首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
D1-Thr179, which overlies the reaction center chlorophyll Chl D1 of Photosystem II was replaced with His and Glu through site-directed mutation in Synechocystis sp. PCC 6803. Spectroscopic characterization of the mutants indicates that, compared to wild type, the main bleaching in the triplet-minus-singlet absorbance difference spectrum and the electrochromic band shift in the (P680 (+)Q A (-)-P680Q A) absorbance difference spectrum are displaced to the red by approximately 2 nm in the D1-Thr179His mutant and to the blue by approximately 1 nm in the D1-Thr179Glu mutant. These difference spectra are compared with the absorbance difference spectra, measured on the same states in the D1-His198Gln mutant in which the axial ligand D1-His198 of the special pair chlorophyll, P D1, was replaced by glutamine. Together, these results give direct evidence that (a) the reaction center triplet state, produced upon charge recombination from (3)[P (+)Pheo (-)], is primarily localized on Chl D1; (b) the cation of the oxidized donor P (+) is predominantly localized on chlorophyll P D1 of the special pair; and (c) the Q Y band of the accessory chlorophyll Chl D1 is electrochromically shifted in response to charges on P (+) and Q A (-). Light-induced absorbance difference spectra (between 650 and 710 nm), associated with the oxidation of secondary donors and the reduction of Q A, exhibit a bleaching attributed to the oxidation of a Chl Z and strong electrochromic band shifts. On the basis of mutation-induced spectroscopic changes and of structure-based calculations, we conclude that the experimental spectra are best explained by a blue-shift of the Q Y band of the accessory chlorophyll Chl D1, arising from charges on Car D2 (+) and Chl ZD2 (+) and on reduced Q A.  相似文献   

2.
Site-directed mutations were introduced to replace D1-His198 and D2-His197 of the D1 and D2 polypeptides, respectively, of the photosystem II (PSII) reaction center of Synechocystis PCC 6803. These residues coordinate chlorophylls P(A) and P(B) which are homologous to the special pair Bchlorophylls of the bacterial reaction centers that are coordinated respectively by histidines L-173 and M-200 (202). P(A) and P(B) together serve as the primary electron donor, P, in purple bacterial reaction centers. In PS II, the site-directed mutations at D1 His198 affect the P(+)--P-absorbance difference spectrum. The bleaching maximum in the Soret region (in WT at 433 nm) is blue-shifted by as much as 3 nm. In the D1 His198Gln mutant, a similar displacement to the blue is observed for the bleaching maximum in the Q(y) region (672.5 nm in WT at 80 K), whereas features attributed to a band shift centered at 681 nm are not altered. In the Y(Z*)--Y(Z)-difference spectrum, the band shift of a reaction center chlorophyll centered in WT at 433--434 nm is shifted by 2--3 nm to the blue in the D1-His198Gln mutant. The D1-His198Gln mutation has little effect on the optical difference spectrum, (3)P--(1)P, of the reaction center triplet formed by P(+)Pheo(-) charge recombination (bleaching at 681--684 nm), measured at 5--80 K, but becomes visible as a pronounced shoulder at 669 nm at temperatures > or =150 K. Measurements of the kinetics of oxidized donor--Q(A)(-) charge recombination and of the reduction of P(+) by redox active tyrosine, Y(Z), indicate that the reduction potential of the redox couple P(+)/P can be appreciably modulated both positively and negatively by ligand replacement at D1-198 but somewhat less so at D2-197. On the basis of these observations and others in the literature, we propose that the monomeric accessory chlorophyll, B(A), is a long-wavelength trap located at 684 nm at 5 K. B(A)* initiates primary charge separation at low temperature, a function that is increasingly shared with P(A)* in an activated process as the temperature rises. Charge separation from B(A)* would be potentially very fast and form P(A)(+)B(A)(-) and/or B(A)(+)Pheo(-) as observed in bacterial reaction centers upon direct excitation of B(A) (van Brederode, M. E., et al. (1999) Proc. Natl. Acad Sci. 96, 2054--2059). The cation, generated upon primary charge separation in PSII, is stabilized at all temperatures primarily on P(A), the absorbance spectrum of which is displaced to the blue by the mutations. In WT, the cation is proposed to be shared to a minor extent (approximately 20%) with P(B), the contribution of which can be modulated up or down by mutation. The band shift at 681 nm, observed in the P(+)-P difference spectrum, is attributed to an electrochromic effect of P(A)(+) on neighboring B(A). Because of its low-energy singlet and therefore triplet state, the reaction center triplet state is stabilized on B(A) at < or =80 K but can be shared with P(A) at >80 K in a thermally activated process.  相似文献   

