共查询到20条相似文献,搜索用时 0 毫秒
1.
Biochemical production capabilities of Escherichia coli 总被引:3,自引:0,他引:3
Microbial metabolism provides at mechanism for the conversion of substrates into useful biochemicals. Utilization of microbes in industrial processes requires a modification of their natural metabolism in order to increase the efficiency of the desired conversion. Redirection of metabolic fluxes forms the basis of the newly defined field of metabolic engineering. In this study we use a flux balance based approach to study the biosynthesis of the 20 amino acids and 4 nucleotides as biochemical products. These amino acids and nucleotides are primary products of biosynthesis as well as important industrial products and precursors for the production of other biochemicals. The biosynthetic reactions of the bacterium Escherichia coli have been formulated into a metabolic network, and growth has been defined as a balanced drain on the metabolite pools corresponding to the cellular composition. Theoretical limits on the conversion of glucose, glycerol, and acetate substrates to biomass as well as the biochemical products have been computed. The substrate that results in the maximal carbon conversion to a particular product is identified. Criteria have been developed to identify metabolic constraints in the optimal solutions. The constraints of stoichiometry, energy, and redox have been determined in the conversions of glucose, glycerol, and acetate substrates into the biochemicals. Flux distributions corresponding to the maximal production of the biochemicals are presented. The goals of metabolic engineering are the optimal redirection of fluxes from generating biomass toward producing the desired biochemical. Optimal biomass generation is shown to decrease in a piecewise linear manner with increasing product formation. In some cases, synergy is observed between biochemical production and growth, leading to an increased overall carbon conversion. Balanced growth and product formation are important in a bioprocess, particularly for nonsecreted products. (c) 1993 John Wiley & Sons, Inc. 相似文献
2.
Escherichia coli engineered to uptake xylose while metabolizing glucose was previously shown to produce high levels of xylitol from a mixture of glucose and xylose when expressing NADPH-dependent xylose reductase from Candida boidinii (CbXR) (Cirino et al., Biotechnol Bioeng. 2006;95:1167-1176). We then described the effects of deletions of key metabolic pathways (e.g., Embden-Meyerhof-Parnas and pentose phosphate pathway) and reactions (e.g., transhydrogenase and NADH dehydrogenase) on resting-cell xylitol yield (Y RPG: moles of xylitol produced per mole of glucose consumed) (Chin et al., Biotechnol Bioeng. 2009;102:209-220). These prior results demonstrated the importance of direct NADPH supply by NADP+-utilizing enzymes in central metabolism for driving heterologous NADPH-dependent reactions. This study describes strain modifications that improve coupling between glucose catabolism (oxidation) and xylose reduction using two fundamentally different strategies. We first examined the effects of deleting the phosphofructokinase (pfk) gene(s) on growth-uncoupled xylitol production and found that deleting both pfkA and sthA (encoding the E. coli-soluble transhydrogenase) improved the xylitol Y RPG from 3.4 ± 0.6 to 5.4 ± 0.4. The second strategy focused on coupling aerobic growth on glucose to xylitol production by deleting pgi (encoding phosphoglucose isomerase) and sthA. Impaired growth due to imbalanced NADPH metabolism (Sauer et al., J Biol Chem. 2004;279:6613-6619) was alleviated upon expressing CbXR, resulting in xylitol production similar to that of the growth-uncoupled precursor strains but with much less acetate secretion and more efficient utilization of glucose. Intracellular nicotinamide cofactor levels were also quantified, and the magnitude of the change in the NADPH/NADP+ ratio measured from cells consuming glucose in the absence vs. presence of xylose showed a strong correlation to the resulting Y RPG. 相似文献
3.
氨基酸发酵是我国发酵工业的支柱产业,近年来,随着代谢工程的快速发展,氨基酸的代谢工程育种蓬勃发展。传统的正向代谢工程、基于组学分析与计算机模拟的反向代谢工程以及借鉴自然进化的进化代谢工程,都有越来越多的应用。在氨基酸的工业生产中涌现出了一系列具有高效生产、抗逆性强等优良性状的菌株。日益剧烈的市场竞争对菌株的选育提出了新的要求,如开发高附加值氨基酸品种、菌株代谢的动态调控、适应新工艺的要求等。文中介绍了氨基酸生产相关的代谢工程研究进展以及未来的发展趋势。 相似文献
4.
