首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of stem cells for therapeutic applications is now an important objective for the future. Stem cell preparation is difficult and time-consuming depending on the origin of cells. Sedimentation field flow fractionation (SdFFF) is an effective tool for cell separation, respecting integrity and viability. We used the human neuroblastic SH-SY5Y clone of the SK-N-SH cell line as a source of immature neural cells. Our results demonstrated that by using SdFFF cell sorter under strictly defined conditions, and immunological cell characterization, we are now able to provide, in less than 15 min, a sterile, viable, usable and purified immature neural cell fraction without inducting cell differentiation.  相似文献   

2.
Cortical cell elution by sedimentation field-flow fractionation.   总被引:3,自引:0,他引:3  
As a cell sorter, Sedimentation field-flow fractionation (SdFFF) can be defined as an effective tool for cell separation and purification, respecting integrity and viability as well as providing enhanced recovery and purified sterile fraction collection. The complex cell suspension containing both neurons and glial cells of all types, obtained from cerebral cortices of 17-day-old rat fetuses, is routinely used as a model of primary neuronal culture. Using SdFFF, this complex cell mixture was eluted in sterile fractions which were collected and cultured. SdFFF cell elution was conducted under strictly defined conditions: rapid cell elution, high recovery (negligible cell trapping), short- and long-term cell viability, sterile collection. After immunological cellular type characterization (neurons and glial cells) of cultured cells, our results demonstrated the effectiveness of SdFFF to provide, in less than 6 min, viable and enriched neurons which can be cultured for further investigations.  相似文献   

3.
Coupling of olfactory sensory neurons (OSNs) in the olfactory epithelium of Necturus maculosus was demonstrated by dye-transfer with Lucifer yellow CH; however, the incidence of dye-transfer was low. Immunocytochemistry and Western blot analysis indicated that connexin 43, a gap junction channel subunit, was widely expressed by cells in the olfactory epithelium. Electrical coupling by presumptive gap junctions was assessed using electrophysiological recordings, heptanol block, tracer-uptake through hemi-junctions, and tracer-injection into tissue whole-mounts. Coupling, which involved pairs of OSNs only, was detected in approximately 3-10% of the OSN population; there was no evidence that OSNs were coupled into extended neural syncitia. These results suggest that coupling of OSNs by gap junctions is unlikely to have a general role in olfactory responses by mature (odor responsive) OSNs. Instead, the incidence of inter-neuronal coupling was small, similar to the fraction of immature OSNs, suggesting a possible role of gap junctions in the continual turnover and development of OSNs or possibly their senescence.  相似文献   

4.
The expression of the neural cell adhesion molecules N-CAM and L1 was investigated in the olfactory system of the mouse using immunocytochemical and immunochemical techniques. In the olfactory epithelium, globose basal cells and olfactory neurons were stained by the polyclonal N-CAM antibody reacting with all three components of N-CAM (N-CAM total) in their adult and embryonic states. Dark basal cells and supporting cells were not found positive for N-CAM total. The embryonic form of N-CAM (E-N-CAM) was only observed on the majority of globose basal cells, the precursor cells of olfactory neurons, and some neuronal elements, probably immature neurons, since they were localized adjacent to the basal cell layer. Differentiated neurons in the olfactory epithelium did not express E-N-CAM. In contrast to N-CAM total, the 180-kDa component of N-CAM (N-CAM180) and E-N-CAM, L1 was not detectable on cell bodies in the olfactory epithelium. L1 and N-CAM180 were strongly expressed on axons leaving the olfactory epithelium. Olfactory axons were also labeled by antibodies to N-CAM180 and L1 in the lamina propria and the nerve fiber and glomerular layers of the olfactory bulb, but only some axons showed a positive immunoreaction for E-N-CAM. Ensheathing cells in the olfactory nerve were observed to bear some labeling for N-CAM total, L1, and N-CAM180, but not E-N-CAM. In the olfactory bulb, L1 was not present on glial cells. In contrast, N-CAM180 was detectable on some glia and N-CAM total on virtually all glia. Glia in the nerve fiber layer were labeled by E-N-CAM antibody only at the external glial limiting membrane. In the glomerular layer, E-N-CAM expression was particularly pronounced at contacts between olfactory axons and target cells. The presence of E-N-CAM in the adult olfactory epithelium and bulb was confirmed by Western blot analysis. The continued presence of E-N-CAM in adulthood on neuronal precursor cells, a subpopulation of olfactory axons, glial cells at the glia limitans, and contacts between olfactory axons and their target cells indicates the retention of embryonic features in the mammalian olfactory system, which may underlie its remarkable regenerative capacity.  相似文献   