3.
The monomeric chlorophyll, ChlD1, which is located between the PD1PD2 chlorophyll pair and the pheophytin, PheoD1, is the longest wavelength chlorophyll in the heart of Photosystem II and is thought to be the primary electron donor. Its central Mg2+ is liganded to a water molecule that is H-bonded to D1/T179. Here, two site-directed mutants, D1/T179H and D1/T179V, were made in the thermophilic cyanobacterium, Thermosynechococcus elongatus, and characterized by a range of biophysical techniques. The Mn4CaO5 cluster in the water-splitting site is fully active in both mutants. Changes in thermoluminescence indicate that i) radiative recombination occurs via the repopulation of *ChlD1 itself; ii) non-radiative charge recombination reactions appeared to be faster in the T179H-PSII; and iii) the properties of PD1PD2 were unaffected by this mutation, and consequently iv) the immediate precursor state of the radiative excited state is the ChlD1+PheoD1? radical pair. Chlorophyll bleaching due to high intensity illumination correlated with the amount of 1O2 generated. Comparison of the bleaching spectra with the electrochromic shifts attributed to ChlD1 upon QA? formation, indicates that in the T179H-PSII and in the WT*3-PSII, the ChlD1 itself is the chlorophyll that is first damaged by 1O2, whereas in the T179V-PSII a more red chlorophyll is damaged, the identity of which is discussed. Thus, ChlD1 appears to be one of the primary damage site in recombination-mediated photoinhibition. Finally, changes in the absorption of ChlD1 very likely contribute to the well-known electrochromic shifts observed at ~430?nm during the S-state cycle.  相似文献   

4.
The influence of the histidine axial ligand to the PD1 chlorophyll of photosystem II on the redox potential and spectroscopic properties of the primary electron donor, P680, was investigated in mutant oxygen-evolving photosystem II (PSII) complexes purified from the thermophilic cyanobacterium Thermosynechococcus elongatus. To achieve this aim, a mutagenesis system was developed in which the psbA1 and psbA2 genes encoding D1 were deleted from a His-tagged CP43 strain (to generate strain WT?) and mutations D1-H198A and D1-H198Q were introduced into the remaining psbA3 gene. The O2-evolving activity of His-tagged PSII isolated from WT? was found to be significantly higher than that measured from His-tagged PSII isolated from WT in which psbA1 is expected to be the dominantly expressed form. PSII purified from both the D1-H198A and D1-H198Q mutants exhibited oxygen-evolving activity as high as that from WT?. Surprisingly, a variety of kinetic and spectroscopic measurements revealed that the D1-H198A and D1-H198Q mutations had little effect on the redox and spectroscopic properties of P680, in contrast to the earlier results from the analysis of the equivalent mutants constructed in Synechocystis sp. PCC 6803 [B.A. Diner, E. Schlodder, P.J. Nixon, W.J. Coleman, F. Rappaport, J. Lavergne, W.F. Vermaas, D.A. Chisholm, Site-directed mutations at D1-His198 and D2-His197 of photosystem II in Synechocystis PCC 6803: sites of primary charge separation and cation and triplet stabilization, Biochemistry 40 (2001) 9265-9281]. We conclude that the nature of the axial ligand to PD1 is not an important determinant of the redox and spectroscopic properties of P680 in T. elongatus.  相似文献   

