首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Macrophage apoptosis is an important component of the innate immune defense machinery (against pathogenic mycobacteria) responsible for limiting bacillary viability. However, little is known about the mechanism of how apoptosis is executed in mycobacteria-infected macrophages. Apoptosis signal-regulating kinase 1 (ASK1) was activated in Mycobacterium avium-treated macrophages and in turn activated p38 mitogen-activated protein (MAP) kinase. M. avium-induced macrophage cell death could be blocked in cells transfected with a catalytically inactive mutant of ASK1 or with dominant negative p38 MAP kinase arguing in favor of a central role of ASK1/p38 MAP kinase signaling in apoptosis of macrophages challenged with M. avium. ASK1/p38 MAP kinase signaling was linked to the activation of caspase 8. At the same time, M. avium triggered caspase 8 activation, and cell death occurred in a Fas-associated death domain (FADD)-dependent manner. The death signal induced upon caspase 8 activation linked to mitochondrial death signaling through the formation of truncated Bid (t-Bid), its translocation to the mitochondria and release of cytochrome c. Caspase 8 inhibitor (z-IETD-FMK) could block the release of cytochrome c as well as the activation of caspases 9 and 3. The final steps of apoptosis probably involved caspases 9 and 3, since inhibitors of both caspases could block cell death. Of foremost interest in the present study was the finding that ASK1/p38 signaling was essential for caspase 8 activation linked to M. avium-induced death signaling. This work provides the first elucidation of a signaling pathway in which ASK1 plays a central role in innate immunity.  相似文献   

2.
Recent evidence has implicated the protein phosphatase PP5 in a variety of signaling pathways. Whereas several proteins have been identified that interact with PP5 and regulate its activity, a possibility of its regulation by second messengers remains speculative. Activation of PP5 in vitro by polyunsaturated fatty acids (e.g. arachidonic acid) and fatty acyl-CoA esters (e.g. arachidonoyl-CoA) has been reported. We report here that PP5 is strongly inhibited by micromolar concentrations of a natural polyamine spermine. This inhibition was observed both in assays with a low molecular weight substrate p-nitrophenyl phosphate as well as phosphocasein and apoptosis signal-regulating kinase 1 (ASK1), thought to be a physiological substrate of PP5. Furthermore, a decrease in polyamine levels in COS-7 cells induced by alpha-difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase, led to accelerated dephosphorylation of oxidative stress-activated ASK1. This effect was suppressed by okadaic acid and by siRNA-mediated PP5 depletion, indicating that the effect of polyamine levels on ASK1 dephosphorylation was mediated by PP5. In line with the decreased ASK1 activation, polyamine depletion in COS-7 cells abrogated oxidative stress-induced activation of caspase-3, which executes ASK1-induced apoptosis, as well as caspase-3 activation induced by ASK1 overexpression, but had no effect on basal caspase-3 activity. These results implicate polyamines, emerging intracellular signaling molecules, as potential physiological regulators of PP5. Our findings also suggest a novel mechanism of the anti-apoptotic action of a decrease in polyamine levels via de-inhibition of PP5 and accelerated dephosphorylation and deactivation of ASK1.  相似文献   

