共查询到20条相似文献,搜索用时 21 毫秒
1.
Kurt Randerath Pei-Fang Yang Tracy F. Danna Ranjani Reddy William P. Watson Erika Randerath 《Mutation research》1991,250(1-2):135-144
Oxygen free radicals, such as the hydroxyl radical generated by interaction of Fe2+ and H2O2 (Fenton reaction), are produced in mammalian cells as a result of aerobic metabolism and under various pathological conditions and are known to elicit mutations and potentially other adverse effects by reacting with DNA bases. Several products thus formed have recently been characterized as hydroxylated derivatives of cytosine, thymine, adenine, and guanine and imidazole-ring-opened derivatives of adenine and guanine in DNA. As shown herein by 32P-postlabeling, incubation of DNA under Fenton reaction conditions led to additional products which, by virtue of resistance to nuclease P1 catalyzed 3′-dephosphorylation and chromatographic behavior, appeared to be bulky adducts rather than small polar, hydroxylated or ring-opened nucleotide derivatives. Two major and five minor DNA derivatives were measured after 32P-postlabeling and TLC mapping of DNA oxidized in vitro under conditions known to lead to formation of reactive oxygen species. Amounts of products formed depended on Fe2+ and H2O2 concentrations and increased in the presence of
-ascorbic acid. One of the two major products was also detected in lung DNA of rats where its amount increased with animal age. Thus, at least one I-compound appeared to have its origin in the interaction of DNA with reactive oxygen species. 相似文献
2.
Cigarette smoke induces a multitude of bulky/aromatic DNA adducts in vivo as revealed by 32P-postlabeling assay. The formation of such adducts is thought to involve metabolic activation of aromatic chemicals especially polycyclic aromatic hydrocarbons (PAHs) present in tumor-initiating cigarette tar fractions, via cytochrome P450-associated monooxygenases. Because radicals are present in both the gas and particulate (tar) phase of cigarette smoke and in aqueous extracts of cigarette smoke condensate (CSC), we addressed the question as to whether cytochrome P450-independent, possibly free radical-mediated reactions may contribute, also, to formation of cigarette smoke-associated bulky DNA adducts. Rat-lung DNA was incubated with aqueous extracts of CSC in the absence of microsomes under various conditions and analyzed by 32P-postlabeling. Radioactively labeled bulky reaction products were found to accumulate in a time- and CSC concentration-dependent manner. The resulting chromatographic profiles resembled cigarette smoke-associated DNA-adduct patterns observed in vivo. Pretreatment of aqueous CSC extract with radical scavengers/reducing agents (ascorbic acid, glutathione) diminished adduct formation in a concentration-dependent manner. Adduct formation in vitro may involve oxygen-free radicals, which are known to be present in aqueous CSC extracts and could (i) attack DNA directly to produce bulky adducts, (ii) induce radical sites on DNA covalently binding CSC components, or (iii) convert CSC components to DNA-reactive electrophiles. In addition, DNA may react with direct-acting mutagens in CSC. Adduct fractions derived from in vitro and in vivo experiments showed similar chromatographic behavior, suggesting that metabolic activation as well as processes not involving metabolism lead to formation of smoking-induced bulky DNA adducts in vivo. 相似文献
3.
We investigated whether acute iron intoxication causes oxidative DNA damage, measured in terms of 7-hydro-8-oxo-2'-deoxyguanosine, 8-oxodG, in nuclear DNA in testes and epididymal sperm cells in vivo and in vitro in rats. In addition, we investigated levels of the modified nucleoside in liver and kidney and measured its urinary excretion. Sperm cells were isolated from the epididymides and the testes cells were isolated after homogenisation. In vitro, the sperm and testes cells were incubated with increasing concentrations of FeCl2 ranging from 0 to 600 microM. The median (range) levels of 8-oxodG/10(5) dG in the epididymal sperm cells increased from 0.48 (0.42-0.90) to 15.1 (11.4-17.6) (p < 0.05), whereas the level rose from 0.63 (0.22-0.81) to 8.8 (4.5-11.6) (p < 0.05) at 0 and 600 microM, respectively, in the testicular cells. In vivo groups of 7-8 rats received 0, 200 or 400 mg iron/kg as dextran i.p. After 24 h, epididymal sperm cells, testes, kidneys and liver were collected for analysis. Kidney and sperm DNA showed a significant increase in 8-oxodG in the iron-treated animals. The median (range) values of the 8-oxodG/10(5) dG in the epididymal sperm cells rose from 0.66 (0.38-1.09) to 1.12 (0.84-5.88) (p < 0.05) at 0 and 400 mg iron/kg, respectively, whereas the values in the testes and liver showed no significant change. In the kidneys the 8-oxodG/10(5) dG median (range) values were 0.98 (0.73-1.24), 1.21 (1.13-1.69) and 1.34 (1.12-1.66) after 0, 200 and 400 mg iron/kg, respectively (p < 0.05). The 8-oxodG-excretion rate was measured in 24h urine before and after iron treatment. The rate of urinary 8-oxodG excretion increased from 129 (104-179) pmol/24 h before treatment to 147 (110-239) pmol/24 h after treatment in the group receiving 400 mg iron/kg (p < 0.05). The results indicate that acute iron intoxication may increase oxidative damage to sperm and kidney DNA. 相似文献
4.