5.
The influence of the histidine axial ligand to the PD1 chlorophyll of photosystem II on the redox potential and spectroscopic properties of the primary electron donor, P680, was investigated in mutant oxygen-evolving photosystem II (PSII) complexes purified from the thermophilic cyanobacterium Thermosynechococcus elongatus. To achieve this aim, a mutagenesis system was developed in which the psbA1 and psbA2 genes encoding D1 were deleted from a His-tagged CP43 strain (to generate strain WT*) and mutations D1-H198A and D1-H198Q were introduced into the remaining psbA3 gene. The O2-evolving activity of His-tagged PSII isolated from WT* was found to be significantly higher than that measured from His-tagged PSII isolated from WT in which psbA1 is expected to be the dominantly expressed form. PSII purified from both the D1-H198A and D1-H198Q mutants exhibited oxygen-evolving activity as high as that from WT*. Surprisingly, a variety of kinetic and spectroscopic measurements revealed that the D1-H198A and D1-H198Q mutations had little effect on the redox and spectroscopic properties of P680, in contrast to the earlier results from the analysis of the equivalent mutants constructed in Synechocystis sp. PCC 6803 [B.A. Diner, E. Schlodder, P.J. Nixon, W.J. Coleman, F. Rappaport, J. Lavergne, W.F. Vermaas, D.A. Chisholm, Site-directed mutations at D1-His198 and D2-His197 of photosystem II in Synechocystis PCC 6803: sites of primary charge separation and cation and triplet stabilization, Biochemistry 40 (2001) 9265-9281]. We conclude that the nature of the axial ligand to PD1 is not an important determinant of the redox and spectroscopic properties of P680 in T. elongatus.  相似文献   

6.
The mechanism of charge recombination was studied in Photosystem II by using flash induced chlorophyll fluorescence and thermoluminescence measurements. The experiments were performed in intact cells of the cyanobacterium Synechocystis 6803 in which the redox properties of the primary pheophytin electron acceptor, Phe, the primary electron donor, P(680), and the first quinone electron acceptor, Q(A), were modified. In the D1Gln130Glu or D1His198Ala mutants, which shift the free energy of the primary radical pair to more positive values, charge recombination from the S(2)Q(A)(-) and S(2)Q(B)(-) states was accelerated relative to the wild type as shown by the faster decay of chlorophyll fluorescence yield, and the downshifted peak temperature of the thermoluminescence Q and B bands. The opposite effect, i.e. strong stabilization of charge recombination from both the S(2)Q(A)(-) and S(2)Q(B)(-) states was observed in the D1Gln130Leu or D1His198Lys mutants, which shift the free energy level of the primary radical pair to more negative values, as shown by the retarded decay of flash induced chlorophyll fluorescence and upshifted thermoluminescence peak temperatures. Importantly, these mutations caused a drastic change in the intensity of thermoluminescence, manifested by 8- and 22-fold increase in the D1Gln130Leu and D1His198Lys mutants, respectively, as well as by a 4- and 2.5-fold decrease in the D1Gln130Glu and D1His198Ala mutants, relative to the wild type, respectively. In the presence of the electron transport inhibitor bromoxynil, which decreases the redox potential of Q(A)/Q(A)(-) relative to that observed in the presence of DCMU, charge recombination from the S(2)Q(A)(-) state was accelerated in the wild type and all mutant strains. Our data confirm that in PSII the dominant pathway of charge recombination goes through the P(680)(+)Phe(-) radical pair. This indirect recombination is branched into radiative and non-radiative pathways, which proceed via repopulation of P(680)(*) from (1)[P(680)(+)Ph(-)] and direct recombination of the (3)[P(680)(+)Ph(-)] and (1)[P(680)(+)Ph(-)] radical states, respectively. An additional non-radiative pathway involves direct recombination of P(680)(+)Q(A)(-). The yield of these charge recombination pathways is affected by the free energy gaps between the Photosystem II electron transfer components in a complex way: Increase of DeltaG(P(680)(*)<-->P(680)(+)Phe(-)) decreases the yield of the indirect radiative pathway (in the 22-0.2% range). On the other hand, increase of DeltaG(P(680)(+)Phe(-)<-->P(680)(+)Q(A)(-)) increases the yield of the direct pathway (in the 2-50% range) and decreases the yield of the indirect non-radiative pathway (in the 97-37% range).  相似文献   

