首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A short-term treatment with phorbol 12,13-dibutyrate (PDBu) was found to inhibit totally the epidermal growth factor (EGF)-stimulated phosphoinositide hydrolysis in A431 cells, whereas long-term pretreatment with PDBu, which is known to down regulate protein kinase C, induced a greater accumulation of the EGF-triggered inositol phosphate accumulation, particularly of Ins(1,3,4,5)P4. The increased Ins(1,4,5)P3/Ins(1,3,4,5)P4 formation in the PDBu long-term pretreated cells was coincident with the increased Ca2+ influx stimulated by EGF in the same cells. Since long-term pretreatment with PDBu was found to enhance the EGF signals, an explanation for the synergism between EGF and phorbol esters in the induction of DNA synthesis is provided.  相似文献   

2.
I Lotan  N Dascal  Z Naor  R Boton 《FEBS letters》1990,267(1):25-28
Effects of purified subtypes I, II and III of protein kinase C (PKC) on voltage-dependent transient K+ (A) and Na+ channels were studied in Xenopus oocytes injected with chick brain RNA. The experiments were performed in the constant presence of 10 nM beta-phorbol 12-myristate-13-acetate (PMA). Intracellular injection of subtype I (tau) reduced the A-current (IA), with no effect on Na+ current (INa). PKC subtype II (beta 1 + beta 2) and III (alpha) reduced both currents. PKC did not affect the response to kainate. Inactivated (heated) or unactivated (injected in the absence of PMA) enzyme and vehicle alone had no effect. Our results strongly suggest that INa and IA in vertebrate neurons are modulated by PKC; all PKC subtypes exert a similar effect on the A-channel while only subtypes II and III modulate the Na+ channel.  相似文献   

3.
Single IK(Ca) channels of human erythrocytes were studied with the patch-clamp technique to define their modulation by endogenous protein kinase C (PKC). The perfusion of the cytoplasmic side of freshly excised patches with the PKC activator, phorbol 12-myristate 13-acetate (PMA), inhibited channel activity. This effect was blocked by PKC(19-31), a peptide inhibitor specific for PKC. Similar results were obtained by perfusing the membrane patches with the structurally unrelated PKC activator 1-oleoyl-2-acetylglycerol (OAG). Blocking of this effect was induced by perfusion with PKC(19-31) or chelerythrine. Channel activity was not inhibited by the PMA analog 4alpha-phorbol 12,13-didecanoate (4alphaPDD), which has no effect on PKC. Activation of endogenous cAMP-dependent protein kinase (PKA), which is known to up-modulate IK(Ca) channels, restored channel activity previously inhibited by OAG. The application of OAG induced a reversible reduction of channel activity previously up-modulated by the activation of PKA, indicating that the effects of the two kinases are commutative, and antagonistic. Kinetic analysis showed that down-regulation by PKC mainly changes the opening frequency without significantly affecting mean channel open time and conductance. These results provide evidence that an endogenous PKC down-modulates the activity of native IK(Ca) channels of human erythrocytes. Our results show that PKA and PKC signal transduction pathways integrate their effects, determining the open probability of the IK(Ca) channels.  相似文献   

4.
In recent decades, evidence has confirmed the crucial role of albumin in the progression of renal disease. However, the possible role of signaling pathways triggered by physiologic concentrations of albumin in the modulation of proximal tubule (PT) sodium reabsorption has not been considered. In the present work, we have shown that a physiologic concentration of albumin increases the expression of the α1 subunit of (Na(+) + K(+))-ATPase in LLC-PK1 cells leading to an increase in enzyme activity. This process involves the sequential activation of PI3K/protein kinase B and protein kinase C pathways promoting inhibition of protein kinase A. This integrative network is inhibited when albumin concentration is increased, similar to renal disease, leading to a decrease in the α1 subunit of (Na(+) + K(+))-ATPase expression. Together, the results indicate that variation in albumin concentration in PT cells has an important effect on PT sodium reabsorption and, consequently, on renal sodium excretion.  相似文献   