Parametric sensitivity of stoichiometric flux balance models applied to wild-type Escherichia coli metabolism 总被引:4,自引:0,他引:4
The esterification of lauric acid with geraniol catalyzed by the commercially immobilized lipase preparation from Mucor miehei, Lipozyme(R), was studied in well-stirred flasks. The enzyme support was characterized in terms of its internal and external surface area, protein location, and protein content. It was found that the enzyme was mainly located on the external surface of the support, therefore, internal diffusional limitations were not important. It was also shown that the protein content of the support depends on the size of the particle, with smaller particles containing higher amounts of protein per unit weight. Under the conditions studied, the reaction was not under external mass transfer limitations, and the initial reaction rate depended on the size of the support particles. This was mainly due to the different protein contents on the support as a function of particle size and not to internal or external mass transfer limitations. Also, it was found that the inhibition exerted by water was predominantly a physical effect due to its accumulation around the enzyme. It was also found that the reaction was substrate inhibited by lauric acid, but not by geraniol. (c) 1995 John Wiley & Sons, Inc. 相似文献
5.
Sigüenza R. Flores N. Hernández G. Martínez A. Bolivar F. Valle F. 《World journal of microbiology & biotechnology》1999,15(5):587-592
The growth kinetics of an Escherichia coli wild type strain and two derivative mutants were examined in batch cultures and in glucose-limited chemostats. One mutant (PB12) had an inactive phosphotranferase transport system and the other (PB25) had interrupted pykA and pykF genes that code for the two pyruvate kinase isoenzymes. In both batch and continuous culture, important differences in acetic acid accumulation and other metabolic activities were found. Compared to the wild type strain, we observed a reduction in acetic acid accumulation of 25 and 80% in PB25 and PB12 strains respectively, in batch culture. Continuous culture experiments revealed that compared to the other two strains, PB25 accumulated less acetic acid as a function of dilution rate. In continuous cultures, oxidoreductase metabolic activities were substantially affected in the two mutant strains. These changes in turn were reflected in different levels of biomass and CO2 production, and in oxygen consumption. 相似文献
6.
Aims: Paromamine is a vital and common intermediate in the biosynthesis of 4,5 and 4,6‐disubstituted 2‐deoxystreptamine (DOS)‐containing aminoglycosides. Our aim is to develop an engineered Escherichia coli system for heterologous production of paromamine. Methods and Results: We have constructed a mutant of E. coli BL21 (DE3) by disrupting glucose‐6‐phosphate isomerase (pgi) of primary metabolic pathway to increase glucose‐6‐phosphate pool inside the host. Disruption was carried out by λ Red/ET recombination following the protocol mentioned in the kit. Recombinants bearing 2‐deoxy‐scyllo‐inosose (DOI), DOS and paromamine producing genes were constructed from butirosin gene cluster and heterologously expressed in engineered host designed as E. coli BL21 (DE3) Δpgi. Secondary metabolites produced by the recombinants fermentated in 2YTG medium were extracted, and analysis of the extracts showed there is formation of DOI, DOS and paromamine. Conclusions: Escherichia coli system is engineered for heterologous expression of paromamine derivatives of aminoglycoside biosynthesis. Significance and Impact of the Study: This is the first report of heterologous expression of paromamine gene set in E. coli. Hence a new platform is established in E. coli system for the production of paromamine which is useful for the exploration of novel aminoglycosides by combinatorial biosynthesis of 4,5‐ and 4,6‐disubtituted route of DOS‐containing aminoglycosides. 相似文献
7.
角鲨烯因其具有良好的抗氧化功能而被广泛应用于食品、医药、化妆品、工业应用等领域。本实验在大肠杆菌中构建角鲨烯合成途径,通过对其合成途径中关键限速酶(1-脱氧-D-木酮糖-5-磷酸合酶和异戊烯基二磷酸异构酶)过表达的方法进行初步调控,使角鲨烯的产量提升了近三倍。之后采用单因素试验对其发酵培养基和培养条件进行优化,以此来提高角鲨烯的产量。优化发酵条件后,使用最优发酵培养基——TB培养基,在最佳发酵条件:37℃,220r/min培养至OD600约为1.2时加入终浓度为0.1mmol/L的IPTG诱导剂,25℃条件下诱导48h,角鲨烯产量可达73.88mg/L。 相似文献
8.
A pseudo-exponential feeding method for control of specific growth rate in fed-batch cultures 总被引:1,自引:0,他引:1
A simple feeding method for controlling specific growth rate in fed-batch culture was developed. This method applies a constant feed rate using a concentrate reservoir and two mixing chambers in series to simulate the exponential feeding. Fed-batch cultures with Escherichia coli showed that the present feeding method could sustain the cells growing at predetermined specific growth rates, where the time length for exponential growth was dependent on the magnitude of the growth rate. The present feeding method is convenient to operate, requires no computerized control equipments, and thus could expect an extensive application in fed-batch culture. 相似文献
9.