3.
Engagement of membrane immunoglobulin (mIg) on WEHI-231 mouse B lymphoma cells results in growth arrest at the G1 phase of the cell cycle, followed by a reduction of mitochondrial membrane potential (ΔΨm) and apoptosis. WEHI-231 cells resemble immature B cells in terms of the cell surface phenotype and sensitivity to mIg engagement. However, the molecular mechanisms underlying mIg-induced loss of ΔΨm and apoptosis have not yet been established. In this study, we show that apoptosis signal-regulating kinase 1 (ASK1)-c-Jun N-terminal kinase 1 (JNK1) signaling pathway participates in mIg-induced apoptosis through the generation of reactive oxygen species (ROS). Stimulation of WEHI-231 cells with anti-IgM induces phosphorylation and subsequent activation of ASK1, leading to JNK activation. Anti-IgM stimulation immediately (5 min) induces hydrogen peroxide (H2O2) production with a substantial increase during later time points (36-48 h), accompanied by loss of ΔΨm and an increase in cells with sub-G1 DNA content. The anti-IgM-induced late-phase H2O2 production, loss of ΔΨm, and increase in the sub-G1 fraction were all reduced substantially in WEHI-231 cells overexpressing a dominant-negative form of ASK1, compared with control vector alone, but enhanced substantially in cells overexpressing a constitutively active form of ASK1. These mIg-mediated events were also partially abrogated by ROS scavenger N-acetyl-l-cysteine (NAC). Taken together, these results suggest that mIg engagement induces H2O2 production leading to activation of ASK1-JNK1 pathway, creating a feedback amplification loop of ROS-ASK/JNK that leads to loss of ΔΨm and finally apoptosis.  相似文献   

4.
Apoptosis signal-regulating kinase (ASK) 1 was recently identified as a mitogen-activated protein (MAP) kinase kinase kinase which activates the c-Jun N-terminal kinase (JNK) and p38 MAP kinase pathways and is required for tumor necrosis factor (TNF)-alpha-induced apoptosis; however, the mechanism regulating ASK1 activity is unknown. Through genetic screening for ASK1-binding proteins, thioredoxin (Trx), a reduction/oxidation (redox)-regulatory protein thought to have anti-apoptotic effects, was identified as an interacting partner of ASK1. Trx associated with the N-terminal portion of ASK1 in vitro and in vivo. Expression of Trx inhibited ASK1 kinase activity and the subsequent ASK1-dependent apoptosis. Treatment of cells with N-acetyl-L-cysteine also inhibited serum withdrawal-, TNF-alpha- and hydrogen peroxide-induced activation of ASK1 as well as apoptosis. The interaction between Trx and ASK1 was found to be highly dependent on the redox status of Trx. Moreover, inhibition of Trx resulted in activation of endogenous ASK1 activity, suggesting that Trx is a physiological inhibitor of ASK1. The evidence that Trx is a negative regulator of ASK1 suggests possible mechanisms for redox regulation of the apoptosis signal transduction pathway as well as the effects of antioxidants against cytokine- and stress-induced apoptosis.  相似文献   

5.
The type 1 insulin-like growth factor receptor (IGF-IR) is a receptor-tyrosine kinase that plays a critical role in signaling cell survival and proliferation. IGF-IR binding to its ligand, insulin-like growth factor (IGF-I) activates phosphoinositide 3-kinase (PI3K), promotes cell proliferation by activating the mitogen-activated protein kinase (MAPK) cascade, and blocks apoptosis by inducing the phosphorylation and inhibition of proapoptotic proteins such as BAD. Apoptosis signal-regulating kinase 1 (ASK1) is a MAP kinase kinase kinase (MAPKKK) that is required for c-Jun N-terminal kinase (JNK) and p38 activation in response to Fas and tumor necrosis factor (TNF) receptor stimulation, and for oxidative stress- and TNFalpha-induced apoptosis. The results presented here indicate that ASK1 forms a complex with the IGF-IR and becomes phosphorylated on tyrosine residue(s) in a manner dependent on IGF-IR activity. IGF-IR signaling inhibited ASK1 irrespective of TNFalpha-induced ASK1 activation and resulted in decreased ASK1-dependent JNK1 stimulation. Signaling through IGF-IR rescued cells from ASK1-induced apoptotic cell death in a manner independent of PI3K activity. These results indicate that IGF-IR signaling suppresses the ASK-1-mediated stimulation of JNK/p38 and the induction of programmed cell death. The simultaneous activation of MAP kinases and the inhibition of the stress-activated arm of the cascade by IGF-IR may constitute a potent proliferative signaling system and is possibly a mechanism by which IGF-I can stimulate growth and inhibit cell death in a wide variety of cell types and biological settings.  相似文献   