We investigated whether acute iron intoxication causes oxidative DNA damage, measured in terms of 7-hydro-8-oxo-2′-deoxyguanosine, 8-oxodG, in nuclear DNA in testes and epididymal sperm cells in vivo and in vitro in rats. In addition, we investigated levels of the modified nucleoside in liver and kidney and measured its urinary excretion.Sperm cells were isolated from the epididymides and the testes cells were isolated after homogenisation. In vitro, the sperm and testes cells were incubated with increasing concentrations of FeCl2 ranging from 0 to 600 μM. The median (range) levels of 8-oxodG/105 dG in the epididymal sperm cells increased from 0.48 (0.42–0.90) to 15.1 (11.4–17.6) (p < 0.05), whereas the level rose from 0.63 (0.22–0.81) to 8.8 (4.5–11.6) (p < 0.05) at 0 and 600 μM, respectively, in the testicular cells.In vivo groups of 7–8 rats received 0, 200 or 400 mg iron/kg as dextran i.p. After 24h, epididymal sperm cells, testes, kidneys and liver were collected for analysis. Kidney and sperm DNA showed a significant increase in 8-oxodG in the iron-treated animals. The median (range) values of the 8-oxodG/105 dG in the epididymal sperm cells rose from 0.66 (0.38–1.09) to 1.12 (0.84–5.88) (p < 0.05) at 0 and 400 mg iron/kg, respectively, whereas the values in the testes and liver showed no significant change. In the kidneys the 8-oxodG/105 dG median (range) values were 0.98 (0.73–1.24), 1.21 (1.13–1.69) and 1.34 (1.12–1.66) after 0, 200 and 400 mg iron/kg, respectively (p < 0.05).The 8-oxodG-excretion rate was measured in 24 h urine before and after iron treatment. The rate of urinary 8-oxodG excretion increased from 129 (104–179) pmol/24 h before treatment to 147 (110–239) pmol/24h after treatment in the group receiving 400 mg iron/kg (p < 0.05).The results indicate that acute iron intoxication may increase oxidative damage to sperm and kidney DNA. 相似文献
5.
《Mutation Research/Environmental Mutagenesis and Related Subjects》1993,291(2):147-159
Various small oxidation products (e.g. 8-hydroxydeoxyguanosine) can be induced in DNA by nickel compounds. In this study, the 32P-postlabeling assay was applied to determine whether Ni(II) compounds are able to induce bulky DNA-adduct formation in vitro and in vivo. In vitro studies detected two major and several minor adducts in DNA incubated with NiCl2 and H2O2 at 37°C for 1 h. Formation of the two major adducts increased with incubation time (0–24 h) and NiCl2 concentration (0–800 μM). Adduct levels were greatly reduced by hydroxyl free-radical scavengers, i.e. 0.4 M sodium formate or 0.05 M p-nitrosodimethylaniline, and by a singlet oxygen scavenger, 0.05 M sodium azide. The in vitro effects of NiCl2 on DNA were significantly enhanced by (1) addition of 3 mM ascorbic acid, (2) replacement of H2O with D2O in the reaction, and (3) prior denaturation of DNA. Adduct formation presumably involved a Fenton-type reaction, in which DNA crosslinks may arise by reaction with hydroxyl free radicals and singlet oxygen.For in vivo studies, male 6–8 wk old B6C3F1 mice were used. In untreated mice, several I-compounds (putative indigenous DNA modifications that increase with age) were detected in liver, kidney, and lung. Two of these spots (1 and 2) were chromatographically identical to the two major spots induced by Ni(II) in vitro. The intensities of spots 1 and 2 in kidney and of some other spots in liver and lung were increased 1 and 2 h after i.p. injection with a single dose of 170 μmoles/kg NiAc2. The effects of NiAc2 were reduced or undetectable in the three tissues 24 h after treatment. These observations indicate the capacity of Ni(II) to induce and modulate bulky DNA modifications both in vitro and in vivo. 相似文献
6.
