共查询到20条相似文献,搜索用时 15 毫秒
1.
Scanning Electron Microscopy of Rhizobium trifolii Infection Sites on Root Hairs of White Clover 总被引:1,自引:3,他引:1
下载免费PDF全文

White clover root hairs which were inoculated with Rhizobium trifolii 4S (infectious strain) contained infection threads which were observed by light microscopy and scanning electron microscopy. Three morphological types of root hairs retaining infection threads were recognized. The bacteria were strongly attached between the surfaces of two plant cell walls as follows: between surfaces of a root hair tip curled back on itself, between a protuberance from a root hair and its cell surface, or between two root hair tips clinging together. An anatomical analysis documented the attachment site of the infection thread sheath from the inside of the root hair cell. 相似文献
2.
Callose Deposits make Clover Seeds Impermeable to Water 总被引:3,自引:1,他引:3
The permeability status of the seed from ten genotypes of subterraneanclover, determined by soaking, is shown to be related to callosedeposition in the seed coat. Large amounts of callose were foundin the nutrient (parenchyma) layer of impermeable but not permeableseeds. It is suggested that the nutrient layer controls permeabilityand thus the ease of germination of seeds. Trifolium subterraneum L., clover, seed coat impermeability, callose 相似文献
3.
ROUGHLEY R. J.; DART P. J; NUTMAN P. S.; CLARKE P. A. 《Journal of experimental botany》1970,21(1):186-194
Both host cultivar and Rhizobium strain influence the numberof infected root hairs of Trifolium subl-errctneum, seedlings;Yarloop had fewer infections than Cranmore, Mount Barker, orTallarook and Rhizobium trifolii strain 5 infected fewer hairsthan strain TA1. Hybrid lines bred for sparse or abundant nodulationhad similar numbers of infected hairs, but. as in the cultivars,these always greatly exceeded the number of nodules formed.More infection threads aborted early during growth in the roothairs of Cranmore than in other hosts and early abortion wasmore common with strain 5 than strain TA1 In all hosts and with both Rhizobium strains, infection beganon day 3 and was initially restricted to one or two zones alongthe root with later infections extending these zones or initiatingnew ones. The exponential rate of infection (least for Yarloop)slows sharply when nodules appear. Early nodules and lateral roots formed at different places indifferent hosts, and in most cultivars and hybrid lines nodulesand laterals occurred in mutually exclusive zones. Primordiaarising above the first nodule failed to develop. 相似文献
4.
The processes occurring in root hairs of Ceratopteris thalictroidesduring recovery after 10 min incubation in cellulose crystallizationinhibitors (Congo Red and Calcofluor White) and in cellulosesynthesis inhibitors (Coumarin and Dichlorobenzonitrile) werestudied using light and electron microscopy. All these drugscause reversible cessation of growth of the root hairs. AfterCR and CW treatment the nuclei proceed in their normal directionof movement, whereas after Cm and DCB treatment the directionof movement is reversed immediately. After CR and CW treatment the organization of the cytoplasmin the root hair tip is temporarily altered. Cell wall synthesiscontinues, although the resulting wall has a different appearance.After Cm and DCB treatment, the cytoplasm in the root hair tiphas disintegrated and cell wall synthesis is stopped. Recoveryof cell wall synthesis results in a new cell wall between thedisintegrated cytoplasm and the remaining cytoplasm. The effects of the drugs on cytoplasmic organization are discussedin relation to their specificity in inhibiting cell wall synthesis. Key words: Ceratopteris thalictroides, root hairs, cellulose synthesis, inhibition of cell wall formation 相似文献
5.
6.
Background: As seed dispersal can vary among years and individuals, studies that focus on a single year or on a few individuals may lead to erroneous conclusions.Aims: To study temporal and spatial intraspecific variation of seed dispersal in Scrophularia canina, a widespread species with capsule-type fruit.Methods: Primary seed dispersal was quantified by placing traps in each cardinal direction around 10 individuals during two consecutive years. We correlated several seed shadow parameters (modal dispersal distance, kurtosis, skewness, percentiles, slope, and seed percentage beneath the plant canopy) with three plant features (maximum height, lateral spread and seed production).Results: Scrophularia canina dispersed their seeds by boleochory, giving rise to a typical leptokurtic curve, but behaving as a barochorous species, because about 90% of seeds landed beneath the plant canopy. Temporal dispersal in S. canina included several seed waves associated with maximum wind speeds. Plant lateral spread was significantly positively correlated with seed percentiles and percentage of seeds beneath the plant canopy regardless of year. A seed production effect was only evident when both years were considered together.Conclusions: Although time-consuming, investigation of the dispersal process for more than 1 year provides more realistic information on seed dispersal. Lateral spread is the main plant feature determining seed shadow. 相似文献
7.