6.
The stress-activated protein kinases (SAPKs, also called c-Jun NH(2)-terminal kinases) and the p38s, two mitogen-activated protein kinase (MAPK) subgroups activated by cytokines of the tumor necrosis factor (TNF) family, are pivotal to the de novo gene expression elicited as part of the inflammatory response. Apoptosis signal-regulating kinase 1 (ASK1) is a MAPK kinase kinase (MAP3K) that activates both the SAPKs and p38s in vivo. Here we show that TNF receptor (TNFR) associated factor 2 (TRAF2), an adapter protein that couples TNFRs to the SAPKs and p38s, can activate ASK1 in vivo and can interact in vivo with the amino- and carboxyl-terminal noncatalytic domains of the ASK1 polypeptide. Expression of the amino-terminal noncatalytic domain of ASK1 can inhibit TNF and TRAF2 activation of SAPK. TNF can stimulate the production of reactive oxygen species (ROS), and the redox-sensing enzyme thioredoxin (Trx) is an endogenous inhibitor of ASK1. We also show that expression of TRAF2 fosters the production of ROS in transfected cells. We demonstrate that Trx significantly inhibits TRAF2 activation of SAPK and blocks the ASK1-TRAF2 interaction in a reaction reversed by oxidants. Finally, the mechanism of ASK1 activation involves, in part, homo-oligomerization. We show that expression of ASK1 with TRAF2 enhances in vivo ASK1 homo-oligomerization in a manner dependent, in part, upon the TRAF2 RING effector domain and the generation of ROS. Thus, activation of ASK1 by TNF requires the ROS-mediated dissociation of Trx possibly followed by the binding of TRAF2 and consequent ASK1 homo-oligomerization.  相似文献   

7.
Kim SY  Kim TJ  Lee KY 《FEBS letters》2008,582(13):1913-1918
We report a novel function of peroxiredoxin-1 (Prx-1) in the ASK1-mediated signaling pathway. Prx-1 interacts with ASK1 via the thioredoxin-binding domain of ASK1 and this interaction is highly inducible by H2O2. However, catalytic mutants of Prx1, C52A, C173A, and C52A/C173A, could not undergo H2O2 inducible interactions, indicating that the redox-sensitive catalytic activity of Prx-1 is required for the interaction with ASK1. Prx-1 overexpression inhibited the activation of ASK1, and resulted in the inhibition of downstream signaling cascades such as the MKK3/6 and p38 pathway. In Prx-1 knockdown cells, ASK1, p38, and JNK were quickly activated, leading to apoptosis in response to H2O2. These findings suggest a negative role of Prx-1 in ASK1-induced apoptosis.  相似文献   

8.
Cells and organisms face anoxia in a wide variety of contexts, including ischemia and hibernation. Cells respond to anoxic conditions through multiple signaling pathways. We report that NSY-1, the Caenorhabditis elegans ortholog of mammalian apoptosis signal-regulating kinase (ASK) family of MAP kinase (MAPK) kinase kinases (MAP3Ks), regulates viability of animals in anoxia. Loss-of-function mutations of nsy-1 increased survival under anoxic conditions, and increased survival was also observed in animals with mutations in tir-1 and the MAPK kinase (MAP2K) sek-1, which are upstream and downstream factors of NSY-1, respectively. Consistent with these findings, anoxia was found to activate the p38 MAPK ortholog PMK-1, and this was suppressed in nsy-1 and tir-1 mutant animals. Furthermore, double-mutant analysis showed that the insulin-signaling pathway, which also regulates viability in anoxia, functioned in parallel to NSY-1. These results suggest that the TIR-1-NSY-1-SEK-1-PMK-1 pathway plays important roles in the reponse to anoxia in C. elegans.  相似文献   