5.
Single IKCa channels of human erythrocytes were studied with the patch-clamp technique to define their modulation by endogenous protein kinase C (PKC). The perfusion of the cytoplasmic side of freshly excised patches with the PKC activator, phorbol 12-myristate 13-acetate (PMA), inhibited channel activity. This effect was blocked by PKC19-31, a peptide inhibitor specific for PKC. Similar results were obtained by perfusing the membrane patches with the structurally unrelated PKC activator 1-oleoyl-2-acetylglycerol (OAG). Blocking of this effect was induced by perfusion with PKC19-31 or chelerythrine. Channel activity was not inhibited by the PMA analog 4α-phorbol 12,13-didecanoate (4αPDD), which has no effect on PKC. Activation of endogenous cAMP-dependent protein kinase (PKA), which is known to up-modulate IKCa channels, restored channel activity previously inhibited by OAG. The application of OAG induced a reversible reduction of channel activity previously up-modulated by the activation of PKA, indicating that the effects of the two kinases are commutative, and antagonistic. Kinetic analysis showed that down-regulation by PKC mainly changes the opening frequency without significantly affecting mean channel open time and conductance. These results provide evidence that an endogenous PKC down-modulates the activity of native IKCa channels of human erythrocytes. Our results show that PKA and PKC signal transduction pathways integrate their effects, determining the open probability of the IKCa channels.  相似文献   

6.
Excessive activation of N-methyl-D-aspartate (NMDA) receptors leads to cell death in human embryonic kidney-293 (HEK) cells which have been transfected with recombinant NMDA receptors. To evaluate the role of protein kinase C (PKC) activation in NMDA-mediated toxicity, we have analyzed the survival of transfected HEK cells using trypan blue exclusion. We found that NMDA-mediated death of HEK cells transfected with NR1/NR2A subunits was increased by exposure to phorbol esters and reduced by inhibitors of PKC activation, or PKC down-regulation. The region of NR2A that provides the PKC-induced enhancement of cell death was localized to a discrete segment of the C-terminus. Use of isoform-specific PKC inhibitors showed that Ca(2+)- and lipid-dependent PKC isoforms (cPKCs), specifically PKCbeta1, was responsible for the increase in cell death when phorbol esters were applied prior to NMDA in these cells. PKC activity measured by an in vitro kinase assay was also increased in NR1A/NR2A-transfected HEK cells following NMDA stimulation. These results suggest that PKC acts on the C-terminus of NR2A to accentuate cell death in NR1/NR2A-transfected cells and demonstrate that this effect is mediated by cPKC isoforms. These data indicate that elevation of cellular PKC activity can increase neurotoxicity mediated by NMDA receptor activation.  相似文献   

7.
We investigated the effects of different protein kinase C (PKC) activators on Na+ currents using the conventional whole-cell and the inside-out macropatch voltage-clamp techniques in mouse neuroblastoma cells (N1E-115). Two different categories of PKC activators were investigated: the cis-unsaturated fatty acids (CUFAs): oleic (cis-9-octadecenoic), linoleic (cis-9-12-octadecadienoic), and linolenic acid (cis-9-12-15-octadecatrienoic), and, the diacylglycerol (DAG) derivative 1-2-dioctanoyl-sn-glycerol (DOG). These substances caused the following alterations on Na+ currents: (i) Na+ currents were attenuated as a function of voltage. While DOG attenuated both inward and outward Na+ currents in a monotonic and continuous voltage-dependent manner, CUFAs preferentially attenuated inward currents; (ii) the steady-state activation curve of Na+ currents shifted to more depolarized voltages; (iii) opposite to the activation curve, the steady-state inactivation curve of Na+ channels (h curve) shifted to more hyperpolarized voltages; (iv) the time course of inactivation development was accelerated by PKC activators, while the recovery from inactivation was not affected; (v) substances that inhibit different metabolic pathways (PKC activation, cyclooxygenase, lipooxygenase, and P-450 pathways) did not prevent the effects of PKC activators on Na+ currents. One fully saturated fatty acid (octadecanoic acid), a trans-unsaturated fatty acid (trans-9-octadecenoic), and different phorbol esters did not affect Na+ currents; (vi) effects of different PKC activators on Na+ currents were completely reversible. These observations suggest that PKC activators might interact with Na+ channels directly. These direct effects must be taken into consideration in evaluating the overall effect of PKC activation on Na+ channels. Moreover, it is likely that this direct interaction could account, at least in part, for the diversity of effects of PKC activators on Na+ channels.This work was supported in part by a grant-in-aid from the American Heart Association (National Center).  相似文献   

