane are specifically attacked by the other BoNTs: serotypes A and E cleave SNAP-25 at two different sites located within the carboxyl terminus, whereas the specific target of serotype C is syntaxin.  相似文献   

14.
Summary The light chain of tetanus neurotoxin (TeNTL chain) has been shown to be endowed with zine endopeptidase activity, selectively directed towards the Gln76-Phe77 bond of synaptobrevin, a vesicle-associated membrane protein critically involved in neuroexocytosis. In previous reports, truncations at the NH2- and COOH-terminus of synaptobrevin have shown that the sequence 39–88 of synaptobrevin is the minimum substrate of TeNT, suggesting either the requirement of a well-defined three-dimensional structure of synaptobrevin or a role in the mechanism of substrate hydrolysis for residues distal from the cleavage site. In this study, the addition of NH2- and COOH-terminal peptides of synaptobrevin, S 27–55 (S1) and S 82–93 (S2), to the synaptobrevin fragment S 56–81 allowed the cleavage of this latter peptide by TeNT to occur. This appears to result from an activation process mediated by the simultaneous binding of S1 and S2 with complementary sites present on TeNT as shown by surface plasmon resonance experiments. All these results favor an exosite-controlled hydrolysis of synaptobrevin by TeNT probably involving a conformational change of the toxin. This could accound for the high degree of substrate specificity of TeNT and, probably, botulinum neurotoxins.  相似文献   

15.
The botulinum neurotoxin serotype A light chain (BoNT/A LC) protease is the catalytic component responsible for the neuroparalysis that is characteristic of the disease state botulism. Three related peptide-like molecules (PLMs) were designed using previous information from co-crystal structures, synthesized, and assayed for in vitro inhibition against BoNT/A LC. Our results indicate these PLMS are competitive inhibitors of the BoNT/A LC protease and their Ki values are in the nM-range. A co-crystal structure for one of these inhibitors was determined and reveals that the PLM, in accord with the goals of our design strategy, simultaneously involves both ionic interactions via its P1 residue and hydrophobic contacts by means of an aromatic group in the P2′ position. The PLM adopts a helical conformation similar to previously determined co-crystal structures of PLMs, although there are also major differences to these other structures such as contacts with specific BoNT/A LC residues. Our structure further demonstrates the remarkable plasticity of the substrate binding cleft of the BoNT/A LC protease and provides a paradigm for iterative structure-based design and development of BoNT/A LC inhibitors.  相似文献   

16.
DNA fragments derived from the Clostridium botulinum type A neurotoxin (BoNT/A) gene (botA) were used in DNA-DNA hybridization reactions to derive a restriction map of the region of the C. botulinum type B strain Danish chromosome encoding botB. As the one probe encoded part of the BoNT/A heavy (H) chain and the other encoded part of the light (L) chain, the position and orientation of botB relative to this map were established. The temperature at which hybridization occurred indicated that a higher degree of DNA homology occurred between the two genes in the H-chain-encoding region. By using the derived restriction map data, a 2.1-kb BglII-XbaI fragment encoding the entire BoNT/B L chain and 108 amino acids of the H chain was cloned and characterized by nucleotide sequencing. A contiguous 1.8-kb XbaI fragment encoding a further 623 amino acids of the H chain was also cloned. The 3' end of the gene was obtained by cloning a 1.6-kb fragment amplified from genomic DNA by inverse polymerase chain reaction. Translation of the nucleotide sequence derived from all three clones demonstrated that BoNT/B was composed of 1,291 amino acids. Comparative alignment of its sequence with all currently characterized BoNTs (A, C, D, and E) and tetanus toxin (TeTx) showed that a wide variation in percent homology occurred dependent on which component of the dichain was compared. Thus, the L chain of BoNT/B exhibits the greatest degree of homology (50% identity) with the TeTx L chain, whereas its H chain is most homologous (48% identity) with the BoNT/A H chain. Overall, the six neurotoxins were shown to be composed of highly conserved amino acid domains interceded with amino acid tracts exhibiting little overall similarity. In total, 68 amino acids of an average of 442 are absolutely conserved between L chains and 110 of 845 amino acids are conserved between H chains. Conservation of Trp residues (one in the L chain and nine in the H chain) was particularly striking. The most divergent region corresponds to the extreme carboxy terminus of each toxin, which may reflect differences in specificity of binding to neurone acceptor sites.  相似文献   