5.
A new monoclonal antibody, 2E11, was produced by immunizing mice with the microsomal fraction of rat accessory olfactory bulb cells. This IgM recognizes a previously described complex α‐galactosyl containing glycolipid, as well as N‐linked glycoproteins at 170 and 210 kD. These proteins correspond to a new nerve cell adhesion molecule (NCAM) glycoform, Gal‐NCAM, which contains a blood group B‐like oligosaccharide. During embryonic development, the 2E11 epitope is expressed by a subset of mature olfactory sensory neurons randomly dispersed throughout the olfactory epithelium, whereas in the olfactory bulb, immunostaining is restricted to medial areas of the nerve layer. When compared to PSA‐NCAM, another NCAM glycoform, Gal‐NCAM has a mutually exclusive distribution pattern both in the olfactory epithelium and in the olfactory bulb. We propose a model for the hierarchy of neuronal maturation in the olfactory epithelium, including a switch from PSA‐NCAM expression by immature neurons to the expression of Gal‐NCAM by mature neurons. © 2000 John Wiley & Sons, Inc. J Neurobiol 43: 173–185, 2000  相似文献   

6.
Viral upper respiratory infections are the most common cause of clinical olfactory dysfunction, but the pathogenesis of dysosmia after viral infection is poorly understood. Biopsies of the olfactory mucosa in patients that complain of dysosmia after viral infection fall into two categories: one in which no olfactory epithelium is seen and another in which the epithelium is disordered and populated mainly by immature neurons. We have used intranasal inoculation with an olfactory bulb line variant of MHV to study the consequences of viral infection on peripheral olfactory structures. MHV OBLV has little direct effect on the olfactory epithelium, but causes extensive spongiotic degeneration and destruction of mitral cells and interneurons in the olfactory bulb such that the axonal projection from the bulb via the lateral olfactory tract is markedly reduced. Moreover, surviving mitral cells apparently remain disconnected from the sensory neuron input to the glomerular layer, judging from retrograde labeling studies using Dil. The damage to the bulb indirectly causes a persistent, long-term increase in the turnover of sensory neurons in the epithelium, i.e. the relative proportion of immature to mature sensory neurons and the rate of basal cell proliferation both increase. The changes that develop after inoculation with MHV OBLV closely resemble the disordering of the olfactory epithelium in some patient biopsies. Thus, damage to the olfactory nerve or bulb may contribute to a form of post-viral olfactory dysfunction and MHV OBLV is a useful model for studying the pathogenesis of this form of dysosmia.  相似文献   

7.
A new monoclonal antibody, 2E11, was produced by immunizing mice with the microsomal fraction of rat accessory olfactory bulb cells. This IgM recognizes a previously described complex alpha-galactosyl containing glycolipid, as well as N-linked glycoproteins at 170 and 210 kD. These proteins correspond to a new nerve cell adhesion molecule (NCAM) glycoform, Gal-NCAM, which contains a blood group B-like oligosaccharide. During embryonic development, the 2E11 epitope is expressed by a subset of mature olfactory sensory neurons randomly dispersed throughout the olfactory epithelium, whereas in the olfactory bulb, immunostaining is restricted to medial areas of the nerve layer. When compared to PSA-NCAM, another NCAM glycoform, Gal-NCAM has a mutually exclusive distribution pattern both in the olfactory epithelium and in the olfactory bulb. We propose a model for the hierarchy of neuronal maturation in the olfactory epithelium, including a switch from PSA-NCAM expression by immature neurons to the expression of Gal-NCAM by mature neurons.  相似文献   

