首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Differentiation of Naegleria amebae into flagellates was used to examine the interaction between actin, actomyosin and microtubules in defining cell shape. Amebae, which lack microtubules except during mitosis, differentiate into flagellates with a fixed shape and a complex microtubule cytoskeleton in 120 min. Based on earlier models of ameboid motility it has been suggested that actomyosin is quiescent in flagellates. This hypothesis was tested by following changes in the cytoskeleton using three-dimensional reconstructions prepared by confocal microscopy of individual cells stained with antibodies against actin and tubulin as well as with phalloidin and DNase I. F-actin as defined by phalloidin staining was concentrated in expanding pseudopods. Most phalloidin staining was lost as cells rounded up before the onset of flagellum formation. Actin staining with a Naegleria-specific antibody that recognizes both F- and G-actin was confined to the cell cortex of both amebae and flagellates. DNase I demonstrated G-actin throughout all stages. Most of the actin in the cortex was not bound by phalloidin yet was resistant to detergent extraction suggesting that it was polymerized. The microtubule cytoskeleton of flagellates was intimately associated with this actin cortex. Treatment of flagellates with cytochalasin D produced a rapid loss of flagellate shape and the appearance of phalloidin staining while latrunculin A stabilized the flagellate shape. These results suggest that tension produced by an actomyosin network is required to maintain the flagellate shape. The rapid loss of the flagellate shape induced by drugs, which specifically block myosin light chain kinase, supports this hypothesis.  相似文献   

3.
We have examined the nature of the requirement for RNA synthesis during the differentiation of Naegleria gruberi amebae into flagellates (Fulton, C., and C. Walsh, 1980, J. Cell Biol., 85:346-360) by looking for poly(A)+RNAs that are specific to differentiating cells. A cDNA library prepared from poly(A)+RNA extracted from cells 40 min after initiation of the differentiation (40-min RNA), the time when formation of flagella becomes insensitive to inhibitors of RNA synthesis, was cloned into pBR322. Recombinant clones were screened for sequences that were complementary to 40-min RNA but not to RNA from amebae (0-min RNA). Ten of these differentiation-specific (DS) plasmids were identified. The DS plasmids were found to represent at least four different poly(A)+RNAs based on cross-hybridization, restriction mapping, and Northern blot analysis. Dot blot analysis was used to quantify changes in DS RNA concentration. The four DS RNAs appeared coordinately during the differentiation. They were first detectable at 10-15 min after initiation, reached a peak at 70 min as flagella formed, and then declined to low levels by 120 min when flagella reached full length. The concentration of the DS RNAs was found to be at least 20-fold higher in cells at 70 min than in amebae. The changes in DS RNA concentration closely parallel changes in tubulin mRNA as measured by in vitro translation (Lai, E.Y., C. Walsh, D. Wardell, and C. Fulton, 1979, Cell, 17:867-878).  相似文献   

4.
Four mRNAs (alpha- and beta-tubulin, flagellar calmodulin and Class-I), specifically expressed when Naegleria amebae differentiate into flagellates, were followed at 5-10 min intervals during the temperature-shock induction of multiple flagella in order to better understand how basal body and flagellum number are regulated. Surprisingly, tubulin synthesis continued during the 37 min temperature shock. An initial rapid decline in alpha- and beta-tubulin and flagellar calmodulin mRNAs was followed by a rapid re-accumulation of mRNAs before the temperature was lowered. mRNA levels continued to increase until they exceeded control levels by 4-21%. Temperature shock delayed flagella formation 37 min, produced twice as much tubulin protein synthesis and three fold more flagella. Labeling with an antibody against Naegleria centrin suggested that basal body formation was also delayed 30-40 min. An extended temperature shock demonstrated that lowering the temperature was not required for return of mRNAs to near control levels suggesting that induction of multiple flagella and the formation of flagella per se are affected in different ways. We suggest that temperature-shock induction of multiple flagella reflects increased mRNA accumulation combined with interference with the regulation of the recently reported microtubule-nucleating complex needed for basal body formation.  相似文献   

5.
Naegleria gruberi amebae normally transform into biflagellated cells. When subjected to high temperatures during flagellate differentiation, populations develop an average of 4-5 flagella/flagellate. Attempts to maximize this phenomenon by altering cellular and environmental variables revealed that: (a) few Naegleria isolates become multiflagellated: strain NB-1 gives the greatest response to heat shocks; (b) temperature is the most critical variable: highest numbers of flagella are obtained only if cells are temperature-shocked at precisely 38.2 +/- 0.1 C, then returned to 19-22 C to complete differentiation; (c) although pH alone does not affect numbers of flagella, a pH optimum of 5.5-7.0 exists for temperature-shocked cells; and (d) single cells in microdrops become multiflagellated, but the population response is density-dependent. Optimal conditions are described for growing, washing, and transforming amebae to generate reproducibly highest numbers of flagella.  相似文献   