Geraint Parry 《Trends in plant science》2018,23(10):845-847
8.
Antje Blümke Christian Falter Cornelia Herrfurth Bj?rn Sode Rainer Bode Wilhelm Sch?fer Ivo Feussner Christian A. Voigt 《Plant physiology》2014,165(1):346-358
The deposition of the (1,3)-β-glucan cell wall polymer callose at sites of attempted penetration is a common plant defense response to intruding pathogens and part of the plant’s innate immunity. Infection of the Fusarium graminearum disruption mutant Δfgl1, which lacks the effector lipase FGL1, is restricted to inoculated wheat (Triticum aestivum) spikelets, whereas the wild-type strain colonized the whole wheat spike. Our studies here were aimed at analyzing the role of FGL1 in establishing full F. graminearum virulence. Confocal laser-scanning microscopy revealed that the Δfgl1 mutant strongly induced the deposition of spot-like callose patches in vascular bundles of directly inoculated spikelets, while these callose deposits were not observed in infections by the wild type. Elevated concentrations of the polyunsaturated free fatty acids (FFAs) linoleic and α-linolenic acid, which we detected in F. graminearum wild type-infected wheat spike tissue compared with Δfgl1-infected tissue, provided clear evidence for a suggested function of FGL1 in suppressing callose biosynthesis. These FFAs not only inhibited plant callose biosynthesis in vitro and in planta but also partially restored virulence to the Δfgl1 mutant when applied during infection of wheat spikelets. Additional FFA analysis confirmed that the purified effector lipase FGL1 was sufficient to release linoleic and α-linolenic acids from wheat spike tissue. We concluded that these two FFAs have a major function in the suppression of the innate immunity-related callose biosynthesis and, hence, the progress of F. graminearum wheat infection.The molecular and physiological regulation of the biosynthesis of callose, which is a (1,3)-β-glucan polymer with some (1,6)-branches (Aspinall and Kessler, 1957), and its importance for plant development as well as plant defense are still under examination. Regarding the involvement of callose in plant defense responses, particular attention has been focused on the formation of cell wall thickenings in plants, so-called papillae, at sites of microbial attack. They were already described 150 years ago (deBary, 1863) and reported to commonly contain callose (Mangin, 1895). Since then, examinations have identified callose as the most abundant chemical constituent in papillae, which may also include proteins (e.g. peroxidases and antimicrobial thionins), phenolics, and other constituents (Aist and Williams, 1971; Sherwood and Vance, 1976; Mims et al., 2000). Papillae have been regarded as an early defense reaction that may not completely stop the pathogen; rather, they have been considered to act as a physical barrier to slow pathogen invasion (Stone and Clarke, 1992; Voigt and Somerville, 2009) and to contribute to the plant’s innate immunity (Jones and Dangl, 2006; Schwessinger and Ronald, 2012). The host plant can gain time to initiate defense reactions that require gene activation and expression, such as the hypersensitive reactions, phytoalexin production, and pathogenesis-related protein synthesis (Lamb and Dixon, 1997; Brown et al., 1998). However, our recent study revealed that callose can also act as a barrier that completely prevents fungal penetration. The overexpression of POWDERY MILDEW RESISTANT4 (PMR4), a gene encoding a stress-induced callose synthase, resulted in early elevated callose deposition at sites of attempted powdery mildew penetration in Arabidopsis (Arabidopsis thaliana; Ellinger et al., 2013). Interestingly, the pmr4 deletion mutant also showed an increased resistance to powdery mildew that, however, was induced at later stages of powdery mildew infection because an initial fungal penetration still occurred. In fact, the absence of the functional callose synthase PMR4 in the pmr4 mutant resulted in papillae that were free from callose but also induced a hyperactivation of the salicylic acid defense pathway, which was shown to be the basis of resistance in double mutant and microarray analyses (Jacobs et al., 2003; Nishimura et al., 2003). The callose synthase gene PMR4 from Arabidopsis belongs to the GLUCAN SYNTHASE-LIKE (GSL) family, genes that have been identified in higher plants including wheat (Triticum aestivum; Cui et al., 2001; Doblin et al., 2001; Hong et al., 2001; Østergaard et al., 2002; Voigt