8.
L-Type calcium channel was expressed in Xenopus laevis oocytes injected with RNAs coding for different cardiac Ca2+ channel subunits, or with total heart RNA. The effects of activation of protein kinase C (PKC) by the phorbol ester PMA (4 beta-phorbol 12-myristate 13-acetate) were studied. Currents through channels composed of the main (alpha 1) subunit alone were initially increased and then decreased by PMA. A similar biphasic modulation was observed when the alpha 1 subunit was expressed in combination with alpha 2/delta, beta and/or gamma subunits, and when the channels were expressed following injection of total rat heart RNA. No effects on the voltage dependence of activation were observed. The effects of PMA were blocked by staurosporine, a protein kinase inhibitor. beta subunit moderate the enhancement caused by PMA. We conclude that both enhancement and inhibition of cardiac L-type Ca2+ currents by PKC are mediated via an effect on the alpha 1 subunit, while the beta subunit may play a mild modulatory role.  相似文献   

9.
The effects of protein kinase C (PKC) activation and inhibition on the inositol 1,4,5-trisphosphate (IP3) and cytosolic Ca2+ ([Ca2+]i) responses of rat submandibular acinar cells were investigated. IP3 formation in response to acetylcholine (ACh) was not affected by the PKC activator phorbol 12-myristate 13-acetate (PMA), nor by the PKC inhibitor calphostin C (CaC). The ACh-elicited initial increase in [Ca2+]i in the absence of extracellular Ca2+ was not changed by short-term (0.5 min) exposure to PMA, but significantly reduced by long-term (30 min) exposure to PMA, and also by pre-exposure to the PKC inhibitors CaC and chelerythrine chloride (ChC). After ACh stimulation, subsequent exposure to ionomycin caused a significantly (258%) larger [Ca2+]i increase in CaC-treated cells than in control cells. However, pre-exposure to CaC for 30 min did not alter the Ca2+ release induced by ionomycin alone. These results suggest that the reduction of the initial [Ca2+]i increase is due to an inhibition of the Ca2+ release mechanism and not to store shrinkage. The thapsigargin (TG)-induced increase in [Ca2+]i was significantly reduced by short-term (0.5 min), but not by long-term (30 min) exposure to PMA, nor by pre-exposure to ChC or CaC. Subsequent exposure to ionomycin after TG resulted in a significantly (70%) larger [Ca2+]i increase in PMA-treated cells than in control cells, suggesting that activation of PKC slows down the Ca2+ efflux or passive leak seen in the presence of TG. Taken together, these results indicate that inhibition of PKC reduces the IP3-induced Ca2+ release and activation of PKC reduces the Ca2+ efflux seen after inhibition of the endoplasmic Ca2+-ATPase in submandibular acinar cells.  相似文献   

10.
Carbohydrate stimuli of insulin secretion depolarize the pancreatic B cell and the B-cell line RINm5F by inhibiting ATP-sensitive K+ channels. We examined the possibility that this effect is mediated by activation of protein kinase C. In RINm5F cells, the triose D-glyceraldehyde evoked a rapid increase of the mass of 1,2-diacylglycerol, the endogenous activator of protein kinase C. This effect is mainly due to de novo synthesis of the lipid from glycolytic intermediates, as glyceraldehyde carbon was incorporated into 1,2-diacylglycerol within 1 min of exposure to 14C-labelled glyceraldehyde. The effects of two exogenous activators of kinase C, 4-beta-12-phorbol-myristate 13-acetate (PMA) and 1,2-didecanoylglycerol (DC10) on single K+ channel currents were examined in RINm5F cell-attached membrane patches. Both PMA and DC10 depolarized the cells and decreased the open-state probability of the ATP-sensitive K+ channels. These actions were not due to changes in cellular ATP content, since PMA, like glyceraldehyde, failed to alter cellular ATP. As is the case for glyceraldehyde, PMA and DC10 raised cytosolic free Ca2+ [( Ca2+]i) and stimulated insulin secretion. Both of these effects are inhibited in the absence of external Ca2+. This, and the attenuation of the [Ca2+]i rise by verapamil, suggest that all three stimuli raise [Ca2+]i by promoting Ca2+ influx through voltage-gated channels in turn leading to insulin secretion. As the exogenous activators of protein kinase C mimic the effects of glyceraldehyde, it is proposed that the carbohydrate-mediated production of 1,2-diacylglycerol constitutes the link between metabolism and membrane depolarization.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
We examined the role of protein kinase C (PKC) in the regulation of Na+,K+- ATPase activity in the renal cortex. Male Wistar rats were anaesthetized and the investigated reagents were infused into the abdominal aorta proximally to the renal arteries. A PKC-activating phorbol ester, phorbol 12,13-dibutyrate (PDBu), had a dose-dependent effect on cortical Na+,K+-ATPase activity. Low dose of PDBu (10(-11) mol/kg per min) increased cortical Na+,K+-ATPase activity by 34.2%, whereas high doses (10(-9) and 10(-8) mol/kg per min) reduced this activity by 22.7% and 35.0%, respectively. PDBu administration caused changes in Na+,K+-ATPase Vmax without affecting K(0.5) for Na+, K+ and ATP as well as Ki for ouabain. The effects of PDBu were abolished by PKC inhibitors, staurosporine, GF109203X, and G? 6976. The inhibitory effect of PDBu was reversed by pretreatment with inhibitors of cytochrome P450-dependent arachidonate metabolism, ethoxyresorufin and 17-octadecynoic acid, inhibitors of phosphatidylinositol 3-kinase (PI3K), wortmannin and LY294002, and by actin depolymerizing agents, cytochalasin D and latrunculin B. These results suggest that PKC may either stimulate or inhibit renal cortical Na+,K+-ATPase. The inhibitory effect is mediated by cytochrome P450-dependent arachidonate metabolites and PI3K, and is caused by redistribution of the sodium pump from the plasma membrane to the inactive intracellular pool.  相似文献   