32P-postlabeling detection of radiation-induced DNA damage: identification and estimation of thymine glycols and phosphoglycolate termini. 总被引:9,自引:0,他引:9
A 32-P-postlabeling assay has been developed that permits detection of several radiogenic base and sugar lesions of DNA at the femtomole level. The technique is based on the inability of DNase I and snake venom phosphodiesterase to cleave the internucleotide phosphodiester bond immediately 5' to the site of damage so that complete digestion of irradiated DNA with these nucleases and alkaline phosphatase yields lesion-bearing "dinucleoside" monophosphates. Because these fragments contain an unmodified nucleoside at the 5'-end of each molecule, they can be readily phosphorylated by T4 polynucleotide kinase and [gamma-32P]ATP and analyzed by polyacrylamide gel electrophoresis and reverse-phase HPLC. We observed a linear induction of total damage in DNA irradiated with 5-50 Gy. Virtually no damage was detected when the DNA was irradiated in solution containing 1 M DMSO, implicating hydroxyl radicals in the formation of these lesions. Evidence for the presence of thymine glycols and phosphoglycolate groups came from (i) a comparison of the radiation-induced products with those produced by OsO4 and KMnO4 and (ii) incubation of irradiated DNA with Escherichia coli endonuclease III and exonuclease III before analysis by the postlabeling procedure. This was confirmed by comigration of the radiogenic products with chemically synthesized markers. G values of 0.0022 and 0.0105 mumol J-1 were obtained for thymine glycol and phosphoglycolate production, respectively. The identity of the 5'-nucleotide of each isolated compound was obtained by nuclease P1 digestion. This analysis of nearest-neighbor bases to thymine glycols and phosphoglycolates indicated a nonrandom interaction between radiation-induced hydroxyl radicals and DNA. 相似文献
7.
Modifications to the alkaline Comet assay by using lesion-specific endonucleases, such as formamidopyrimidine-DNA glycosylase (FPG) and endonuclease III (ENDOIII, also known as Nth), can detect DNA bases with oxidative damage. This modified assay can be used to assess the genotoxic/carcinogenic potential of environmental chemicals. The goal of this study was to validate the ability of this modified assay to detect oxidative stress-induced genotoxicity in Drosophila melanogaster (Oregon R(+)). In this study, we used three well known chemical oxidative stress inducers: hydrogen peroxide (H(2)O(2)), cadmium chloride (CdCl(2)) and copper sulfate (CuSO(4)). Third instar larvae of D. melanogaster were fed various concentrations of the test chemicals (50-200μM) mixed with a standard Drosophila food for 24h. Alkaline Comet assays with and without the FPG and ENDOIII enzymes were performed with midgut cells that were isolated from the control and treated larvae. Our results show a concentration-dependent increase (p<0.05-0.001) in the migration of DNA from the treated larvae. ENDOIII treatment detected more oxidative DNA damage (specifically pyrimidine damage) in the H(2)O(2) exposed larvae compared to FPG or no enzyme treatment (buffer only). In contrast, FPG treatment detected more oxidative DNA damage (specifically purine damage) in CuSO(4) exposed larvae compared to ENDOIII. Although previously reported to be a potent genotoxic agent, CdCl(2) did not induce more oxidative DNA damage than the other test chemicals. Our results show that the modified alkaline Comet assay can be used to detect oxidative stress-induced DNA damage in D. melanogaster and thus may be applicable for in vivo genotoxic assessments of environmental chemicals. 相似文献
8.