9.
Cells differentiate in response to various extracellular stimuli. This cellular response requires intracellular signaling pathways. The mitogen-activated protein (MAP) kinase cascade is a core signal transduction pathway that determines the fate of many kinds of cell. MAP kinase kinase kinase activates MAP kinase kinase, which in turn activates MAP kinase. Apoptosis signal-regulating kinase (ASK1) was identified as a MAP kinase kinase kinase involved in the stress-induced apoptosis-signaling cascade that activates the SEK1-JNK and MKK3/MKK6-p38 MAP kinase cascades. Expression of the constitutively active form of ASK1 (ASK1-DeltaN) in keratinocytes induced significant morphological changes and differentiation markers, transglutaminase-1, loricrin, and involucrin. A transient increase in p21(Cip1/WAF1) reduced DNA synthesis, and cell cycle analysis verified the differentiation. p38 MAP kinase inhibitors, SB202190 and SB203580, abolished the induction of differentiation markers, transglutaminase-1, loricrin, and involucrin. In turn, the induction of differentiation with ceramide in keratinocytes caused an increase in ASK1 expression and activity. Furthermore, normal human skin expresses ASK1 protein in the upper epidermis, implicating ASK1 in in vivo keratinocyte differentiation. We propose that the ASK1-p38 MAP kinase cascade is a new intracellular regulator of keratinocyte differentiation.  相似文献   

10.
Apoptosis signal-regulating kinase (ASK) 1 is a mitogen-activated protein kinase kinase kinase (MAP3K) in the c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase pathways that play multiple important roles in cytokine and stress responses. Here we show that ASK2, a highly related serine/threonine kinase to ASK1, also functions as a MAP3K only in a heteromeric complex with ASK1. We found that endogenous ASK2 was constitutively degraded in ASK1-deficient cells, suggesting that ASK1 is required for the stability of ASK2. ASK2 in a heteromeric complex with a kinase-negative mutant of ASK1 (ASK1-KN) effectively activated MAP2K and was more competent to respond to oxidative stress than ASK2 alone. Knockdown of ASK2 revealed that ASK2 was required for oxidative stress-induced JNK activation. These results suggest that ASK2 forms a functional MAP3K complex with ASK1, in which ASK1 supports the stability and the active configuration of ASK2. Moreover, ASK2 was found to activate ASK1 by direct phosphorylation, suggesting that ASK1 and ASK2 in a heteromeric complex facilitate their activities to each other by distinct mechanisms. Such a formation of functional heteromeric complex between different MAP3Ks may be advantageous for cells to cope with a wide variety of stimuli by fine regulation of cellular responses.  相似文献   

11.
Apoptosis signal-regulating kinase 1 (ASK1) was recently discovered as a typical member of the mitogen-activated protein (MAP) kinase kinase kinase family, which induces apoptosis by activation of c-Jun-N-terminal kinase/p38 MAP kinase pathways. In normal cells ASK1 is directly inhibited by thioredoxin (Trx), a 12-kDa protein ubiquitously expressed in all living cells, which has a variety of biological functions related to cell proliferation and apoptosis. Here we found that purified Trx is sensitive to S-nitrosylation. Stimulation of HEK-293 cells with S-nitrosoglutathione (GSNO) for 2, 4, 8, and 16h also caused Trx S-nitrosylation, which showed straight correlation with ASK1 activation based on Western blot detection of the enzyme, immunoprecipitation assay, and measurement of its catalytic activity. These results suggest that S-nitrosylation of Trx induces ASK1 activation. Treatment of cells with N-acetyl-cysteine for 2h after 8h of pretreatment with GSNO caused an increase in glutathione and nullified ASK1 activation.  相似文献   

12.
Sumbayev VV 《FEBS letters》2008,582(2):319-326
Toll-like receptor 4 (TLR4) is required for recognition of lipopolysaccharide (LPS) of Gram-negative bacteria and induction of the innate immune response to them. Nevertheless, the involvement of some crucial pathways in TLR4 signalling is poorly understood. Here, we report that LPS-induced TLR4 signalling triggers cross talk of HIF-1alpha and ASK1 in THP-1 human myeloid monocytic leukaemia cells. Both pathways are activated via redox-dependent mechanism associated with tyrosine kinase/phospholipase C-1gamma-mediated activation of protein kinase C alpha/beta, which are known to activate NADPH oxidase and the production of reactive oxygen species that activate both HIF-1alpha and ASK1. ASK1 contributes to the stabilisation of HIF-1alpha, most likely via activation of p38 MAP kinase.  相似文献   

