首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A modified algorithm for the improvement of composite interval mapping   总被引:27,自引:0,他引:27       下载免费PDF全文
Li H  Ye G  Wang J 《Genetics》2007,175(1):361-374
Composite interval mapping (CIM) is the most commonly used method for mapping quantitative trait loci (QTL) with populations derived from biparental crosses. However, the algorithm implemented in the popular QTL Cartographer software may not completely ensure all its advantageous properties. In addition, different background marker selection methods may give very different mapping results, and the nature of the preferred method is not clear. A modified algorithm called inclusive composite interval mapping (ICIM) is proposed in this article. In ICIM, marker selection is conducted only once through stepwise regression by considering all marker information simultaneously, and the phenotypic values are then adjusted by all markers retained in the regression equation except the two markers flanking the current mapping interval. The adjusted phenotypic values are finally used in interval mapping (IM). The modified algorithm has a simpler form than that used in CIM, but a faster convergence speed. ICIM retains all advantages of CIM over IM and avoids the possible increase of sampling variance and the complicated background marker selection process in CIM. Extensive simulations using two genomes and various genetic models indicated that ICIM has increased detection power, a reduced false detection rate, and less biased estimates of QTL effects.  相似文献   

2.
Selective DNA pooling is an efficient method to identify chromosomal regions that harbor quantitative trait loci (QTL) by comparing marker allele frequencies in pooled DNA from phenotypically extreme individuals. Currently used single marker analysis methods can detect linkage of markers to a QTL but do not provide separate estimates of QTL position and effect, nor do they utilize the joint information from multiple markers. In this study, two interval mapping methods for analysis of selective DNA pooling data were developed and evaluated. One was based on least squares regression (LS-pool) and the other on approximate maximum likelihood (ML-pool). Both methods simultaneously utilize information from multiple markers and multiple families and can be applied to different family structures (half-sib, F2 cross and backcross). The results from these two interval mapping methods were compared with results from single marker analysis by simulation. The results indicate that both LS-pool and ML-pool provided greater power to detect the QTL than single marker analysis. They also provide separate estimates of QTL location and effect. With large family sizes, both LS-pool and ML-pool provided similar power and estimates of QTL location and effect as selective genotyping. With small family sizes, however, the LS-pool method resulted in severely biased estimates of QTL location for distal QTL but this bias was reduced with the ML-pool.  相似文献   

3.
Wang S  Huang S  Zheng L  Zhao H 《Genetics》2006,172(4):2293-2308
The identification of genes that affect quantitative traits has been of great interest to geneticists for many decades, and many statistical methods have been developed to map quantitative trait loci (QTL). Most QTL mapping studies in experimental organisms use purely inbred lines, where the two homologous chromosomes in each individual are identical. As a result, many existing QTL mapping methods developed for experimental organisms are applicable only to genetic crosses between inbred lines. However, it may be difficult to obtain inbred lines for certain organisms, e.g., mosquitoes. Although statistical methods for QTL mapping in outbred populations, e.g., humans, can be applied for such crosses, these methods may not fully take advantage of the uniqueness of these crosses. For example, we can generally assume that the two grandparental lines are homozygous at the QTL of interest, but such information is not be utilized through methods developed for outbred populations. In addition, mating types and phases can be relatively easy to establish through the analysis of adjacent markers due to the large number of offspring that can be collected, substantially simplifying the computational need. In this article, motivated by a mosquito intercross experiment involving two selected lines that are not genetically homozygous across the genome, we develop statistical methods for QTL mapping for genetic crosses involving noninbred lines. In our procedure, we first infer parental mating types and use likelihood-based methods to infer phases in each parent on the basis of genotypes of offspring and one parent. A hidden Markov model is then employed to estimate the number of high-risk alleles at marker positions and putative QTL positions between markers in each offspring, and QTL mapping is finally conducted through the inferred QTL configuration across all offspring in all crosses. The performance of the proposed methods is assessed through simulation studies, and the usefulness of this method is demonstrated through its application to a mosquito data set.  相似文献   