7.
The main cofactors of Photosystem II (PSII) are borne by the D1 and D2 subunits. In the thermophilic cyanobacterium Thermosynechococcus elongatus, three psbA genes encoding D1 are found in the genome. Among the 344 residues constituting the mature form of D1, there are 21 substitutions between PsbA1 and PsbA3, 31 between PsbA1 and PsbA2, and 27 between PsbA2 and PsbA3. In a previous study (Sugiura et al., J. Biol. Chem. 287 (2012), 13336-13347) we found that the oxidation kinetics and spectroscopic properties of TyrZ were altered in PsbA2-PSII when compared to PsbA(1/3)-PSII. The comparison of the different amino acid sequences identified the residues Cys144 and Pro173 found in PsbA1 and PsbA3, as being substituted in PsbA2 by Pro144 and Met173, and thus possible candidates accounting for the changes in the geometry and/or the environment of the TyrZ/His190 phenol/imidizol motif. Indeed, these amino acids are located upstream of the α-helix bearing TyrZ and between the two α-helices bearing TyrZ and its hydrogen-bonded partner, D1/His190. Here, site-directed mutants of PSII, PsbA3/Pro173Met and PsbA2/Met173Pro, were analyzed using X- and W-band EPR and UV-visible time-resolved absorption spectroscopy. The Pro173Met substitution in PsbA2-PSII versus PsbA3-PSII is shown to be the main structural determinant of the previously described functional differences between PsbA2-PSII and PsbA3-PSII. In PsbA2-PSII and PsbA3/Pro173Met-PSII, we found that the oxidation of TyrZ by P680+● was specifically slowed during the transition between S-states associated with proton release. We thus propose that the increase of the electrostatic charge of the Mn4CaO5 cluster in the S2 and S3 states could weaken the strength of the H-bond interaction between TyrZ and D1/His190 in PsbA2 versus PsbA3 and/or induce structural modification(s) of the water molecules network around TyrZ.  相似文献   

8.
We have measured the flash-induced absorbance difference spectrum attributed to the formation of the secondary radical pair, P+Q, between 270 nm and 1000 nm at 77 K in photosystem II of the chlorophyll d containing cyanobacterium, Acaryochloris marina. Despite the high level of chlorophyll d present, the flash-induced absorption difference spectrum of an approximately 2 ms decay component shows a number of features which are typical of the difference spectrum seen in oxygenic photosynthetic organisms containing no chlorophyll d. The spectral shape in the near-UV indicates that a plastoquinone is the secondary acceptor molecule (QA). The strong C-550 change at 543 nm confirms previous reports that pheophytin a is the primary electron acceptor. The bleach at 435 nm and increase in absorption at 820 nm indicates that the positive charge is stabilized on a chlorophyll a molecule. In addition a strong electrochromic band shift, centred at 723 nm, has been observed. It is assigned to a shift of the Qy band of the neighbouring accessory chlorophyll d, ChlD1. It seems highly likely that it accepts excitation energy from the chlorophyll d containing antenna. We therefore propose that primary charge separation is initiated from this chlorophyll d molecule and functions as the primary electron donor. Despite its lower excited state energy (0.1 V less), as compared to chlorophyll a, this chlorophyll d molecule is capable of driving the plastoquinone oxidoreductase activity of photosystem II. However, chlorophyll a is used to stabilize the positive charge and ultimately to drive water oxidation.  相似文献   