8.
Summary As part of a study of the development of olfactory function in the rabbit, a morphometric analysis of the olfactory epithelium in newborn and 30-day-old animals was carried out. Surface area, thickness and cell densities of the olfactory epithelium were compared in hematoxylin-eosin stained serial sections through the nasal cavities of 4 newborn and 3 weanling rabbits. While the basic structure of the olfactory cavity changed little with age, a large quantitative development in the epithelium was observed. The pattern of growth appeared uniform and resulted in a 3-fold increase in total surface area from about 1 cm2 per side in the newborn to about 3 cm2 in the weanling, and an increase in thickness from approximately 65 m to about 90 m. The increase in thickness was due mainly to a disproportionate, 5-fold increase in the number of olfactory neurons. This resulted in a total of about 32 million cells per side by day 30, and represented an increase in the ratio of neurons to basal cells of 7:1 to 10:1, and neurons to supporting cells of 2:1 to 4:1. While such an increase in the number of primary neurons presumably improves the animal's perceptual abilities, it nevertheless raises the question as to how perceptual constancy can be maintained during a period of such rapid neural change.  相似文献   

9.
Catla catla, Labeo rohita, and Cirrhinus mrigala represent important alimentary fish in India. Their reproduction/breeding depends on seasons. Fish perceive external factors-stimuli and chemical signals through the olfactory system that plays the key role in central regulation of reproduction. However, no electron microscopy data are available on organization of olfactory components of these fish. We studied organization of the olfactory organ in male L. rohita using scanning (SEM) and transmission electron microscopy (TEM). This organ consists of olfactory epithelium, a short nerve, and olfactory bulb. The olfactory organ is ovoid in shape and consists of about 47–52 lamellae in adults and about 14–20 lamellae in fingerlings. These lamellae originate from the midline raphe. By SEM, microvillar sensory and ciliated non-sensory cells were observed in the lamellae. TEM revealed microvillar receptor cell with rough endoplasmic reticulum and Golgi apparatus towards apical end. Basal cells were present at the base of receptor cell, supporting cells were located adjacent to the olfactory receptor neurons, while epithelial cells—in the nonsensory part of olfactory epithelium. Mast, blastema, and macrophage cells were also found at the basement membrane. This work is the first publication on ultrastructural organization of the olfactory system of the Indian major carp, which provides information about morphological and ultrastructural organization of the olfactory system and opens new avenues for further investigation of chemical neuroanatomy, sensory signal processing, and neural regulation of reproduction in the Indian major carp.  相似文献   

10.
The untrastructural organization of the olfactory epithelium of the cod Gadus morhua (L.) and the haddock Melanogrammus aeglefinus (L.) was studied using both transmission and scanning electron microscopy. The olfactory rosette was found to exhibit regional differences; the faces of the olfactory lamella were composed of sensory epithelium, the edges were non-sensory. The cellular organization of the olfactory epithelium was determined and consisted of bi-polar sensory neurones, supporting cells, mucous cells and basal cells. The ultrastructure of the sensory cells was consistent, having an elongate cell, the free surface of which terminated in an olfactory vesicle from which arose either four olfactory cilia or numerous microvilli. Ciliary aggregations have been found in the two species of gadoid fish studied; it is suggested that these structures aid in the separation and in the circulation of fluid between the lamellae. The surface structure of the supporting cells was found to be of two types: either ciliated or ridged; the former presenting distinct ciliated tufts, the latter showing definite, but unorganized, ridges over the epithelium surface.  相似文献   

11.
Pannexins form membrane channels that release biological signals to communicate with neighboring cells. Here, we report expression patterns of pannexin 1 (Panx1) and pannexin 2 (Panx2) in the olfactory epithelium and olfactory bulb of adult mice. In situ hybridization revealed that mRNAs for Panx1 and Panx2 were both expressed in the olfactory epithelium and olfactory bulb. Expression of Panx1 and Panx2 was mainly found in cell bodies below the sustentacular cell layer in the olfactory epithelium, indicating that Panx1 and Panx2 are expressed in mature and immature olfactory neurons, and basal cells. Expression of Panx2 was observed in sustentacular cells in a few locations of the olfactory epithelium. In the olfactory bulb, Panx1 and Panx2 were expressed in spatial patterns. Many mitral cells, tufted cells, periglomerular cells and granule cells were Panx1 and Panx2 positive. Mitral cells located at the dorsal and lateral portions of the olfactory bulb showed weak Panx1 expression compared with those in the medial side. However, the opposite was true for the distribution of Panx2 positive mitral cells. There were more Panx2 mRNA positive mitral cells and granule cells compared to those expressing Panx1. Our findings on pannexin expression in the olfactory system of adult mice raise the novel possibility that pannexins play a role in information processing in the olfactory system. Demonstration of expression patterns of pannexins in the olfactory system provides an anatomical basis for future functional studies.  相似文献   