6.
The distribution of two proteins in Naegleria gruberi, N-gammaTRP (Naegleria gamma-tubulin-related protein) and N-PRP (Naegleria pericentrin-related protein), was examined during the de novo formation of basal bodies and flagella that occurs during the differentiation of N. gruberi. After the initiation of differentiation, N-gammaTRP and N-PRP began to concentrate at the same site within cells. The percentage of cells with a concentrated region of N-gammaTRP and N-PRP was maximal (68%) at 40 min when the synthesis of tubulin had just started but no assembled microtubules were visible. When concentrated tubulin became visible (60 min), the region of concentrated N-gammaTRP and N-PRP was co-localized with the tubulin spot and then flagella began to elongate from the region of concentrated tubulin. When cells had elongated flagella, the concentrated N-gammaTRP and N-PRP were translocated to the opposite end of the flagellated cells and disappeared. The transient concentration of N-gammaTRP coincided with the transient formation of an F-actin spot at which N-gammaTRP and alpha-tubulin mRNA were co-localized. The concentration of N-gammaTRP and formation of the F-actin spot occurred without the formation of microtubules but were inhibited by cytochalasin D. These observations suggest that the regional concentration of N-gammaTRP and N-PRP is mediated by actin filaments and might provide a site of microtubule nucleation for the assembly of newly synthesized tubulins into basal bodies and flagella.  相似文献   

7.
8.
9.
SYNOPSIS Naegleria gruberi amebae normally transform into biflagellated cells. When subjected to high temperatures during flagellate differentiation, populations develop an average of 4–5 flagella/flagellate. Attempts to maximize this phenomenon by altering cellular and environmental variables revealed that: (a) few Naegleria isolates become multiflagellated: strain NB-1 gives the greatest response to heat shocks: (b) temperature is the most critical variable: highest numbers of flagella are obtained only if cells are temperature-shocked at precisely 38.2 ± 0.1 C, then returned to 19–22 C to complete differentiation; (c) although pH alone does not affect numbers of flagella. a pH optimum of 5.5–7.0 exists for temperature-shocked cells; and (d) single cells in microdrops become multiflagellated, but the population response is density-dependent. Optimal conditions are described for growing, washing, and transforming amebae to generate reproducibly highest numbers of flagella.  相似文献   

10.
Actin, the major protein of Naegleria gruberi, is selectively not synthesized during the differentiation of amebae to flagellates. When RNA extracted from cells at intervals during differentiation is translated in the wheat germ cell-free system, a major translation product with the electrophoretic mobility of actin is seen to disappear with time during differentiation. This translation product is shown to be actin by its electrophoretic mobility, copolymerization with rabbit actin, peptide map, and immunoprecipitation by antibodies specific to Naegleria actin. Multiple isoforms of actin are synthesized in the cell-free system. Quantitative immunoprecipitation of translation products was employed to measure the relative amount of actin mRNA. Translatable actin mRNA begins to decrease in abundance within 7 min after the initiation of differentiation and thereafter decreases with a half-life of about 25 min. The selective disappearance of this major translatable mRNA provides a favorable opportunity to dissect the rules governing the half-life of a specific mRNA.  相似文献   

11.
12.
Summary The flagellate-to-ameba conversion process of the MyxomyceteStemonitis pallida was investigated with Nomarski optics and electron microscopy. The flagellate has two flagella, a long and a short one. When the water film containing the flagellates becomes very thin, they retract their flagella, usually the short one first and then the long one. The short flagellum is retracted by only one method, in which the sheath membrane of the flagellum fuses with the cell membrane, consequently causing the axoneme to be absorbed into the cytoplasm. Retraction of the long flagellum can be divided into four types. In all cases, fusion of the sheath membrane and the cell membrane takes place. The retracted axoneme of the long flagellum sometimes beats convulsively for about 10 minutes after retraction, and after 10–15 minutes it became indistinguishable as it was detached from the blepharoplast.Analysis of thin sections shows that the retracted axonemes disintegrate in the following squence: B-tubules, A-tubules, spokes, central microtubules. In almost all cells the degradation begins immediately after retraction and is completed within 90 minutes. Only on rare occasions, structures which seem to have been derived from retracted axonemes are observed in the ameba about 90 minutes after conversion. The basal bodies and cytoplasmic microtubules are a little more stable than the retracted axonemes. Some basal bodies of the short flagellum, whose C-tubules are affected, are present in the amebae more than 90 minutes after conversion. Cytoplasmic microtubules decrease in number and become shorter in the amebae after about 24 hours, when newly formed regions filled with flocculent material appear.  相似文献   