13.
Apoptosis signal-regulating kinase 1 (ASK1) is a ubiquitously expressed mitogen-activated protein kinase kinase kinase that activates the c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase signaling cascades. We report here that expression of constitutively active ASK1 (ASK1DeltaN) induces neurite outgrowth in the rat pheochromocytoma cell line PC12. We found that p38 and to a lesser extent JNK, but not ERK, were activated by the expression of ASK1DeltaN in PC12 cells. ASK1DeltaN-induced neurite outgrowth was strongly inhibited by treatment with the p38 inhibitor SB203580 but not with the MEK inhibitors, suggesting that activation of p38, rather than of ERK, is required for the neurite-inducing activity of ASK1 in PC12 cells. We also observed that ASK1DeltaN induced expression of several neuron-specific proteins and phosphorylation of neurofilament proteins, confirming that PC12 cells differentiated into mature neuronal cells by ASK1. Moreover, ASK1DeltaN-expressing PC12 cells survived in serum-starved condition. ASK1 thus appears to mediate signals leading to both differentiation and survival of PC12 cells. Together with previous reports indicating that ASK1 functions as a pro-apoptotic signaling intermediate, these results suggest that ASK1 has a broad range of biological activities depending on cell types and/or cellular context.  相似文献   

14.
Basu A  Akkaraju GR 《Biochemistry》1999,38(14):4245-4251
Activation of caspases is critical for the induction of apoptosis. We have shown previously that cell death mediated by the anticancer agent cis-diamminedichloroplatinum(II) (cDDP) is influenced by the protein kinase C (PKC) signal transduction pathway. In the present study, we have examined whether regulation of cDDP sensitivity by PKC involves caspase activation. cDDP caused a time- and concentration-dependent increase in the generation of the catalytic fragment (CF) of novel (n) PKCdelta, nPKCepsilon, and atypical (a) PKCzeta but had little effect on conventional (c) PKCalpha. Cleavage of PKC isozymes was associated with the activation of caspase-3 and -7 but not of caspase-2. PKC activators enhanced cDDP-induced cleavage of these isozymes and activation of caspase-3. Rottlerin, an inhibitor of nPKCdelta, blocked caspase-3 activation and proteolytic cleavage of nPKCdelta by cDDP. Bryostatin 1, which elicits a biphasic concentration-response in potentiating cell death by cDDP, exhibited a similar biphasic effect on cDDP-induced activation of caspase-3 and caspase-7 and the cleavage of poly(ADP-ribose) polymerase; while 1 nM bryostatin 1 induced maximum activation of these caspases, 1 microM bryostatin 1 had little effect. z-DEVD-fmk, an inhibitor of caspase-3-like proteases, prevented cDDP-induced cell death. Bryostatin 1 also induced a similar biphasic down-regulation of nPKCdelta but not of cPKCalpha or nPKCepsilon. These results suggest that nPKCdelta not only acts downstream of caspases but also regulates the activation of caspases and that the biphasic concentration response of bryostatin 1 on cDDP-induced cell death could be explained by its distinct effect on nPKCdelta down-regulation and caspase activation.  相似文献   

15.
The mammalian mitogen-activated protein (MAP) kinase kinase kinase apoptosis signal-regulating kinase 1 (ASK1) is a pivotal component in cytokine- and stress-induced apoptosis. It also regulates cell differentiation and survival through p38 MAP kinase activation. Here we show that Ca2+ signalling regulates the ASK1–p38 MAP kinase cascade. Ca2+ influx evoked by membrane depolarization in primary neurons and synaptosomes induced activation of p38, which was impaired in those derived from ASK1-deficient mice. Ca2+/calmodulin-dependent protein kinase type II (CaMKII) activated ASK1 by phosphorylation. Moreover, p38 activation induced by the expression of constitutively active CaMKII required endogenous ASK1. Thus, ASK1 is a critical intermediate of Ca2+ signalling between CaMKII and p38 MAP kinase.  相似文献   