et al., 2006). The predicted function of these genes as callose synthases is generally supported by homology with the yeast FK506 SENSITIVITY (FKS) genes, which are believed to be subunits of (1,3)-β-glucan synthase complexes (Douglas et al., 1994; Dijkgraaf et al., 2002). Additionally, the predicted proteins encoded by the GSL genes correlate with the approximately 200-kD catalytic subunit of putative callose synthases. Li et al. (2003) showed that the amino acid sequence predicted from a GSL gene in barley (Hordeum vulgare; HvGSL1) correlates with the amino acid sequence of an active (1,3)-β-glucan synthase fraction.In this study, we aimed to examine the involvement of callose synthesis and callose deposition in plant defense against intruding fungal pathogens in the pathosystem wheat-Fusarium graminearum. We focused on the ability of wheat to inhibit a further spread of fungal pathogens after an initial, successful infection. This resistance to fungal spread within the host has been referred to as type II resistance and is part of a widely accepted two-component system of resistance, which includes type I resistance operating against initial infection (Schroeder and Christensen, 1963). For our analyses, we used the direct interaction between wheat as host and F. graminearum as a pathogen. On the one hand, Fusarium head blight (FHB) of wheat, caused by F. graminearum, is one of the most destructive crop diseases worldwide (McMullen et al., 1997; del Blanco et al., 2003; Madgwick et al., 2011) and classifies this fungus as a top 10 plant pathogen based on its importance in science and agriculture (Dean et al., 2012). On the other hand, only a limited number of wheat cultivars were identified that revealed FHB resistance. However, these cultivars did not qualify for commercial cultivation or breeding approaches due to inappropriate agronomic traits (Buerstmayr et al., 2009). Further elucidation of the mechanisms of spreading resistance could support the generation of FHB-resistant wheat cultivars.In this regard, we demonstrated that the secreted lipase FGL1 of F. graminearum is a virulence factor required for wheat infection (Voigt et al., 2005). A strong resistance to fungal spread was observed in a susceptible wheat cultivar after infection with the lipase-deficient F. graminearum strain Δfgl1. Light microscopy indicated barrier formation in the transition zone of rachilla and rachis of directly inoculated spikelets. In contrast, neither spreading resistance nor barrier formation was observed during F. graminearum wild type infection. An active role of lipases in establishing full virulence was also recently proposed for the plant pathogen Fusarium oxysporum f. sp. lycopersici, where reduced lipolytic activity due to the deletion of lipase regulatory genes resulted in reduced colonization of tomato (Solanum lycopersicum) plants (Bravo-Ruiz et al., 2013). Because the expression of the lipase-encoding gene LIP1 was induced in the biotrophic fungus Blumeria graminis during early stages of infection (Feng et al., 2009) and disruption of the putative secreted lipase gene lipA resulted in reduced virulence of the bacterial plant pathogen Xanthomonas campestris (Tamir-Ariel et al., 2012), a general importance of extracellular lipolytic activity during plant colonization is indicated.We evaluated a possible role of callose in plant defense by infecting wheat spikes with the virulent fungal pathogen F. graminearum wild type, the virulence-deficient F. graminearum deletion mutant Δfgl1, and the barley leaf pathogen Pyrenophora teres, the latter intended to induce strong plant defense responses as known from incompatible, nonhost interactions. The formation of callose plugs within the vascular bundles of inoculated spikelets and the callose synthase activity of infected spikelet tissue correlated directly with increased plant resistance. Subsequent analyses of free fatty acid (FFA) concentrations revealed that those polyunsaturated FFAs were enriched during wheat infection with the F. graminearum wild-type strain that could inhibit callose synthase activity in vitro as well as in planta and partially restored the virulence of the lipase-deficient F. graminearum strain Δfgl1. On the basis of these results, we propose a model for FHB where defense-related callose synthase is inhibited by specific FFAs whose accumulation is caused by the fungus during fungal infection; this inhibition is required for full infection of the wheat head. 相似文献
9.