9.
10.
Two histidines provide the axial ligands of the two chlorophyll a (Chl a) molecules which form the primary electron donor (P700) of photosystem I (PSI). Histidine 676 in the protein subunit PsaA, His(A676), and histidine 656 in subunit PsaB, His(B656), were replaced in the green algae Chlamydomnas reinhardtii by site-directed mutagenesis with nonpolar, uncharged polar, acidic, and basic amino acid residues. Only the substitutions with uncharged polar residues led to a significant accumulation of PSI in the thylakoid membranes. These PSI complexes were isolated and the physical properties of the primary donor characterized. The midpoint potential of P700(+)(*)/P700 was increased in all mutants (up to 140 mV) and showed a dependence on size and polarizability of the residues when His(B656) was substituted. In the light-minus-dark absorbance spectra, all mutations in PsaB exhibited an additional bleaching band at 665 nm at room temperature comparable with the published spectrum for the replacement of His(B656) with asparagine [Webber, A. N., Su Hui, Bingham, S. E., K?ss, H., Krabben, L., Kuhn, M., Jordan, R., Schlodder, E., and Lubitz, W. (1996) Biochemistry 35, 12857-12863]. Substitutions of His(A676) showed an additional shoulder around 680 nm. In the low-temperature absorbance difference spectra of P700(+)(*)/P700, a blue shift of the main bleaching band by 2 nm and some changes in the spectral features around 660 nm were observed for mutations of His(B656) in PsaB. The analogous substitution in PsaA showed only a shift of the main bleaching band. Similar effects of the mutations were found in the (3)P700/P700 absorbance difference spectra at low temperatures (T = 2 K). The zero-field splitting parameters of (3)P700 were not significantly changed in the mutated PSI complexes. The electron spin density distribution of P700(+)(*), determined by ENDOR spectroscopy, was only changed when His(B656) was replaced. In all measurements, two general observations were made. (i) The replacement of His(B656) had a much stronger impact on the physical properties of P700 than the mutation of His(A676). (ii) The exchange of His(B656) with glutamine induces the smallest changes in the spectra or the midpoint potential, whereas the other replacements exhibited a stronger but very similar influence on the spectroscopic features of P700. The data provide convincing evidence that the unpaired electron in the cation radical and the triplet state of P700 are mainly localized on the Chl a of the dimer which is axially coordinated by His(B656).  相似文献   

11.

Background

Vitamin D is associated with lung function in cross-sectional studies, and vitamin D inadequacy is hypothesized to play a role in the pathogenesis of chronic obstructive pulmonary disease. Further data are needed to clarify the relation between vitamin D status, genetic variation in vitamin D metabolic genes, and cross-sectional and longitudinal changes in lung function in healthy adults.

Methods

We estimated the association between serum 25-hydroxyvitamin D [25(OH)D] and cross-sectional forced expiratory volume in the first second (FEV1) in Framingham Heart Study (FHS) Offspring and Third Generation participants and the association between serum 25(OH)D and longitudinal change in FEV1 in Third Generation participants using linear mixed-effects models. Using a gene-based approach, we investigated the association between 241 SNPs in 6 select vitamin D metabolic genes in relation to longitudinal change in FEV1 in Offspring participants and pursued replication of these findings in a meta-analyzed set of 4 independent cohorts.

Results

We found a positive cross-sectional association between 25(OH)D and FEV1 in FHS Offspring and Third Generation participants (P = 0.004). There was little or no association between 25(OH)D and longitudinal change in FEV1 in Third Generation participants (P = 0.97). In Offspring participants, the CYP2R1 gene, hypothesized to influence usual serum 25(OH)D status, was associated with longitudinal change in FEV1 (gene-based P < 0.05). The most significantly associated SNP from CYP2R1 had a consistent direction of association with FEV1 in the meta-analyzed set of replication cohorts, but the association did not reach statistical significance thresholds (P = 0.09).

Conclusions

Serum 25(OH)D status was associated with cross-sectional FEV1, but not longitudinal change in FEV1. The inconsistent associations may be driven by differences in the groups studied. CYP2R1 demonstrated a gene-based association with longitudinal change in FEV1 and is a promising candidate gene for further studies.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-015-0238-y) contains supplementary material, which is available to authorized users.  相似文献   