12.
The phagosome harboring the bacterial pathogen Legionella pneumophila is known to be enriched with phosphatidylinositol 4‐phosphate (PtdIns4P), which is important for anchoring a subset of its virulence factors and potentially for signaling events implicated in the biogenesis of the Legionella‐containing vacuole (LCV) that supports intracellular bacterial growth. Here we demonstrate that the effector MavQ is a phosphoinositide 3‐kinase that specifically catalyzes the conversion of phosphatidylinositol (PtdIns) into PtdIns3P. The product of MavQ is subsequently phosphorylated by the effector LepB to yield PtdIns(3,4)P2, whose 3‐phosphate is then removed by another effector SidF to generate PtdIns4P. We also show that MavQ is associated with the LCV and the ∆mavQ mutant displays phenotypes in the anchoring of a PtdIns4P‐binding effector similar to those of ∆lepB or ∆sidF mutants. Our results establish a mechanism of de novo PtdIns4P biosynthesis by L. pneumophila via a catalysis axis comprised of MavQ, LepB, and SidF on the surface of its phagosome.  相似文献   

13.
The Ca2+-dependent K+ permeability of heart sarcolemma vesicles was measured by following the transmembrane movement of the charge compensating tetraphenylborate anion. The increase in vesicles permeability induced by Ca2+ is lost when membrane proteins are dephosphorylated by an endogenous protein phosphatase and is restored by a phosphorylation process catalysed by a cAMP-dependent protein kinase. The calmodulin antagonist R 24571 lowers the Ca2+-dependent K+ permeability by decreasing the Ca2+ affinity of the K+ transporting system.  相似文献   

14.
15.
Although T-type Ca2+ channels have been implicated in numerous physiological functions, their regulations by protein kinases have been obscured by conflicting reports. We investigated the effects of protein kinase C (PKC) on Ca(v)3.2 T-type channels reconstituted in Xenopus oocytes. Phorbol-12-myristate-13-acetate (PMA) strongly enhanced the amplitude of Ca(v)3.2 channel currents (approximately 3-fold). The augmentation effects were not mimicked by 4alpha-PMA, an inactive stereoisomer of PMA, and abolished by preincubation with PKC inhibitors. Our findings suggest that PMA upregulates Ca(v)3.2 channel activity via activation of oocyte PKC.  相似文献   