Adventitious roots develop in bean hypocotyl cuttings in fourrows parallel to and between the four pairs of vascular bundles,in contrast to their irregular development in petiole and epicotylcuttings where the distribution pattern of xylem bundles isalso irregular. Auxin, applied acropetally or basipetally, increases the numberof roots but does not alter the pattern of their emergence.Similarly, [2-14C]IAA which is translocated mainly via the vascularbundles (but also laterally towards the cortex and pith) accumulatesin the root-forming areas irrespective of how it was applied. Consequently, it is deduced that the adventitious root developmentin bean hypocotyls is induced by IAA accumulation, but thatIAA does not affect or modify the predetermination of rootingsites. 相似文献
10.
11.
12.
Colonization of Wheat Root Hairs and Roots by Agrobacteria 总被引:1,自引:0,他引:1
Formation of extracellular structures in pure culture and in interaction with wheat root surface was studied by scanning and transmission electron microscopy. The effects of various factors (growth temperature as well as pretreatment of agrobacteria with kalanchoe extract, acetosyringone, and centrifugation) on formation of extracellular structures was tested. The data on Agrobacterium tumefaciens (wild-type strain C58 and mutants LBA2525 (virB2::lacZ) and LBA288 (without the Ti plasmid)) adhesion to wheat root surface and root hairs after pretreatment of agrobacteria with inducer of virulence genes (vir) acetosyringone were obtained. Formation of agrobacterial cell aggregates on wheat root hair tips was demonstrated. The proportion of root hairs with agrobacterial aggregates on the root hair tip insignificantly changed after pretreatment with acetosyringone but considerably increased after treatment of A. tumefaciens C58 and LBA2525 with kalanchoe leaf extract. The most active colonization of root hairs and formation of agrobacterial aggregates on hair root tips was observed at 22°C. The capacity of agrobacteria for adhesion on monocotyledon surface could be changed by pretreatment of bacteria with various surface-active substances. Bacterial cells subjected to centrifugation had a decreased capacity for attachment to both wheat root surface and root hairs. The relationship between the capacity for adhesion and pilus production in agrobacteria was considered. 相似文献
13.
S. Rufelt 《Journal of Phytopathology》1987,118(4):301-305
Although cutting the foliage is known to increase Fusarium root rot severity in red clover (Trifolium pratense L.), no quantitative relationship has so far been determined. In this study, results from a number of greenhouse experiments, where plants were artificially inoculated with Fusarium avenaceum (Corda ex Fr.) Sacc., show a linear relationship between cutting intensity and Fusarium root rot in red clover, cv. ‘Hermes II’ an increased cutting intensity giving an increased root rot severity. Theoretically, a threshold value can be calculated beyond which no increase in root rot severity, compared to an uncut plant, should be expected. 相似文献
14.
Pea plants were grown at different irradiances for eleven days. At this stage they were used for cuttings. The irradiance during the rooting period (155 mW · dm?2) was the same in all the experiments, Cuttings from stock plants cultivated at the weakest irradiance obtained the highest number of roots, and the poorest rooting appeared in cuttings from stock plants grown at the highest irradiance. The results indicate that the nutritional status of the stock plant is an important factor for root formation in the cutting. Light may influence the production of inhibitors which directly or indirectly affect root formation. The possible role of carbohydrates and growth promoters in the process of root formation is discussed. 相似文献
15.
An Arabidopsis Callose Synthase, GSL5, Is Required for Wound and Papillary Callose Formation
下载免费PDF全文

Jacobs AK Lipka V Burton RA Panstruga R Strizhov N Schulze-Lefert P Fincher GB 《The Plant cell》2003,15(11):2503-2513
Arabidopsis was transformed with double-stranded RNA interference (dsRNAi) constructs designed to silence three putative callose synthase genes: GLUCAN SYNTHASE-LIKE5 (GSL5), GSL6, and GSL11. Both wound callose and papillary callose were absent in lines transformed with GSL5 dsRNAi and in a corresponding sequence-indexed GSL5 T-DNA insertion line but were unaffected in GSL6 and GSL11 dsRNAi lines. These data provide strong genetic evidence that the GSL genes of higher plants encode proteins that are essential for callose formation. Deposition of callosic plugs, or papillae, at sites of fungal penetration is a widely recognized early response of host plants to microbial attack and has been implicated in impeding entry of the fungus. Depletion of callose from papillae in gsl5 plants marginally enhanced the penetration of the grass powdery mildew fungus Blumeria graminis on the nonhost Arabidopsis. Paradoxically, the absence of callose in papillae or haustorial complexes correlated with the effective growth cessation of several normally virulent powdery mildew species and of Peronospora parasitica. 相似文献
16.