DNA adducts of mitomycin C (MMC) were detected by 32P-postlabeling analysis in both surgical specimens and an autopsy sample of the liver of patients with hepatocellular carcinoma who had received chemotherapy with MMC. Four kinds of adducts were detected in all 6 patients treated with MMC. These adducts had identical chromatographic mobilities to those of adducts in the liver of rats treated with MMC, but 1 additional adduct was detected in rat liver. In patients treated with MMC, about 3 adducts/10(8) nucleotides were found 4 days after MMC treatment, and 1 adduct/10(8) nucleotides 14 days after treatment and the latter level was maintained for up to 56 days. MMC-DNA adducts were also detected in peripheral blood leukocytes from a patient 1 and 7 days after MMC treatment, at levels of 1 and 0.6 adduct/10(8) nucleotides, respectively. These results suggest the tumor-initiating activity of MMC in humans. 相似文献
9.
In order to study the relationship between the level of acrolein-DNA adducts and their biological effects, sensitive methods are needed to quantitate DNA adducts. 32P-postlabeling is one such method that has been widely used and we have adapted the technique to detect acrolein-deoxyguanosine adducts. Adducts formed by the reaction of acrolein and deoxyguanosine-3'-monophosphate were isolated by HPLC. Based on their UV spectra and cochromatography with standards after dephosphorylation with acid phosphatase, these adducts were identified as the nucleotide equivalents of cyclic 1,N2-propanodeoxyguanosine adducts formed by acrolein that have been described by Chung et al. [15]. As nucleotides, the adducts were good substrates for polynucleotide kinase-mediated transfer of phosphate from ATP and were able to be detected by 32P-postlabeling. These adducts were resistant to the activity of nuclease P1 and dinucleoside monophosphates in the form d(G*pN) where G* is the acrolein-guanine adduct also resisted digestion by nuclease P1. Digestion of DNA by nuclease P1 and acid phosphatase resulted in the conversion of normal nucleotides to nucleosides and selective enrichment of the adducts as dinucleoside monophosphates. Using nuclease P1/acid phosphatase digestion, followed by 32P-postlabeling and TLC separation, levels of the two adducts in acrolein-treated DNA were found to be about 6185 and 19,222 nmol/mol. 相似文献
10.
Cruciferous vegetables have cancer preventive effects which may be due to reduction of oxidative DNA damage. We investigated the effect of an aqueous extract of cooked Brussels sprouts on formation of 7-hydro-8-oxo-2'-deoxyguanosine (8-oxodG) in calf thymus DNA in vitro. Damage was induced by a Fenton reaction, UVC (254 nm), UVA (365 nm), sunlamp light, and methylene blue with visible light.
The extract inhibited 8-oxodG formation in all systems except visible light with methylene blue. The IC50 values were 6-20 μg/ml corresponding to the extract of 5-20 g of Brussels sprouts distributed in a volume of 50 L. The protective effect in the Fenton reaction was unaffected by addition of EDTA. After HPLC separation fractions were identified with similar DNA protective effects. Sinigrin, a glucosinolate abundant in Brussels sprouts, co-eluted with the most effective fraction and had DNA protective effects. In comparison with other antioxidants the patterns of effect of the extract in the five damage systems were more similar to that of sodium azide than to those of dimethylsulfoxide and vitamin C.
Constituents of Brussels sprouts can protect DNA by direct scavenging, e.g. hydroxyl radical and other oxidants, without prooxidant effects at concentrations potentially achievable by modest intake of the vegetable. 相似文献
The extract inhibited 8-oxodG formation in all systems except visible light with methylene blue. The IC50 values were 6-20 μg/ml corresponding to the extract of 5-20 g of Brussels sprouts distributed in a volume of 50 L. The protective effect in the Fenton reaction was unaffected by addition of EDTA. After HPLC separation fractions were identified with similar DNA protective effects. Sinigrin, a glucosinolate abundant in Brussels sprouts, co-eluted with the most effective fraction and had DNA protective effects. In comparison with other antioxidants the patterns of effect of the extract in the five damage systems were more similar to that of sodium azide than to those of dimethylsulfoxide and vitamin C.
Constituents of Brussels sprouts can protect DNA by direct scavenging, e.g. hydroxyl radical and other oxidants, without prooxidant effects at concentrations potentially achievable by modest intake of the vegetable. 相似文献
11.