Rebecca M. Lennen Drew J. Braden Ryan M. West James A. Dumesic Brian F. Pfleger 《Biotechnology and bioengineering》2010,106(2):193-202
The development of renewable alternatives to diesel and jet fuels is highly desirable for the heavy transportation sector, and would offer benefits over the production and use of short‐chain alcohols for personal transportation. Here, we report the development of a metabolically engineered strain of Escherichia coli that overproduces medium‐chain length fatty acids via three basic modifications: elimination of β‐oxidation, overexpression of the four subunits of acetyl‐CoA carboxylase, and expression of a plant acyl–acyl carrier protein (ACP) thioesterase from Umbellularia californica (BTE). The expression level of BTE was optimized by comparing fatty acid production from strains harboring BTE on plasmids with four different copy numbers. Expression of BTE from low copy number plasmids resulted in the highest fatty acid production. Up to a seven‐fold increase in total fatty acid production was observed in engineered strains over a negative control strain (lacking β‐oxidation), with a composition dominated by C12 and C14 saturated and unsaturated fatty acids. Next, a strategy for producing undecane via a combination of biotechnology and heterogeneous catalysis is demonstrated. Fatty acids were extracted from a culture of an overproducing strain into an alkane phase and fed to a Pd/C plug flow reactor, where the extracted fatty acids were decarboxylated into saturated alkanes. The result is an enriched alkane stream that can be recycled for continuous extractions. Complete conversion of C12 fatty acids extracted from culture to alkanes has been demonstrated yielding a concentration of 0.44 g L?1 (culture volume) undecane. Biotechnol. Bioeng. 2010;106: 193–202. © 2010 Wiley Periodicals, Inc. 相似文献
10.
Dien BS Nichols NN Bothast RJ 《Journal of industrial microbiology & biotechnology》2002,29(5):221-227
Conversion of lignocellulose to lactic acid requires strains capable of fermenting sugar mixtures of glucose and xylose. Recombinant
Escherichia coli strains were engineered to selectively produce L-lactic acid and then used to ferment sugar mixtures. Three of these strains were catabolite repression mutants (ptsG
−) that have the ability to simultaneously ferment glucose and xylose. The best results were obtained for ptsG
− strain FBR19. FBR19 cultures had a yield of 0.77 (g lactic acid/g added sugar) when used to ferment a 100 g/l total equal
mixture of glucose and xylose. The strain also consumed 75% of the xylose. In comparison, the ptsG
+ strains had yields of 0.47–0.48 g/g and consumed 18–22% of the xylose. FBR19 was subsequently used to ferment a variety of
glucose (0–40 g/l) and xylose (40 g/l) mixtures. The lactic acid yields ranged from 0.74 to 1.00 g/g. Further experiments
were conducted to discover the mechanism leading to the poor yields for ptsG
+ strains. Xylose isomerase (XI) activity, a marker for induction of xylose metabolism, was monitored for FBR19 and a ptsG
+ control during fermentations of a sugar mixture. Crude protein extracts prepared from FBR19 had 10–12 times the specific
XI activity of comparable samples from ptsG
+ strains. Therefore, higher expression of xylose metabolic genes in the ptsG
− strain may be responsible for superior conversion of xylose to product compared to the ptsG
+ fermentations.
Received 14 December 2000/ Accepted in revised form 28 June 2002 相似文献
11.
12.
Phenylalanine- and tyrosine-dependent production of enterobactin in Escherichia coli 总被引:1,自引:0,他引:1
Abstract Under low-iron conditions, Escherichia coli synthesizes the siderophore enterobactin. When compared to wild-type cells grown in iron sufficient medium, cells grown under iron limitation, in the absence of tyrosine and phenylalanine or the presence of both, increased catechol production (a measure of enterobactin and its degradation product 2,3-dihydroxybenzoic acid) 5- to 9-fold while cells supplemented with tyrosine alone produced a 10- to 20-fold increase. Mutations in fur , tyrA , pheA , or pheU generally resulted in increased enterobactin production, while a tyrR mutant was unaffected by combinations of tyrosine and phenylalanine. 相似文献
13.