The study of the underground parts of plants is often difficult, and as a result roots are often treated as homogeneous physiological entities with respect to root respiration. In this study we demonstrate a partitioning of respiration within root tissues using nitro blue tetrazo-lium staining and an incident light optical system that permits detailed observations of intact roots. The assay is rapid and easy to perform, and reveals that respiratory activity in roots is not uniform in space and time. The results show that root hairs in particular may be regions of enhanced respiratory activity in some species or in certain developmental or physiological states. This fact has important implications for the role of root hairs in the overall respiratory budget of roots and the energetics of nutrient assimilation. The results suggest that root respiration studies should consider differential respiratory activities of root cell types within roots. 相似文献
17.
Callose formation in phloem tissue was promoted by 0.5% eosinin 1 cm segments taken from first year Willow (Salix viminalisL.) shoots and by localized heat treatments in intact secondyear shoots. The eosin did not cause any change in the incorporationof 14C from labelled sucrose into an insoluble fraction butless of the label: from UDP-glucose labelled in the glucosemoiety was incorporated when eosin was present. Localized heattreatments of intact second-year tissue which was translocating[14C]sucrose failed to cause an increase in the amount of labelin an insoluble fraction in the zone where callose formationwas stimulated. The results indicate that the callose formedrapidly in response to stress and wounding is not derived directlyfrom translocated sucrose. An alternative possible origin, fromsugar nucleotides released from ruptured plastids, is discussed. 相似文献
18.
Daniela Lerchl Stefan Hillmer R. Grotha D. G. Robinson 《Plant biology (Stuttgart, Germany)》1989,102(1):62-72
The Ca2+-chelator CTC binds to a specific site on both outer surfaces of all non-meristematic cells of the unistratose thallus of Riella, known to be rich in anionic wall components and calcium, and induces there the deposition of callose. Structural changes in this region during prolonged CTC treatment have been followed by light and transmission electron microscopy. With fluorescence microscopy punctate structures can be detected after 10 min, which upon longer incubation in CTC develop into large vesicular bodies, surrounded by a circular structure. The aniline blue-derived fluorescence intensity of these structures is highest in cells of the extension growth zone. At the ultrastructural level a mosaic of numerous smooth-surfaced vesicles, presumably containing callose, initially appears subjacent to the plasma membrane. These vesicles swell and fuse with each other, forming ultimately a circular fusion profile with the plasma membrane. This complex of callose-forming vesicles is thought to develop from elements of the partially coated reticulum (PCR), based on the presence of coated vesiculation profiles on the callose vesicles and numerous aggregates of coated vesicles in their immediate vicinity. After 30 min in CTC osmiophilic particles appear around these callose vesicles and at the cytoplasmic face of mitochondria. They are later (after 60 min) deposited in the periplasmic space between wall and plasma membrane and are also released into the surrounding medium. As judged by their reaction with FeCl3, the osmiophilic particles appear to be phenolic in nature. We propose that upon binding of CTC a local increase of cytoplasmic calcium triggers callose synthesis in PCR-like compartments beneath the plasma membrane. However it remains to be shown as to why callose is synthesized exclusively in these intracellular compartments and not at the plasma membrane. 相似文献
19.
20.
Phloem Translocation and Heat-induced Callose Formation in Field-grown Gossypium hirsutum L 总被引:1,自引:4,他引:1
下载免费PDF全文

McNairn RB 《Plant physiology》1972,50(3):366-370
Phloem translocation rates in field-grown cotton (Gossypium hirsutum L.) dropped from morning to afternoon and continued to decline toward evening, except that recovery occurred following the hottest afternoon when the maximum temperature was 44 C. Water deficits increased from morning to evening, and severity of deficits generally were proportional to daytime heating. Water stress contributed toward reducing translocation but was not always the governing factor. Callose breakdown appeared to be slower than heat-induced synthesis, and in the evening callose still reflected the influence of high afternoon temperatures. Translocation was considerably reduced when about 50% or more of the hypocotyl sieve plates had large amounts of callose. While heat-induced callose may have reduced translocation because of sieve plate pore constriction, temperatures of 39 to 44 C appeared to inhibit an additional component of translocation as well, possibly in the leaf blade. 相似文献