4.
Mayer M 《Heredity》2005,94(6):599-605
Regression interval mapping and multiple interval mapping are compared with regard to mapping linked quantitative trait loci (QTL) in inbred-line cross experiments. For that purpose, a simulation study was performed using genetic models with two linked QTL. Data were simulated for F(2) populations of different sizes and with all QTL and marker alleles fixed for alternative alleles in the parental lines. The criteria for comparison are power of QTL identification and the accuracy of the QTL position and effect estimates. Further, the estimates of the relative QTL variance are assessed. There are distinct differences in the QTL position estimates between the two methods. Multiple interval mapping tends to be more powerful as compared to regression interval mapping. Multiple interval mapping further leads to more accurate QTL position and QTL effect estimates. The superiority increased with wider marker intervals and larger population sizes. If QTL are in repulsion, the differences between the two methods are very pronounced. For both methods, the reduction of the marker interval size from 10 to 5 cM increases power and greatly improves QTL parameter estimates. This contrasts with findings in the literature for single QTL scenarios, where a marker density of 10 cM is generally considered as sufficient. The use of standard (asymptotic) statistical theory for the computation of the standard errors of the QTL position and effect estimates proves to give much too optimistic standard errors for regression interval mapping as well as for multiple interval mapping.  相似文献   

5.
A. Darvasi  M. Soller 《Genetics》1995,141(3):1199-1207
An advanced intercrossed line (AIL) is an experimental population that can provide more accurate estimates of quantitative trait loci (QTL) map location than conventional mapping populations. An AIL is produced by randomly and sequentially intercrossing a population that initially originated from a cross between two inbred lines or some variant thereof. This provides increasing probability of recombination between any two loci. Consequently, the genetic length of the entire genome is stretched, providing increased mapping resolution. In this way, for example, with the same population size and QTL effect, a 95% confidence interval of QTL map location of 20 cM in the F(2) is reduced fivefold after eight additional random mating generations (F(10)). Simulation results showed that to obtain the anticipated reduction in the confidence interval, breeding population size of the AIL in all generations should comprise an effective number of >/=100 individuals. It is proposed that AILs derived from crosses between known inbred lines may be a useful resource for fine genetic mapping.  相似文献   

6.
Linkage analysis of quantitative trait loci in multiple line crosses   总被引:8,自引:0,他引:8  
Yi N  Xu S 《Genetica》2002,114(3):217-230
Simple line crosses, for example, backcross and F2, are commonly used in mapping quantitative trait loci (QTL). However, these simple crosses are rarely used alone in commercial plant breeding; rather, crosses involving multiple inbred lines or several simple crosses but connected by shared inbred lines may be common in plant breeding. Mapping QTL using crosses of multiple lines is more relevant to plant breeding. Unfortunately, current statistical methods and computer programs of QTL mapping are all designed for simple line crosses or multiple line crosses but under a regular mating system. It is not straightforward to extend the existing methods to handle multiple line crosses under irregular and complicated mating designs. The major hurdle comes from irregular inbreeding, multiple generations, and multiple alleles. In this study, we develop a Bayesian method implemented via the Markov chain Monte Carlo (MCMC) algorithm for mapping QTL using complicated multiple line crosses. With the MCMC algorithm, we are able to draw a complete path of the gene flow from founder alleles to their descendents via a recursive process. This has greatly simplified the problem caused by irregular mating and inbreeding in the mapping population. Adopting the reversible jump MCMC algorithm, we are able to simultaneously search for multiple QTL along the genome. We can even infer the posterior distribution of the number of QTL, one of the most important parameters in QTL study. Application of the new MCMC based QTL mapping procedure is demonstrated using two different mating designs. Design I involves two inbred lines and their derived F1, F2, and BC populations. Design II is a half-diallel cross involving three inbred lines. The two designs appear different, but can be handled with the same robust computer program.  相似文献   

7.
Interval Mapping of Multiple Quantitative Trait Loci   总被引:60,自引:7,他引:53       下载免费PDF全文
R. C. Jansen 《Genetics》1993,135(1):205-211
The interval mapping method is widely used for the mapping of quantitative trait loci (QTLs) in segregating generations derived from crosses between inbred lines. The efficiency of detecting and the accuracy of mapping multiple QTLs by using genetic markers are much increased by employing multiple QTL models instead of the single QTL models (and no QTL models) used in interval mapping. However, the computational work involved with multiple QTL models is considerable when the number of QTLs is large. In this paper it is proposed to combine multiple linear regression methods with conventional interval mapping. This is achieved by fitting one QTL at a time in a given interval and simultaneously using (part of) the markers as cofactors to eliminate the effects of additional QTLs. It is shown that the proposed method combines the easy computation of the single QTL interval mapping method with much of the efficiency and accuracy of multiple QTL models.  相似文献   

8.
Multiparent crosses of recombinant inbred lines provide opportunity to map markers and quantitative trait loci (QTL) with much greater resolution than is possible in biparental crosses. Realizing the full potential of these crosses requires computational tools capable of handling the increased statistical complexity of the analyses. R/mpMap provides a flexible and extensible environment, which interfaces easily with other packages to satisfy this demand. Functions in the package encompass simulation, marker map construction, haplotype reconstruction and QTL mapping. We demonstrate the easy-to-use features of mpMap through a simulated data example. AVAILABILITY: www.cmis.csiro.au/mpMap.  相似文献   