12.
Anticancer differentiation therapy could be one strategy to stop cancer cell proliferation. Human erythroleukemia (HEL) cell line, incubated with 10 microM diosgenin, underwent megakaryocytic differentiation. Thus, the association diosgenin/HEL could be used as a model of chemically induced cellular differentiation and anticancer treatment. The goal of this work was to determine the capacity of sedimentation field-flow fractionation (SdFFF) to sort megakaryocytic differentiated cells. SdFFF cell sorting was associated with cellular characterization methods to calibrate specific elution profiles. As demonstrated by cell size measurement methods, cellular morphology, ploidy, and phenotype, we obtained an enriched, sterile, viable, and functional fraction of megakaryocytic cells. Thus, SdFFF is proposed as a routine method to prepare differentiated cells that will be further used to better understand the megakaryocytic differentiation process.  相似文献   

13.
Anatomical differences characterizing mitral cells and ruffed cells were published by Kosaka and Hama in three teleost species. Physiological responses from both different types of relay neurons were recorded extracellularly and simultaneously in the plexiform layer using a single tungsten microelectrode. During interstimulus intervals mitral cells responded with higher, frequently burst-like impulse rates triggered by the activity of epithelial receptor neurons. The mitral cell activity could be totally suppressed during local anesthesia of the olfactory epithelium. Ruffed cell impulse rates were low, and each action potential triggered a long-lasting (3-5 ms), continuously variable, summed up granule cell potential. In contrast to mitral cells, blockade of epithelial receptor cells significantly increased the activity of ruffed cells. I.e., the ruffed cells, which have no input from the olfactory epithelium, are spontaneously active, and are laterally inhibited by granule cells activated by mitral cells. During olfactory stimulation contrasting interactions between mitral cells and ruffed cells resulting in a drastic intensification of centrally transmitted information, frequently were recorded. An excitation of mitral cells activity via granule cells laterally inhibited the ruffed cells activity, and an inhibition of mitral cells activity simultaneously "released" an excitation of ruffed cells. This is the first physiological determination of different types of relay neurons in the olfactory bulb of fish.  相似文献   

14.
Degeneration and early regeneration of olfactory epithelium from two strains of mice was studied at the light and electron microscopic levels from 12 hours to 3 days following nasal irrigation with 1% aqueous solution of zinc sulfate (ZnSO4) (a compound known to selectively damage olfactory epithelium). Distinct patterns of degeneration and stages of regeneration were evident following treatment. During the first 24 hours after treatment three progressive manifestations of the degenerative process were seen: (1) a relatively mild condition which was characterized by surface irregularities produced by cell protrusions, highly vacuolated cytoplasm, presence of large lysosome-like bodies and prominent intercellular spaces, (2) a more severe condition in which large areas of the epithelium were detached from the basement membrane cellular debris was present in the nasal chamber, and (3) a condition of total or near-total denudation of the epithelium of olfactory mucosa. The basal lamina was continuous and intact in most regions and the integrity of the subadjacent connective tissue was mostly well-preserved. Nerve bundles of the fila olfactoria were noted in varying degrees of degeneration during the course of the experiment. The most advanced neural degeneration was seen 24 to 72 hours after treatment. Onset of regeneration was suggested by the appearance of a simple squamous layer of cells above the basement membrane 48 to 72 hours after treatment. In addition to the simple epithelium a stratified epithelium consisting of two to four cell layers was also observed at this time. Glandular cells, containing secretory granules identical to those in Bowman's glandular cells, were noted in an apparent process of migration from the lamina propria into the the stratified epithelial layer. The last mentioned observation supports the proposition that new supportive epithelial cells originate from cells of Bowman's gland.  相似文献   