16.
TNF-related apoptosis-inducing ligand (TRAIL) is a potential chemotherapeutic agent with high selectivity for malignant cells. Many tumors, however, are resistant to TRAIL cytotoxicity. Although cellular inhibitors of apoptosis 1 and 2 (cIAP-1 and -2) are often over-expressed in cancers, their role in mediating TRAIL resistance remains unclear. Here, we demonstrate that TRAIL-induced apoptosis of liver cancer cells is associated with degradation of cIAP-1 and X-linked IAP (XIAP), whereas cIAP-2 remains unchanged. Lower concentrations of TRAIL causing minimal or no apoptosis do not alter cIAP-1 or XIAP protein levels. Silencing of cIAP-1 expression, but not XIAP or cIAP-2, as well as co-treatment with a second mitochondrial activator of caspases (SMAC) mimetic (which results in rapid depletion of cIAP-1), sensitizes the cells to TRAIL. TRAIL-induced loss of cIAP-1 and XIAP requires caspase activity. In particular, caspase 8 knockdown stabilizes both cIAP-1 and XIAP, while caspase 9 knockdown prevents XIAP, but not cIAP-1 degradation. Cell-free experiments confirmed cIAP-1 is a substrate for caspase 8, with likely multiple cleavage sites. These results suggest that TRAIL-mediated apoptosis proceeds through caspase 8-dependent degradation of cIAP-1. Targeted depletion of cIAP-1 by SMAC mimetics in conjunction with TRAIL may be beneficial for the treatment of human hepatobiliary malignancies.  相似文献   

17.
ASK1 (apoptosis signal-regulating kinase 1), a MKKK (mitogen-activated protein kinase kinase kinase), is activated in response to cytotoxic stresses, such as H2O2 and TNFalpha (tumour necrosis factor alpha). ASK1 induction initiates a signalling cascade leading to apoptosis. After exposure of cells to H2O2, ASK1 is transiently activated by autophosphorylation at Thr845. The protein then associates with PP5 (protein serine/threonine phosphatase 5), which inactivates ASK1 by dephosphorylation of Thr845. Although this feedback regulation mechanism has been elucidated, it remains unclear how ASK1 is maintained in the dephosphorylated state under non-stressed conditions. In the present study, we have examined the possible role of PP2Cepsilon (protein phosphatase 2Cepsilon), a member of PP2C family, in the regulation of ASK1 signalling. Following expression in HEK-293 cells (human embryonic kidney cells), wild-type PP2Cepsilon inhibited ASK1-induced activation of an AP-1 (activator protein 1) reporter gene. Conversely, a dominant-negative PP2Cepsilon mutant enhanced AP-1 activity. Exogenous PP2Cepsilon associated with exogenous ASK1 in HEK-293 cells under non-stressed conditions, inactivating ASK1 by decreasing Thr845 phosphorylation. The association of endogenous PP2Cepsilon and ASK1 was also observed in mouse brain extracts. PP2Cepsilon directly dephosphorylated ASK1 at Thr845 in vitro. In contrast with PP5, PP2Cepsilon transiently dissociated from ASK1 within cells upon H2O2 treatment. These results suggest that PP2Cepsilon maintains ASK1 in an inactive state by dephosphorylation in quiescent cells, supporting the possibility that PP2Cepsilon and PP5 play different roles in H2O2-induced regulation of ASK1 activity.  相似文献   