9.
Summary To maximize parameter estimation efficiency and statistical power and to estimate epistasis, the parameters of multiple quantitative trait loci (QTLs) must be simultaneously estimated. If multiple QTL affect a trait, then estimates of means of QTL genotypes from individual locus models are statistically biased. In this paper, I describe methods for estimating means of QTL genotypes and recombination frequencies between marker and quantitative trait loci using multilocus backcross, doubled haploid, recombinant inbred, and testcross progeny models. Expected values of marker genotype means were defined using no double or multiple crossover frequencies and flanking markers for linked and unlinked quantitative trait loci. The expected values for a particular model comprise a system of nonlinear equations that can be solved using an interative algorithm, e.g., the Gauss-Newton algorithm. The solutions are maximum likelihood estimates when the errors are normally distributed. A linear model for estimating the parameters of unlinked quantitative trait loci was found by transforming the nonlinear model. Recombination frequency estimators were defined using this linear model. Certain means of linked QTLs are less efficiently estimated than means of unlinked QTLs.  相似文献   

10.
Shifman S  Darvasi A 《Genetics》2005,171(2):849-854
The shared ancestry of mouse inbred strains, together with the availability of sequence and phenotype information, is a resource that can be used to map quantitative trait loci (QTL). The difficulty in using only sequence information lies in the fact that in most instances the allelic state of the QTL cannot be unambiguously determined in a given strain. To overcome this difficulty, the performance of multiple crosses between various inbred strains has been proposed. Here we suggest and evaluate a general approach, which consists of crossing the two strains used initially to map the QTL and any new strain. We have termed these crosses "yin-yang," because they are complementary in nature as shown by the fact that the QTL will necessarily segregate in only one of the crosses. We used the publicly available SNP database of chromosome 16 to evaluate the mapping resolution achievable through this approach. Although on average the improvement of mapping resolution using only four inbred strains was relatively small (i.e., reduction of the QTL-containing interval by half at most), we found a great degree of variability among different regions of chromosome 16 with regard to mapping resolution. This suggests that with a large number of strains in hand, selecting a small number of strains may provide a significant contribution to the fine mapping of QTL.  相似文献   

11.
We present a novel semiparametric method for quantitative trait loci (QTL) mapping in experimental crosses. Conventional genetic mapping methods typically assume parametric models with Gaussian errors and obtain parameter estimates through maximum-likelihood estimation. In contrast with univariate regression and interval-mapping methods, our model requires fewer assumptions and also accommodates various machine-learning algorithms. Estimation is performed with targeted maximum-likelihood learning methods. We demonstrate our semiparametric targeted learning approach in a simulation study and a well-studied barley data set.  相似文献   

12.
Li R  Lyons MA  Wittenburg H  Paigen B  Churchill GA 《Genetics》2005,169(3):1699-1709
Rodent inbred line crosses are widely used to map genetic loci associated with complex traits. This approach has proven to be powerful for detecting quantitative trait loci (QTL); however, the resolution of QTL locations, typically approximately 20 cM, means that hundreds of genes are implicated as potential candidates. We describe analytical methods based on linear models to combine information available in two or more inbred line crosses. Our strategy is motivated by the hypothesis that common inbred strains of the laboratory mouse are derived from a limited ancestral gene pool and thus QTL detected in multiple crosses are likely to represent shared ancestral polymorphisms. We demonstrate that the combined-cross analysis can improve the power to detect weak QTL, can narrow support intervals for QTL regions, and can be used to separate multiple QTL that colocalize by chance. Moreover, combined-cross analysis can establish the allelic states of a QTL among a set of parental lines, thus providing critical information for narrowing QTL regions by haplotype analysis.  相似文献   

13.
Liu Y  Zeng ZB 《Genetical research》2000,75(3):345-355
Most current statistical methods developed for mapping quantitative trait loci (QTL) based on inbred line designs apply to crosses from two inbred lines. Analysis of QTL in these crosses is restricted by the parental genetic differences between lines. Crosses from multiple inbred lines or multiple families are common in plant and animal breeding programmes, and can be used to increase the efficiency of a QTL mapping study. A general statistical method using mixture model procedures and the EM algorithm is developed for mapping QTL from various cross designs of multiple inbred lines. The general procedure features three cross design matrices, W, that define the contribution of parental lines to a particular cross and a genetic design matrix, D, that specifies the genetic model used in multiple line crosses. By appropriately specifying W matrices, the statistical method can be applied to various cross designs, such as diallel, factorial, cyclic, parallel or arbitrary-pattern cross designs with two or multiple parental lines. Also, with appropriate specification for the D matrix, the method can be used to analyse different kinds of cross populations, such as F2 backcross, four-way cross and mixed crosses (e.g. combining backcross and F2). Simulation studies were conducted to explore the properties of the method, and confirmed its applicability to diverse experimental designs.  相似文献   