15.
16.
Neurogenesis continues in the adult brain and in the adult olfactory epithelium. The cytokine, leukaemia inhibitory factor and nitric oxide are both known to stimulate neuronal progenitor cell proliferation in the olfactory epithelium after injury. Our aim here was to determine whether these observations are independent, specifically, whether leukaemia inhibitory factor triggers neural precursor proliferation via the inducible nitric oxide synthase pathway. We evaluated the effects of leukaemia inhibitory factor on inducible form of nitric oxide synthase (iNOS) expression, and cell proliferation in olfactory epithelial cell cultures and olfactory neurosphere-derived cells. Leukaemia inhibitory factor induced expression of iNOS and increased cell proliferation. An iNOS inhibitor and an anti-leukaemia inhibitory factor receptor blocking antibody inhibited leukaemia inhibitory factor-induced cell proliferation, an effect that was reversed by a NO donor. Altogether, the results strongly suggest that leukaemia inhibitory factor induces iNOS expression, increasing nitric oxide levels, to stimulate proliferation of olfactory neural precursor cells. This finding sheds light on neuronal regeneration occurring after injury of the olfactory epithelium.  相似文献   

17.
Copper at low doses is known to specifically induce olfactory neuron death in fish olfactory epithelium. Using light and electron transmission microscopy, we have investigated the features and the time-course of receptor cell death in rainbow trout exposed for 15 days to 20 mug Cu(2+)/l. Ultrastructural observations demonstrate that degenerating cells, which included both mature and immature neurons, exhibited morphological changes characteristic of a cell death by apoptosis. Quantitative analysis shows that the number of apoptotic cells increased significantly already after 1 day of exposure, reaching a peak at day 5. From this timepoint of exposure, no more mature neuron was noted in the olfactory epithelium. Following a significant decrease in the number of apoptotic cells at day 10, a second wave of neuron death was noted at day 15. These findings argue for the occurrence of a neurogenesis process to balance the receptor cell death, despite continued copper exposure, and for a higher vulnerability to the metal of olfactory neurons presenting more advanced stages of cell differentiation. The molecular mechanisms by which copper may induce olfactory neuron apoptosis are discussed.  相似文献   

18.
This study investigated the regeneration in the olfactory mucosa of the teleostean fish Poecilia reticulata when returned to dechlorinated tap water after 4-day exposure to 30 microg/L of Cu(2+). The regeneration process in the olfactory tissue was examined in fishes at 0, 3, 6 and 10 days of recovery in well water. Jade B staining permitted to evaluate the rate of the damage which was especially extended to olfactory neurons. Immediately after the end of exposure, a massive mitotic activity in the basal region of the mucosa was detected by immunostaining with PCNA. After 3 days of recovery the nuclei of the newly formed cells had already finished their migration to the upper portion of the epithelium, and cellular division was much less intense. Simultaneously, immunoreactivity for the neural growth-associated phosphoprotein GAP-43 increased respect to control levels, revealing that the new differentiating PCNA-positive elements belonged to immature neurons. After 6 days in well water no mitotic activity was detected, while the GAP-43 labelling appeared particularly concentrated in the apical surface of the olfactory epithelium. After 10 days the aspect of the olfactory epithelium was almost identical to the control. The present results suggest that after 10 days regeneration seems to be complete and integrity of the tissue restored. Furthermore, the epithelium reconstitution does not show apparent divergence from other fishes or mammals.  相似文献   

19.
嗅感受器主要感知外界环境中化学信号分子.本文采用银染、NADPH-组化染色和电镜技术来观察黑斑侧褶蛙(Petophylax nigromaculatus)的嗅器和犁鼻器的功能差异及细胞组成.银染法可对嗅上皮和犁鼻上皮的细胞进行分类及区分.其中,支持细胞胞核深染成黑色,嗅细胞胞核银染为花斑状.细胞计数显示,犁鼻上皮的嗅神经细胞含量百分比显著高于嗅上皮.组化结果显示,黑斑侧褶蛙嗅上皮和犁鼻上皮对NADPH-d表达模式差异显著,前者表达明显高于后者.电镜结果显示,黑斑侧褶蛙嗅上皮和犁鼻上皮的支持细胞由两种类型的细胞组成,分别为纤毛型和颗粒型支持细胞.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号