16.
Ca2+-sensitive K+ channels (IK1 channels) are required for many physiological functions such as cell proliferation, epithelial transport or cell migration. They are regulated by the intracellular Ca2+ concentration and by phosphorylation-dependent reactions. Here, we investigate by means of the patch-clamp technique mechanisms by which protein kinase C (PKC) regulates the canine isoform, cIK1, cloned from transformed renal epithelial (MDCK-F) cells. cIK1 elicits a K+-selective, inwardly rectifying, and Ca2+-dependent current when expressed in HEK293 or CHO cells. It is inhibited by charybdotoxin, clotrimazole, and activated by 1-ethyl-2-benzimidazolone. cIK1 is activated by intracellular application of ATP or ATP[gS]. ATP-dependent activation is reversed by PKC inhibitors (bisindolylmaleimide, calphostin C), while stimulation with ATP[gS] resists PKC inhibition. Stimulation of protein kinase C with phorbol 12-myristate 13-acetate (PMA) leads to the acute activation of cIK1 currents, which are blocked by PKC inhibitors. In contrast, PKC depletion by overnight incubation with PMA prevents ATP-dependent cIK1 activation. Neither single mutations nor the simultaneous mutation of all PKC sites (T101, S178, T329) to alanine alter the acute regulation of cIK1 channels by PKC. However, current amplitudes of CIK1-T329A and the triple mutant are dramatically increased upon long-term treatment with PMA. These mutations thereby disclose an inhibitory effect on cIKl current of the PKC site at T329. Our results indicate that cIK1 channel activity is regulated in two ways. PKC-dependent activation of cIK1 channels occurs indirectly, while the inhibitory effect probably requires a direct interaction with the channel protein.  相似文献   

17.
18.
Modulation of smooth muscle calponin by protein kinase C and calmodulin   总被引:2,自引:0,他引:2  
When smooth muscle calponin was incubated with protein kinase C, 1 mole of phosphate was incorporated per mole of calponin. The apparent Km value for calponin of the protein kinase was about 0.4 microM. The phosphorylation of calponin by protein kinase C was inhibited markedly by calmodulin in a calcium-dependent manner. Kinetic analysis of calmodulin-induced inhibition of calponin phosphorylation by protein kinase C revealed that calmodulin inhibited the phosphorylation in a noncompetitive fashion with calponin and the determined Ki value was 0.4 microM. These results suggest that interaction of calmodulin with calponin may play a regulatory role in the phosphorylation by protein kinase C and smooth muscle contraction.  相似文献   

19.
Modulation of adenylate cyclase in human keratinocytes by protein kinase C   总被引:3,自引:0,他引:3  
Adenylate cyclase (ATP-pyrophosphate lyase (cyclizing); EC 4.6.1.1) in the human keratinocyte cell line SCC 12F was potentiated by 12-O-tetradecanoyl-phorbol-13-acetate (TPA), phorbol-12,13-diacetate, and 1,2-dioctanoylglycerol. Keratinocytes exposed to TPA showed a 2-fold enhancement of adenylate cyclase activity when assayed in the presence of isoproterenol or GTP. The half-maximal effective concentration (EC50) for both isoproterenol and GTP were unaltered by TPA treatment of the cells. Basal adenylate cyclase activity in membranes from TPA-treated cultures was also increased 2-fold relative to activity in control membranes. Potentiation of adenylate cyclase activity was dependent on the concentration of TPA to which the keratinocytes were exposed (EC50 for TPA = 3 nM). TPA actions on adenylate cyclase were maximal after 15 min of incubation of the cells with the compound, correlating well with the time course of translocation of protein kinase C (Ca2+/phospholipid-dependent enzyme) from cytosol to membrane. The action of cholera toxin on adenylate cyclase was additive with TPA. In contrast, pertussis toxin actions on adenylate cyclase were not additive with TPA. Treatment of control cells with pertussis toxin activated adenylate cyclase 1.5-fold, whereas cells exposed to pertussis toxin for 6 h followed by TPA for 15 min showed the same 2-fold increase in adenylate cyclase activity as observed in membranes from cells exposed to TPA without prior exposure to pertussis toxin. Pertussis toxin catalyzed ADP-ribosylation was increased 2-fold in membranes from SCC 12F cells exposed to TPA, indicating an increase in the alpha beta gamma form of Gi. These data suggest that exposure of human keratinocytes to phorbol esters increases adenylate cyclase activity by a protein kinase C-mediated increase in the heterotrimeric alpha beta gamma form of Gi resulting in decreased inhibition of basal adenylate cyclase activity.  相似文献   

20.
Modulation of a Shaker potassium A-channel by protein kinase C activation   总被引:1,自引:0,他引:1  
O Moran  N Dascal  I Lotan 《FEBS letters》1991,279(2):256-260
Brain fast transient K+ channel (A channel) is known to be modulated by PKC activation. We studied, by two-electrode voltage clamp, the molecular mechanism of modulation by PKC activation of A-channels expressed in Xenopus oocytes from the Shaker H4 clone. The modulation is inhibitory affecting primarily the maximal conductance of the channels. A secondary effect is a small change in the voltage-dependence of activation and inactivation of the channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号