14.
R. C. Jansen  P. Stam 《Genetics》1994,136(4):1447-1455
A very general method is described for multiple linear regression of a quantitative phenotype on genotype [putative quantitative trait loci (QTLs) and markers] in segregating generations obtained from line crosses. The method exploits two features, (a) the use of additional parental and F(1) data, which fixes the joint QTL effects and the environmental error, and (b) the use of markers as cofactors, which reduces the genetic background noise. As a result, a significant increase of QTL detection power is achieved in comparison with conventional QTL mapping. The core of the method is the completion of any missing genotypic (QTL and marker) observations, which is embedded in a general and simple expectation maximization (EM) algorithm to obtain maximum likelihood estimates of the model parameters. The method is described in detail for the analysis of an F(2) generation. Because of the generality of the approach, it is easily applicable to other generations, such as backcross progenies and recombinant inbred lines. An example is presented in which multiple QTLs for plant height in tomato are mapped in an F(2) progeny, using additional data from the parents and their F(1) progeny.  相似文献   

15.
Hwang JT  Nettleton D 《Genetics》2002,160(4):1697-1705
Estimates of the locations and effects of quantitative trait loci (QTL) can be obtained by regressing phenotype on marker genotype. Under certain basic conditions, the signs of regression coefficients flanking QTL must be the same. There is no guarantee, however, that the signs of the regression coefficient estimates will be the same. We use sign inconsistency to describe the situation in which there is disagreement between the signs of the estimated regression coefficients flanking QTL. The presence of sign inconsistency can undermine the effectiveness of QTL mapping strategies that presume intervals whose markers have regression coefficient estimates of differing sign to be devoid of QTL. This article investigates the likelihood of sign inconsistency under various conditions. We derive an analytic expression for the approximate probability of sign inconsistency in the single-QTL case. We also examine sign inconsistency probabilities when multiple QTL are present through simulation. We have discovered that the probability of sign inconsistency can be unacceptably high, even when the conditions for QTL detection are otherwise quite favorable.  相似文献   

16.
Xiong M  Fan R  Jin L 《Human heredity》2002,53(3):158-172
As a dense map of single nucleotide polymorphism (SNP) markers are available, population-based linkage disequilibrium (LD) mapping or association study is becoming one of the major tools for identifying quantitative trait loci (QTL) and for fine gene mapping. However, in many cases, LD between the marker and trait locus is not very strong. Approaches that maximize the potential of detecting LD will be essential for the success of LD mapping of QTL. In this paper, we propose two strategies for increasing the probability of detecting LD: (1) phenotypic selection and (2) haplotype LD mapping. To provide the foundations for LD mapping of QTL under selection, we develop analytic tools for assessing the impact of phenotypic selection on allele and haplotype frequencies, and LD under three trait models: single trait locus, two unlinked trait loci, and two linked trait loci with or without epistasis. In addition to a traditional chi(2) test, which compares the difference in allele or haplotype frequencies in the selected sample and population sample, we present multiple regression methods for LD mapping of QTL, and investigate which methods are effective in employing phenotypic selection for QTL mapping. We also develop a statistical framework for investigating and comparing the power of the single marker and multilocus haplotype test for LD mapping of QTL. Finally, the proposed methods are applied to mapping QTL influencing variation in systolic blood pressure in an isolated Chinese population.  相似文献   

17.
将三倍体胚乳性状的数量遗传模型和二倍体性状数量基因(QTL)图构建方法相结合,导出双侧标记基因型下有关胚乳性状QTL的遗传组成、平均数和遗传方差分量,据之提出以某一区间双侧标记基因型胚乳性状的平均值为依变数,以该区间内任一点假定存在的QTL的加性效应d、显性效应h1和/或h2的系数为自变数,进行有重复观察值的多元线性回归分析,根据多元线性回归的显著性测验该点是否存在QTL,并估计出QTL的遗传效应。给定区间内任一点,皆可以此进行分析,从而可在整条染色体上作图,并以之确定QTL的数目和最可能位置,同时,在检测某一区间时,利用多元线性回归方法将该区间外可能存在的QTL的干扰进行统计控制,以提高QTL检测的精度。此外,还讨论了如何将之推广应用于其他类型的DNA不对应资料以及具复杂遗传模型的胚乳性状资料。  相似文献   