17.
DNA fragments derived from the Clostridium botulinum type A neurotoxin (BoNT/A) gene (botA) were used in DNA-DNA hybridization reactions to derive a restriction map of the region of the C. botulinum type B strain Danish chromosome encoding botB. As the one probe encoded part of the BoNT/A heavy (H) chain and the other encoded part of the light (L) chain, the position and orientation of botB relative to this map were established. The temperature at which hybridization occurred indicated that a higher degree of DNA homology occurred between the two genes in the H-chain-encoding region. By using the derived restriction map data, a 2.1-kb BglII-XbaI fragment encoding the entire BoNT/B L chain and 108 amino acids of the H chain was cloned and characterized by nucleotide sequencing. A contiguous 1.8-kb XbaI fragment encoding a further 623 amino acids of the H chain was also cloned. The 3' end of the gene was obtained by cloning a 1.6-kb fragment amplified from genomic DNA by inverse polymerase chain reaction. Translation of the nucleotide sequence derived from all three clones demonstrated that BoNT/B was composed of 1,291 amino acids. Comparative alignment of its sequence with all currently characterized BoNTs (A, C, D, and E) and tetanus toxin (TeTx) showed that a wide variation in percent homology occurred dependent on which component of the dichain was compared. Thus, the L chain of BoNT/B exhibits the greatest degree of homology (50% identity) with the TeTx L chain, whereas its H chain is most homologous (48% identity) with the BoNT/A H chain. Overall, the six neurotoxins were shown to be composed of highly conserved amino acid domains interceded with amino acid tracts exhibiting little overall similarity. In total, 68 amino acids of an average of 442 are absolutely conserved between L chains and 110 of 845 amino acids are conserved between H chains. Conservation of Trp residues (one in the L chain and nine in the H chain) was particularly striking. The most divergent region corresponds to the extreme carboxy terminus of each toxin, which may reflect differences in specificity of binding to neurone acceptor sites.  相似文献   

18.
Arndt JW  Yu W  Bi F  Stevens RC 《Biochemistry》2005,44(28):9574-9580
The seven serotypes (A-G) of botulinum neurotoxins (BoNTs) block neurotransmitter release through their specific proteolysis of one of the three proteins of the soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE) complex. BoNTs have stringent substrate specificities that are unique for metalloprotease in that they require exceptionally long substrates (1). To understand the molecular reasons for the unique specificities of the BoNTs, we determined the crystal structure of the catalytic light chain (LC) of Clostridium botulinum neurotoxin type G (BoNT/G-LC) at 2.35 A resolution. The structure of BoNT/G-LC reveals a C-terminal beta-sheet that is critical for LC oligomerization and is unlike that seen in the other LC structures. Its structural comparison with thermolysin and the available pool of LC structures reveals important serotype differences that are likely to be involved in substrate recognition of the P1' residue. In addition, structural and sequence analyses have identified a potential exosite of BoNT/G-LC that recognizes a SNARE recognition motif of VAMP.  相似文献   

19.
The catalytic activity of the highly potent botulinum neurotoxins are confined to their N-terminal light chains ( approximately 50kDa). A full-length light chain for the type E neurotoxin with a C-terminal 6x His-tag, BoNT/E-LC, has been cloned in a pET-9c vector and over-expressed in BL21 (DE3) cells. BoNT/E-LC was purified to homogeneity by affinity chromatography on Ni-NTA agarose followed by exclusion chromatography using a Superdex-75 sizing column. The purified protein has very good solubility and can be stored stably at -20 degrees C; however, it seems to undergo auto-proteolysis when stored at temperature #10878;4-10 degrees C. BoNT/E-LC is active on its natural substrate, the synaptosomal associated 25kDa protein, SNAP-25, indicating that it retains a native-like conformation and therefore can be considered as a useful tool in studying the structure/function of the catalytic light chain. Recombinant BoNT/E-LC has been crystallized under five different conditions and at various pHs. Crystals diffract to better than 2.1A.  相似文献   

20.
Botulinum neurotoxins (BoNTs) are among the deadliest of bacterial toxins. BoNT serotype A and B in particular pose the most serious threat to humans because of their high potency and persistence. To date, there is no effective treatment for late post-exposure therapy of botulism patients. Here, we aim to develop single-domain variable heavy-chain (VHH) antibodies targeting the protease domains (also known as the light chain, LC) of BoNT/A and BoNT/B as antidotes for post-intoxication treatments. Using a combination of X-ray crystallography and biochemical assays, we investigated the structures and inhibition mechanisms of a dozen unique VHHs that recognize four and three non-overlapping epitopes on the LC of BoNT/A and BoNT/B, respectively. We show that the VHHs that inhibit the LC activity occupy the extended substrate-recognition exosites or the cleavage pocket of LC/A or LC/B and thus block substrate binding. Notably, we identified several VHHs that recognize highly conserved epitopes across BoNT/A or BoNT/B subtypes, suggesting that these VHHs exhibit broad subtype efficacy. Further, we identify two novel conformations of the full-length LC/A, that could aid future development of inhibitors against BoNT/A. Our studies lay the foundation for structure-based engineering of protein- or peptide-based BoNT inhibitors with enhanced potencies and cross-subtypes properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号