González-Leal IJ Carrillo-Cocom LM Ramírez-Medrano A López-Pacheco F Bulnes-Abundis D Webb-Vargas Y Alvarez MM 《Biotechnology progress》2011,27(6):1709-1717
Culture media design is central to the optimization of monoclonal antibody (mAb) production. Although general strategies do not currently exist for optimization of culture media, the combined use of statistical design and analysis of experiments and strategies based on simple material balances can facilitate culture media design. In this study, we evaluate the effect of selected amino acids on the growth rate and monoclonal antibody production of a Chinese hamster ovary DG-44 (CHO-DG44) cell line. These amino acids were selected based on their relative mass fraction in the specific mAb produced in this study, their consumption rate during bioreactor experiments, and also through a literature review. A Plackett-Burman statistical design was conducted to minimize the number of experiments needed to obtain statistically relevant information. The effect of this set of amino acids was evaluated during exponential cell culture (considering viable cell concentration and the specific growth rate as main output variables) and during the high cell-density stage (considering mAb final concentration and specific productivity as relevant output variables). For this particular cell line, leucine (Leu) and arginine (Arg) had the highest negative and positive effects on cell viability, respectively; Leu and threonine (Thr) had the highest negative effect on growth rate, and valine (Val) and Arg demonstrated the highest positive impact on mAb final concentration. Results suggest the pertinence of a two-stage strategy for amino acid supplementation, with a mixture optimized for cell growth and a different amino acid mixture for mAb production at high density. 相似文献
14.
以解纤维梭菌( Clostridium cellulolyticum)和热纤梭菌( Clostridium thermocellum)为代表的产纤维小体梭菌可以直接完成从木质纤维素原料到乙醇的生物转化,是用于通过整合生物加工技术生产纤维素乙醇的优良候选菌株。然而,这些产纤维小体梭菌的纤维素降解效率及乙醇产量尚不能满足工业化生产的要求,其遗传改造技术的不成熟严重制约了通过定向代谢工程改造提高生产性能的进程。针对这些典型的产纤维小体菌株,各国科学家近年来在基于二类内含子的嗜中温及嗜高温遗传改造平台建立方面取得了较大突破,并通过靶向代谢工程改造,显著提高纤维素乙醇的产量。笔者对这些前期研究工作以及国内外相关研究成果进行系统的总结,并对构建的遗传改造工具的应用前景进行展望。 相似文献
15.
A numerical method to process experimental data concerning plasmid stability of a recombinant bacteria during continuous cultures with nonselective media is proposed here. This method differs from previous ones in that it uses the derivatve form of the state equation of the Imanaka-Aiba model for recombinant cultures. The methodology proposed here allows one to estimate values for the two model parameters without forcing them to be constant. Until now, this could not be done using classical analytical techniques because these parameters have been considered invariable because of the integration used in the evaluation of the model. These parameters are (1) the difference in the specific growth rates between plasmid-carrying cells and plasmid-free cells (deltamu), and (2) the probability of plasmid loss by plasmid-containing cells (rho(r) mu(+)). The derivative technique used here is completed by mathematical treatments involving data filtering and smoothing. The values of the two parameters are in agreement with those already publised. The current technique does not impose preconditions and permit us to further study related phenomena. 相似文献
16.
Qu L Ji XJ Ren LJ Nie ZK Feng Y Wu WJ Ouyang PK Huang H 《Letters in applied microbiology》2011,52(1):22-27
Aims: To improve the yield and productivity of docosahexaenoic acid (DHA) by Schizochytrium sp. in terms of the analysis of microbial physiology. Methods and Results: A two‐stage oxygen supply control strategy, aimed at achieving high concentration and high productivity of DHA, was proposed. At the first 40 h, KLa was controlled at 150·1 h?1 to obtain high μ for cell growth, subsequently KLa was controlled at 88·5 h?1 to maintain high qp for high DHA accumulation. Finally, the maximum lipid, DHA content and DHA productivity reached 46·6, 17·7 g l?1 and 111 mg l?1 h?1, which were 43·83%, 63·88% and 32·14% over the best results controlled by constant KLa. Conclusions: This paper described a two‐stage oxygen supply control strategy based on the kinetic analysis for efficient DHA fermentation by Schizochytrium sp. Significance and Impact of the study: This study showed the advantage of two‐stage control strategy in terms of microbial physiology. As KLa is a scaling‐up parameter, the idea developed in this paper could be scaled‐up to industrial process and applied to other industrial biotechnological processes to achieve both high product concentration and high productivity. 相似文献
17.