13.
Tetramitus exhibits independent ameboid and flagellate stages of remarkable morphological dichotomy. Transformation of the ameba involves the formation of four kinetosomes and their flagella. The arrangement of these kinetosomes and associated whorls of microtubules extending under the pellicle establishes the asymmetric flagellate form. While no recognizable kinetosomal precursors have been seen in amebae, and there is no suggestion of self-replication in dividing flagellates, developmental stages of kinetosomes have been identified. These are occasionally seen in association with the nucleus or with dense bodies which lie either inside of or close to the proximal end of the prokinetosome. Outgrowth of flagella involves formation of an axoneme and a membrane. From the distal tip of the kinetosome microtubules grow into a short bud, which soon forms an expanded balloon containing a reticulum of finely beaded filaments. The free ends of the microtubules appear unraveled; they are seen first as single elements, then as doublets, and finally are arranged into a cylinder. Growth in length is accompanied by a reduction in the diameter of the balloon. The concept that the formation of the kinetic apparatus might involve a nuclear contribution, followed by a spontaneous assembly of microtubules, is suggested.  相似文献   

14.
Under defined laboratory conditions, Naegleria gruberi undergo an amoeba-to-flagellate differentiation. During this differentiation, N. gruberi changes its shape from an amorphous amoeba to a regular shaped flagellate and forms de novo a flagellar apparatus, which is composed of two basal bodies, two flagella, a flagellar rootlet, and cytoplasmic microtubules. The entire process is accomplished within 2 h after initiation of differentiation and more than 95% of cells in the population undergo this differentiation. This rapid and synchronous differentiation of N. gruberi provides us with a unique system in which we can study the process of de novo basal body assembly. In this review, I summarize recent findings associated with de novo basal body assembly and propose a hypothesis to explain how N. gruberi assemble two basal bodies per cell, which is what happens in the majority of cells.  相似文献   

15.
16.
M. Glyn  K. Gull 《Protoplasma》1990,158(3):130-141
Summary The transformation ofPhysarum polycephalum flagellates to myxamoebae is characterised by disappearance of the flagellum. This transition, from the flagellate to the myxamoeba was observed by phase contrast light microscopy and recorded by time lapse video photography to determine whether flagellates shed their flagella or they are absorbed within the cell. In addition, the kinetics of flagellum disappearance were also studied. Our observations indicate that the flagellum was absorbed within the cell; the process occurred within seconds. Flagellum resorbtion was preceded by typical morphological cell changes. The shape of the nucleus altered and its mobility within the cell decreased. It was not possible to observe the flagellum within the cell with phase contrast video recordings. Thin section electron microscopy was used to study this intracellular phenomenon. Several stages of flagellum dissolution could be identified within the cell. The two most important stages were: an axoneme surrounded by the flagellar membrane within a plasma membrane lined pocket or vacuole and the naked axoneme without its membrane, free within the cell cytoplasm. The existence of cytoplasmic microtubules prevented identification of any further dissolution stages of the flagellum. A group of microtubules adjacent to the flagellum but within the cytoplasm was observed in flagellates and also in those cells which possesed enveloped axonemes. The flagellum did not dissociate from the kinetosomes before resorbtion.Immunofluorescence studies with the 6-11-B-1 monoclonal antibody indicated that acetylated microtubules exist in myxamoebae after transformation from flagellates for up to 40 min. Acetylated tubulin is not limited to the centrioles in these cells.  相似文献   

17.
18.
19.
BASAL BODIES, BUT NOT CENTRIOLES, IN NAEGLERIA   总被引:13,自引:8,他引:5       下载免费PDF全文
Amebae of Naegleria gruberi transform into flagellates whose basal bodies have the typical centriole-like structure. The amebae appear to lack any homologous structure, even during mitosis. Basal bodies are constructed during transformation and, in cells transforming synchronously at 25°C, they are first seen about 10 min before flagella are seen. No structural precursor for these basal bodies has been found. These observations are discussed in the light of hypotheses about the continuity of centrioles.  相似文献   

20.
Polypeptides of whole-cell extracts of Naegleria fowleri flagellates and growing amebae were resolved by two-dimensional polyacrylamide gel electrophoresis. Autoradiograms of the [35S]methionine-labeled polypeptides of amebae and flagellates were analyzed by two dimensional densitometry to determine whether there were correlations between intracellular concentration of a protein and subunit size or charge. The majority of the polypeptides of amebae and flagellates had molecular sizes in the range of 20 to 60 kilodaltons. The radioactivity per polypeptide species in the size range of 20 to 60 kilodaltons was greater in amebae than in flagellates. The greatest number of polypeptides detected in amebae and flagellates was in the isoelectric focusing range of pH 6 to 7. The radioactivity per polypeptide species in the isoelectric focusing gradient below 6.3 was greater in amebae than in flagellates. Polypeptides in the size range of 20 to 60 kilodaltons had a median isoelectric point below pI 6.3, whereas those larger than 60 kilodaltons had a median pI value above 6.3. These data indicated that molecular size and charge were not entirely independent variables and that the size and charge of a polypeptide might have an important influence in determining its intracellular concentration in both amebae and flagellates. Autoradiograms were also compared so that changes in intracellular protein complement and concentrations occurring during differentiation could be recognized. The relative amounts of a limited number of polypeptides increased markedly, and others decreased markedly, during enflagellation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号