18.
Gong Y  Zou F 《Genetics》2012,190(2):475-486
There has been a great deal of interest in the development of methodologies to map quantitative trait loci (QTL) using experimental crosses in the last 2 decades. Experimental crosses in animal and plant sciences provide important data sources for mapping QTL through linkage analysis. The Collaborative Cross (CC) is a renewable mouse resource that is generated from eight genetically diverse founder strains to mimic the genetic diversity in humans. The recombinant inbred intercrosses (RIX) generated from CC recombinant inbred (RI) lines share similar genetic structures of F(2) individuals but with up to eight alleles segregating at any one locus. In contrast to F(2) mice, genotypes of RIX can be inferred from the genotypes of their RI parents and can be produced repeatedly. Also, RIX mice typically do not share the same degree of relatedness. This unbalanced genetic relatedness requires careful statistical modeling to avoid false-positive findings. Many quantitative traits are inherently complex with genetic effects varying with other covariates, such as age. For such complex traits, if phenotype data can be collected over a wide range of ages across study subjects, their dynamic genetic patterns can be investigated. Parametric functions, such as sigmoidal or logistic functions, have been used for such purpose. In this article, we propose a flexible nonparametric time-varying coefficient QTL mapping method for RIX data. Our method allows the QTL effects to evolve with time and naturally extends classical parametric QTL mapping methods. We model the varying genetic effects nonparametrically with the B-spline bases. Our model investigates gene-by-time interactions for RIX data in a very flexible nonparametric fashion. Simulation results indicate that the varying coefficient QTL mapping has higher power and mapping precision compared to parametric models when the assumption of constant genetic effects fails. We also apply a modified permutation procedure to control overall significance level.  相似文献   

19.
Mapping quantitative trait loci underlying triploid endosperm traits   总被引:18,自引:0,他引:18  
Xu C  He X  Xu S 《Heredity》2003,90(3):228-235
Endosperm, which is derived from two polar nuclei fusing with one sperm, is a triploid tissue in cereals. Endosperm tissue determines the grain quality of cereals. Improving grain quality is one of the important breeding objectives in cereals. However, current statistical methods for mapping quantitative trait loci (QTL) under diploid genetic control have not been effective for dealing with endosperm traits because of the complexity of their triploid inheritance. In this paper, we derive for the first time the conditional probabilities of F(3) endosperm QTL genotypes given different flanking marker genotypes in F(2) plants. Using these probabilities, we develop a multiple linear regression method implemented via the iteratively reweighted least-squares (IRWLS) algorithm and a maximum likelihood method (ML) implemented via the expectation-maximization (EM) algorithm to map QTL underlying endosperm traits. We use the mean value of endosperm traits of F(3) seeds as the dependent variable and the expectations of genotypic indicators for additive and dominance effect of a putative QTL flanked by a pair of markers as independent variables for IRWLS mapping. However, if an endosperm trait is measured quantitatively using a single endosperm sample, the ML mapping method can be used to separate the two dominance effects. Efficiency of the methods is verified through extensive Monte Carlo simulation studies. Results of simulation show that the proposed methods provide accurate estimates of both the QTL effects and locations with very high statistical power. With these methods, we are now ready to map endosperm traits, as we can for regular quantitative trait under diploid control.  相似文献   

20.
Marker pair selection for mapping quantitative trait loci   总被引:10,自引:0,他引:10  
Piepho HP  Gauch HG 《Genetics》2001,157(1):433-444
Mapping of quantitative trait loci (QTL) for backcross and F(2) populations may be set up as a multiple linear regression problem, where marker types are the regressor variables. It has been shown previously that flanking markers absorb all information on isolated QTL. Therefore, selection of pairs of markers flanking QTL is useful as a direct approach to QTL detection. Alternatively, selected pairs of flanking markers can be used as cofactors in composite interval mapping (CIM). Overfitting is a serious problem, especially if the number of regressor variables is large. We suggest a procedure denoted as marker pair selection (MPS) that uses model selection criteria for multiple linear regression. Markers enter the model in pairs, which reduces the number of models to be considered, thus alleviating the problem of overfitting and increasing the chances of detecting QTL. MPS entails an exhaustive search per chromosome to maximize the chance of finding the best-fitting models. A simulation study is conducted to study the merits of different model selection criteria for MPS. On the basis of our results, we recommend the Schwarz Bayesian criterion (SBC) for use in practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号