18.
Apoptosis signal-regulating kinase 1 (ASK1) is a mitogen-activated protein kinase kinase kinase family member that plays a central role in cytokine- and stress-induced apoptosis by activating c-Jun N-terminal kinase and p38 signaling cascades. ASK1-induced apoptotic activity is up-regulated by two cellular factors, Daxx and TRAF2, through direct protein-protein interactions. Daxx and TRAF2 are death receptor-associated proteins in Fas and tumor necrosis factor-alpha pathways, respectively. Recent studies suggest that calcium signaling may regulate ASK1 pathway. Here we report that human D53L1, a member of the tumor protein D52 family involved in cell proliferation and calcium signaling, up-regulates the ASK1-induced apoptosis. The human D53L1 physically interacts with the C-terminal regulatory domain of ASK1 and promotes ASK1-induced apoptotic activity by activating caspase signaling in mammalian cells. In luciferase reporter assays, hD53L1 activates c-Jun N-terminal kinase-mediated transactivation in the presence of ASK1. Expression of hD53L1 enhances autophosphorylation and kinase activity of ASK1 but has no effect on ASK1 oligomerization that is necessary for kinase activity and on binding of ASK1 to MKK6, a downstream factor of ASK1. Taken together, these results suggest that activation of ASK1 by hD53L1 may provide a novel mechanism for ASK1 regulation.  相似文献   

19.
Apoptosis signal-regulating kinase 1 (ASK1) is a mitogen-activated protein kinase kinase kinase (MAPKKK) that is regulated under conditions of cellular stress. ASK1 phosphorylates c-Jun N-terminal kinase (JNK) and elicits an apoptotic response. ASK1 activity is regulated at multiple levels, 1 of which is through inhibition by cytosolic chaperones of the heat shock protein (Hsp) 70 family. Among the proteins that determine Hsp70 function, CHIP (C-terminus of Hsp70-interacting protein) is a cochaperone and ubiquitin ligase that interacts with Hsp70 through an amino-terminal tetratricopeptide repeat (TPR) domain. Prominent among the cellular functions mediated by CHIP is protection against physiologic stress. Because ASK1 is known to contain a TPR-acceptor site, we examined the role of CHIP in regulating ASK1 function. CHIP interacted with ASK1 in a TPR-dependent fashion and induced ubiquitylation and proteasome-dependent degradation of ASK1. Targeting of ASK1 by CHIP inhibited JNK activation in response to oxidative challenge and reduced ASK1-dependent apoptosis, whereas short interfering RNA (siRNA)-dependent depletion of CHIP enhanced JNK activation. Consistent with its ability to reduce cytoplasmic ASK1 levels, CHIP triggered the translocation of ASK1 partner protein death-associated protein (Daxx) into the nucleus, where it is known to activate an antiapoptotic response. These results indicate that CHIP regulates ASK1 activity by inducing its ubiquitylation and degradation, which, together with its effects on Daxx localization, provides a mechanism for the antiapoptotic effects of CHIP observed in the face of cellular and physiologic stress.  相似文献   

20.
Lee YS  Jang MS  Lee JS  Choi EJ  Kim E 《EMBO reports》2005,6(10):949-955
This study examined whether small ubiquitin-related modifier-1 (SUMO-1) regulates apoptosis signal-regulating kinase 1 (ASK 1). ASK 1 interacted with SUMO-1 in vitro as well as in BOSC 23 cells. Endogenous ASK 1-SUMO-1 interaction was disrupted following H(2)O(2) signal. SUMO-1 overexpression suppressed the self-oligomerization, kinase activity and apoptotic potential of ASK 1, whereas SUMO-1 depletion potentiated such activities. SUMO-1(Delta C 6), a sumoylation-incompetent mutant lacking carboxy-terminal six amino acids, suppressed AS 1 activation, implying that the suppressive effect of SUMO-1 on ASK 1 is independent of sumoylation. ASK 1(3M), an ASK 1 mutant in which all three lysines in the psiKXE motif were substituted with alanines, still retained the kinase activity and activated the Jun amino-terminal kinase pathway. However, SUMO-1 failed to interact with ASK 1(3M) and to suppress ASK 1(3M) activation, indicating that the three lysines are important for regulation by SUMO-1. This study shows that SUMO-1 exerts a negative regulatory effect on ASK 1 activation through physical interaction and not through covalent modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号