N. Qureshi B. S. Dien S. Liu B. C. Saha R. Hector M. A. Cotta S. Hughes 《Biotechnology progress》2012,28(5):1167-1178
Five reactor systems (free cell batch, free cell continuous, entrapped cell immobilized, adsorbed cell packed bed, and cell recycle membrane reactors) were compared for ethanol production from xylose using Escherichia coli FBR5. In the free cell batch and free cell continuous reactors (continuous stirred tank reactor‐CSTR) productivities of 0.84 gL?1 h?1 and 1.77 gL?1 h?1 were achieved, respectively. A cell recycle membrane reactor resulted in the highest productivity of 55.56 gL?1 h?1, which is an increase of 66‐fold (e.g., 6614%) over the batch reactor. Calcium alginate gel CSTR resulted in a productivity of 2.04 gL?1 h?1 whereas adsorbed cell packed bed reactor resulted in a productivity of 4.39 gL?1 h?1. In the five reactor systems, ethanol concentrations ranged from 18.9 to 40.30 gL?1 with metabolic yields from 0.44 to 0.51. Published 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012 相似文献
18.
B H Chung Y J Choi S H Yoon S Y Lee Y I Lee 《Journal of industrial microbiology & biotechnology》2000,24(2):94-99
Fed-batch cultures were carried out to overproduce human insulin-like growth factor I (IGF-I) in Escherichia coli. The effects of carbon sources (glucose or glycerol) and induction time on cell growth and IGF-I production were investigated
in more detail. Glycerol was a better carbon source than glucose for IGF-I production in fed-batch culture. Induction at the
mid-exponential phase with glycerol as a carbon source in the pH-stat fed-batch culture was optimal for IGF-I production.
Under this condition, 2.8 g L−1 of fusion IGF-I was produced as inclusion bodies. We have also developed downstream processing for preparative scale purification
of IGF-I from the fusion protein produced by the fed-batch culture using glycerol as a carbon source. After the fusion protein
expressed was solubilized in 8 M urea and cleaved with hydroxylamine, the released IGF-I was purified by cation exchange chromatography,
refolding and preparative scale reverse phase HPLC (rp-HPLC) to give recombinant IGF-I of >98% purity. The biological activities
of the purified IGF-I were measured and found to be identical to those of commercial IGF-I. Journal of Industrial Microbiology & Biotechnology (2000) 24, 94–99.
Received 13 January 1999/ Accepted in revised form 02 October 1999 相似文献
19.
Ouoba LI Rechinger KB Barkholt V Diawara B Traore AS Jakobsen M 《Journal of applied microbiology》2003,94(3):396-402
AIMS: To examine isolates of Bacillus subtilis and B. pumilus predominant in Soumbala for their ability to degrade African locust bean proteins (ALBP). METHODS AND RESULTS: Agar diffusion test in casein and ALBP agar was used for screening of isolates. The profiles of water-soluble proteins and free amino acids (FAA) during the fermentation of ALBP by the Bacillus isolates were studied by SDS-PAGE and cation exchange chromatography. The profile of soluble proteins changed with the fermentation time and varied depending on the isolate. The quantity of total FAA and essential FAA such as lysine was increased sharply between 24 and 48 h of fermentation and differed among the isolates. Simultaneously, a pH increase was observed. Cysteine, methionine, leucine, isoleucine, tyrosine and phenylalaline appeared during fermentation. CONCLUSION: The Bacillus isolates studied degraded ALBP leading to a profile of soluble proteins and FAA specific for each isolate. SIGNIFICANCE AND IMPACT OF THE STUDY: This study contributes to the selection of Bacillus strains to be used as starter cultures for controlled production of Soumbala. 相似文献
20.
Effect of oxygen supply on passaging, stabilising and screening of recombinant Hansenula polymorpha production strains in test tube cultures 总被引:1,自引:0,他引:1
Twenty-four Hansenula polymorpha transformants were passaged and stabilised in glucose medium and screened in glycerol medium for recombinant phytase in shaken test tubes. The cultivations were performed under either limited or non-limited oxygen supply. Maximum oxygen transfer capacities of test tubes were assessed by sulfite oxidation. Oxygen-limited glucose cultures resulted in a partially anaerobic metabolism and formation of 4.1 g ethanol l(-1), which was subsequently aerobically metabolised. Non-limited oxygen supply led to overflow metabolism and to accumulation of 2.1 g acetic acid l(-1), reducing the biomass yield. The use of glycerol in the screening main cultures prevented by-product formation irrespective of oxygen supply. Preculturing in glucose medium under non-limited oxygen supply resulted in a 20-h lag phase of the screening main culture. This lag phase was not observed when preculturing was performed under oxygen limitation. Phytase activity was on average 25% higher in cultures passaged, stabilised and screened under limited oxygen supply than in cultures under non-limited oxygen supply. 相似文献