12.
The core of photosystem II (PSII) of green plants contains the reaction center (RC) proteins D1D2-cytb559 and two core antennas CP43 and CP47. We have used time-resolved visible pump/midinfrared probe spectroscopy in the region between 1600 and 1800 cm(-1) to study the energy transfer and charge separation events within PSII cores. The absorption difference spectra in the region of the keto and ester chlorophyll modes show spectral evolution with time constants of 3 ps, 27 ps, 200 ps, and 2 ns. Comparison of infrared (IR) difference spectra obtained for the isolated antennas CP43 and CP47 and the D1D2-RC with those measured for the PSII core allowed us to identify the features specific for each of the PSII core components. From the presence of the CP43 and CP47 specific features in the spectra up to time delays of 20-30 ps, we conclude that the main part of the energy transfer from the antennas to the RC occurs on this timescale. Direct excitation of the pigments in the RC evolution associated difference spectra to radical pair formation of PD1+PheoD1- on the same timescale as multi-excitation annihilation and excited state equilibration within the antennas CP43 and CP47, which occur within approximately 1-3 ps. The formation of the earlier radical pair ChlD1+PheoD1-, as identified in isolated D1D2 complexes with time-resolved mid-IR spectroscopy is not observed in the current data, probably because of its relatively low concentration. Relaxation of the state PD1+PheoD1-, caused by a drop in free energy, occurs in 200 ps in closed cores. We conclude that the kinetic model proposed earlier for the energy and electron transfer dynamics within the D1D2-RC, plus two slowly energy-transferring antennas C43 and CP47 explain the complex excited state and charge separation dynamics in the PSII core very well. We further show that the time-resolved IR-difference spectrum of PD1+PheoD1- as observed in PSII cores is virtually identical to that observed in the isolated D1D2-RC complex of PSII, demonstrating that the local structure of the primary reactants has remained intact in the isolated D1D2 complex.  相似文献   

13.
A role for redox-active tyrosines has been demonstrated in many important biological processes, including water oxidation carried out by photosystem II (PSII) of oxygenic photosynthesis. The rates of tyrosine oxidation and reduction and the Tyr/Tyr reduction potential are undoubtedly controlled by the immediate environment of the tyrosine, with the coupling of electron and proton transfer, a critical component of the kinetic and redox behavior. It has been demonstrated by Faller et al. that the rate of oxidation of tyrosine D (TyrD) at room temperature and the extent of TyrD oxidation at cryogenic temperatures, following flash excitation, dramatically increase as a function of pH with a pKa of ≈ 7.6 [Faller et al. 2001 Proc. Natl. Acad. Sci. USA 98, 14368-14373; Faller et al. 2001 Biochemistry 41, 12914-12920]. In this work, we investigated, using FTIR difference spectroscopy, the mechanistic reasons behind this large pH dependence. These studies were carried out on Mn-depleted PSII core complexes isolated from Synechocystis sp. PCC 6803, WT unlabeled and labeled with 13C6-, or 13C1(4)-labeled tyrosine, as well as on the D2-Gln164Glu mutant. The main conclusions of this work are that the pH-induced changes involve the reduced TyrD state and not the oxidized TyrD state and that TyrD does not exist in the tyrosinate form between pH 6 and 10. We can also exclude a change in the protonation state of D2-His189 as being responsible for the large pH dependence of TyrD oxidation. Indeed, our data are consistent with D2-His189 being neutral both in the TyrD and TyrD states in the whole pH6-10 range. We show that the interactions between reduced TyrD and D2-His189 are modulated by the pH. At pH greater than 7.5, the ν(CO) mode frequency of TyrD indicates that TyrD is involved in a strong hydrogen bond, as a hydrogen bond donor only, in a fraction of the PSII centers. At pH below 7.5, the hydrogen-bonding interaction formed by TyrD is weaker and TyrD could be also involved as a hydrogen bond acceptor, according to calculations performed by Takahashi and Noguchi [J. Phys. Chem. B 2007 111, 13833-13844]. The involvement of TyrD in this strong hydrogen-bonding interaction correlates with the ability to oxidize TyrD at cryogenic temperatures and rapidly at room temperature. A strong hydrogen-bonding interaction is also observed at pH 6 in the D2-Gln164Glu mutant, showing that the residue at position D2-164 regulates the properties of TyrD. The IR data point to the role of a protonatable group(s) (with a pKa of ≈ 7) other than D2-His189 and TyrD, in modifying the characteristics of the TyrD hydrogen-bonding interactions, and hence its oxidation properties. It remains to be determined whether the strong hydrogen-bonding interaction involves D2-His189 and if TyrD oxidation involves the same proton transfer route at low and at high pH.  相似文献   