Endonuclease IV of Escherichia coli has been implicated by genetic studies in the repair of DNA damage caused by the antitumor drug bleomycin, but the lesion(s) recognized by this enzyme in vivo have not been identified. We used the sensitive primer activation assay, which monitors the formation of 3'-OH groups that support in vitro synthesis by E.coli DNA polymerase I, to determine whether endonuclease IV-specific damage could be detected in the chromosomal DNA of cells lacking the enzyme after in vivo treatment with bleomycin. Chromosomal DNA isolated after a 1 h bleomycin treatment from wild-type, endonuclease IV-deficient (nfo-) and endonuclease IV-overproducing (p-nfo; approximately 10-fold) strains all supported modest polymerase activity. However, in vitro treatment with purified endonuclease IV activated subsequent DNA synthesis with samples from the nfo- strain (an average of 2.6-fold), to a lesser extent for samples from wild-type cells (2.1-fold), and still less for the p-nfo samples (1.5-fold). This pattern is consistent with the presence of unrepaired damage that correlates inversely with the in vivo activity of endonuclease IV. Incubation of the DNA from bleomycin-treated nfo- cells with polymerase and dideoxynucleoside triphosphates lowered the endonuclease IV-independent priming activity, but did not affect the amount of activation seen after endonuclease IV treatment. Primer activation with DNA from the nfo- strain could also be obtained with purified E.coli exonuclease III in vitro, but a quantitative comparison demonstrated that endonuclease IV was > or = 5-fold more active in this assay. Thus, endonuclease IV-specific damage can be detected after in vivo exposure to bleomycin. These may be 2-deoxy-pentos-4-ulose residues, but other possibilities are discussed. 相似文献
12.
Dunne J Caron A Menu P Alayash AI Buehler PW Wilson MT Silaghi-Dumitrescu R Faivre B Cooper CE 《The Biochemical journal》2006,399(3):513-524
Haemoglobin initiates free radical chemistry. In particular, the interactions of peroxides with the ferric (met) species of haemoglobin generate two strong oxidants: ferryl iron and a protein-bound free radical. We have studied the endogenous defences to this reactive chemistry in a rabbit model following 20% exchange transfusion with cell-free haemoglobin stabilized in tetrameric form [via cross-linking with bis-(3,5-dibromosalicyl)fumarate]. The transfusate contained 95% oxyhaemoglobin, 5% methaemoglobin and 25 microM free iron. EPR spectroscopy revealed that the free iron in the transfusate was rendered redox inactive by rapid binding to transferrin. Methaemoglobin was reduced to oxyhaemoglobin by a slower process (t(1/2) = 1 h). No globin-bound free radicals were detected in the plasma. These redox defences could be fully attributed to a novel multifunctional role of plasma ascorbate in removing key precursors of oxidative damage. Ascorbate is able to effectively reduce plasma methaemoglobin, ferryl haemoglobin and globin radicals. The ascorbyl free radicals formed are efficiently re-reduced by the erythrocyte membrane-bound reductase (which itself uses intra-erythrocyte ascorbate as an electron donor). As well as relating to the toxicity of haemoglobin-based oxygen carriers, these findings have implications for situations where haem proteins exist outside the protective cell environment, e.g. haemolytic anaemias, subarachnoid haemorrhage, rhabdomyolysis. 相似文献
13.
A study was made the influence exerted by non-enzymatic glycosylation (glycation) and oxidative destruction on structural and functional parameters of actin (free NH2-groups, advanced glycation end product and bityrosine cross-linking content, DNase inhibition by G-actin and myosin Mg(2+)-ATPase activation by F-actin). The functional properties of actin were shown to change under high molecular weight product formation and oxidative destruction: the extent of DNAase I inhibition decreases (from 70 to 40%) and the extent of myosin Mg(2+)-ATPase decreases (by 40%). Carnosine prevents actin oligomer formation and oxidative destruction which favours preservation of the protein functional properties. 相似文献
14.
15.