14.
15.
The functional site of ChlZ, an auxiliary electron donor to P680+, was determined by pulsed ELDOR applied to a radical pair of YD and Chlz+ in oriented PS II membranes from spinach. The radical-radical distance was determined to be 29.5 Å and its direction was 50° from the membrane normal, indicating that a chlorophyll on the D2 protein is responsible for the EPR Chlz+ signal. Spin polarized ESEEM (Electronin Spin Echo Envelop Modulation) of a 3Chl and QA radical pair induced by a laser flash was observed in reaction center D1D2Cytb559 complex, in which QA was functionally reconstituted with DBMIB and reduced chemically. QAESEEM showed a characteristic oscillating time profile due to dipolar coupling with 3Chl. By fitting with the dipolar interaction parameters, the distance between 3Chl and QA was determined to be 25.9 Å, indicating that the accessory chlorophyll on the D1 protein is responsible for the 3Chl signal.  相似文献   

16.
Under physiological conditions (278 K) femtosecond pump-probe laser spectroscopy with 20-fs time resolution was applied to study primary charge separation in spinach photosystem II (PSII) core complexes excited at 710 nm. It was shown that initial formation of anion radical band of pheophytin molecule (Pheo) at 460 nm is observed with rise time of ~ 11 ps. The kinetics of the observed rise was ascribed to charge separation between Chl (chlorophyll a) dimer, primary electron donor in PSII (P680*) and Pheo located in D1 protein subunit (PheoD1) absorbing at 420 nm, 545 nm and 680 nm with formation of the ion-radical pair P680+PheoDI. The subsequent electron transfer from PheoD1 to primary plastoquinone electron acceptor (QA) was accompanied by relaxation of the 460-nm band and occurred within ~ 250 ps in good agreement with previous measurements in Photosystem II-enriched particles and bacterial reaction centers. The subtraction of the P680+ spectrum measured at 455 ps delay from the spectra at 23 ps or 44 ps delay reveals the spectrum of PheoDI, which is very similar to that measured earlier by accumulation method. The spectrum of PheoDI formation includes a bleaching (or red shift) of the 670 nm band indicating that Chl-670 is close to PheoD1. According to previous measurements in the femtosecond–picosecond time range this Chl-670 was ascribed to ChlD1 [Shelaev, Gostev, Vishnev, Shkuropatov, Ptushenko, Mamedov, Sarkisov, Nadtochenko, Semenov and Shuvalov, J. Photochemistry and Photobiology, B: Biology 104 (2011) 45–50]. Stimulated emission at 685 nm was found to have two decaying components with time constants of ~ 1 ps and ~ 14 ps. These components appear to reflect formation of P680+ChlD1 and P680+PheoD1, respectively, as found earlier. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.  相似文献   

17.
Photosynthetic organisms exhibit a green color due to the accumulation of chlorophyll pigments in chloroplasts. Mg-protoporphyrin IX chelatase (Mg-chelatase) comprises three subunits (ChlH, ChlD and ChlI) and catalyzes the insertion of Mg2+ into protoporphyrin IX, the last common intermediate precursor in both chlorophyll and heme biosyntheses, to produce Mg-protoporphyrin IX (MgProto). Chlorophyll deficiency in higher plants results in chlorina (yellowish-green) phenotype. To date, 10 chlorina (chl) mutants have been isolated in rice, but the corresponding genes have not yet been identified. Rice Chl1 and Chl9 genes were mapped to chromosome 3 and isolated by map-based cloning. A missense mutation occurred in a highly conserved amino acid of ChlD in the chl1 mutant and ChlI in the chl9 mutant. Ultrastructural analyses have revealed that the grana are poorly stacked, resulting in the underdevelopment of chloroplasts. In the seedlings fed with aminolevulinate-dipyridyl in darkness, MgProto levels in the chl1 and chl9 mutants decreased up to 25% and 31% of that in wild-type, respectively, indicating that the Mg-chelatase activity is significantly reduced, causing the eventual decrease in chlorophyll synthesis. Furthermore, Northern blot analysis indicated that the nuclear genes encoding the three subunits of Mg-chelatase and LhcpII in chl1 mutant are expressed about 2-fold higher than those in WT, but are not altered in the chl9 mutant. This result indicates that the ChlD subunit participates in negative feedback regulation of plastid-to-nucleus in the expression of nuclear genes encoding chloroplast proteins, but not the ChlI subunit.Haitao Zhang and Jinjie Li contributed equally to this work  相似文献   

18.
PS II membrane fragments produced from higher plant thylakoids by Triton X-100 treatment exhibit strong photoinhibition and concomitant fast degradation of the D1 protein. Involvement of (molecular) oxygen is necessary for degradation of the D1 protein.The herbicides atrazine and diuron, but not ioxynil, partly protect the D1 protein against degradation. Binding of atrazine to the D1 protein is necessary to protect the D1 polypeptide, as shown with PS II membrane fragments from an atrazine-resistant biotype of Chenopodium album which are protected by diuron not by atrazine.Abbreviations atrazine 2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine - Chl chlorophyll, diuron - (DCMU) 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DMBQ 2,5-dimethyl-p-benzoquinone - DCIP 2,6-dichlorophenol indophenol - DPC diphenylcarbazide - ioxynil 4-cyano-2,6-diiodophenol - kb binding constant - Mes 4-morpholinoethanesulfonic acid - P-680 reaction-center chlorophyll a of photosystem-II - PAGE polyacrylamide gel electrophoresis - PS II photosystem-II - QA and QB primary and secondary quinone electron acceptors - Z electron donor to the photosystem-II reaction center - SDS sodium dodecylsulfate - Tricine N-2-hydroxy-1,1-bis(hydroxymethyl)ethylglycine  相似文献   

19.
We have measured the flash-induced absorbance difference spectrum attributed to the formation of the secondary radical pair, P(+)Q(-), between 270 nm and 1000 nm at 77 K in photosystem II of the chlorophyll d containing cyanobacterium, Acaryochloris marina. Despite the high level of chlorophyll d present, the flash-induced absorption difference spectrum of an approximately 2 ms decay component shows a number of features which are typical of the difference spectrum seen in oxygenic photosynthetic organisms containing no chlorophyll d. The spectral shape in the near-UV indicates that a plastoquinone is the secondary acceptor molecule (Q(A)). The strong C-550 change at 543 nm confirms previous reports that pheophytin a is the primary electron acceptor. The bleach at 435 nm and increase in absorption at 820 nm indicates that the positive charge is stabilized on a chlorophyll a molecule. In addition a strong electrochromic band shift, centred at 723 nm, has been observed. It is assigned to a shift of the Qy band of the neighbouring accessory chlorophyll d, Chl(D1). It seems highly likely that it accepts excitation energy from the chlorophyll d containing antenna. We therefore propose that primary charge separation is initiated from this chlorophyll d molecule and functions as the primary electron donor. Despite its lower excited state energy (0.1 V less), as compared to chlorophyll a, this chlorophyll d molecule is capable of driving the plastoquinone oxidoreductase activity of photosystem II. However, chlorophyll a is used to stabilize the positive charge and ultimately to drive water oxidation.  相似文献   

20.
The crystal structure of Photosystem II (PSII) analyzed at a resolution of 1.9 ? revealed deformations of chlorin rings in the chlorophylls for the first time. We investigated the degrees of chlorin ring deformation and factors that contributed to them in the PSII crystal structure, using a normal-coordinate structural decomposition procedure. The out-of-plane distortion of the P(D1) chlorin ring can be described predominantly by a large "doming mode" arising from the axial ligand, D1-His198, as well as the chlorophyll side chains and PSII protein environment. In contrast, the deformation of P(D2) was caused by a "saddling mode" arising from the D2-Trp191 ring and the doming mode arising from D2-His197. Large ruffling modes, which were reported to lower the redox potential in heme proteins, were observed in P(D1) and Chl(D1), but not in P(D2) and Chl(D2). Furthermore, as P(D1) possessed the largest doming mode among the reaction center chlorophylls, the corresponding bacteriochlorophyll P(L) possessed the largest doming mode in bacterial photosynthetic reaction centers. However, the majority of the redox potential shift in the protein environment was determined by the electrostatic environment. The difference in the chlorin ring deformation appears to directly refer to the difference in "the local steric protein environment" rather than the redox potential value in PSII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号