《Mutation Research - Genetic Toxicology and Environmental Mutagenesis》2002,513(1-2):113-120
Previous studies have demonstrated that phenolic compounds, including genistein (4′,5,7-trihydroxyisoflavone) and resveratrol (3,4′,5-trihydroxystilbene), are able to protect against carcinogenesis in animal models. This study was undertaken to examine the ability of genistein and resveratrol to inhibit reactive oxygen species (ROS)-mediated strand breaks in φX-174 plasmid DNA. H2O2/Cu(II) and hydroquinone/Cu(II) were used to cause oxidative DNA strand breaks in the plasmid DNA. We demonstrated that the presence of genistein at micromolar concentrations resulted in a marked inhibition of DNA strand breaks induced by either H2O2/Cu(II) or hydroquinone/Cu(II). Genistein neither affected the Cu(II)/Cu(I) redox cycle nor reacted with H2O2 suggest that genistein may directly scavenge the ROS that participate in the induction of DNA strand breaks. In contrast to the inhibitory effects of genistein, the presence of resveratrol at similar concentrations led to increased DNA strand breaks induced by H2O2/Cu(II). Further studies showed that in the presence of Cu(II), resveratrol, but not genistein was able to cause DNA strand breaks. Moreover, both Cu(II)/Cu(I) redox cycle and H2O2 were shown to be critically involved in resveratrol/copper-mediated DNA strand breaks. The above results indicate that despite their similar in vivo anticarcinogenic effects, genistein and resveratrol appear to exert different effects on oxidative DNA damage in vitro. 相似文献
16.
Butadiene monoepoxide (BMO), epoxybutanediol (EBD) and diepoxybutane (DEB) are reactive metabolites of 1,3-butadiene (BD), an important industrial chemical classified as a probable human carcinogen. The covalent interactions of these metabolites with DNA lead to the formation of DNA adducts which may induce mutations or other types of DNA damage, resulting in tumour formation. In the present study, two pairs of diastereomeric N-1-BMO-adenine adducts were identified in the reaction of BMO with 2´-deoxyadenosine-5´-monophosphate (5´-dAMP). The major products formed by reacting EBD with 2´-deoxyguanosine-5´-monophosphate (5´-dGMP) were characterized as diastereomeric N-7-(2´,3´,4´-trihydroxybut-1´-yl)-5´-dGMP by UV and electrospray mass spectrometry. The formation of N-7-BMO-guanine adducts (1´-carbon, 60; 2´carbon, 54/104 nucleotides) in BMO-treated DNA was about four times higher than that of N-1-BMO-adenine adducts (1´-carbon, 20; 2´-carbon, 8.7/104 nucleotides). However, the recovery of N-1-BMO-adenine adducts in DNA (45 ± 5%) was two times higher than that of N-7-guanine adducts (20 ± 4%) by 32P-postlabelling analysis. Using the 32P-postlabelling/ HPLC assay, N-1-BMO-adenine, N-7-BMO-guanine and N-7-EBDguanine adducts were detected in BMO- or DEB-treated DNA and in liver DNA of rats exposed to BD by inhalation. The amount of N-7-EBD-guanine adducts (11/108 nucleotides) in rat liver was about three-fold higher than N-7-BMO-guanine adducts (4.0/108 nucleotides). The novel finding of N-1-BMO-adenine adducts formed in vivo may contribute to the understanding of the mechanisms of BD carcinogenic action. 相似文献
17.
Dizdaroglu M 《Mutation research》2005,591(1-2):45-59
Oxidative damage to DNA caused by free radicals and other oxidants generate base and sugar damage, strand breaks, clustered sites, tandem lesions and DNA-protein cross-links. Oxidative DNA damage is mainly repaired by base-excision repair in living cells with the involvement of DNA glycosylases in the first step and other enzymes in subsequent steps. DNA glycosylases remove modified bases from DNA, generating an apurinic/apyrimidinic (AP) site. Some of these enzymes that remove oxidatively modified DNA bases also possess AP-lyase activity to cleave DNA at AP sites. DNA glycosylases possess varying substrate specificities, and some of them exhibit cross-activity for removal of both pyrimidine- and purine-derived lesions. Most studies on substrate specificities and excision kinetics of DNA glycosylases were performed using oligonucleotides with a single modified base incorporated at a specific position. Other studies used high-molecular weight DNA containing multiple pyrimidine- and purine-derived lesions. In this case, substrate specificities and excision kinetics were found to be different from those observed with oligonucleotides. This paper reviews substrate specificities and excision kinetics of DNA glycosylases for removal of pyrimidine- and purine-derived lesions in high-molecular weight DNA. 相似文献
18.
19.
The mechanisms of the hepatocarcinogenicity of non-mutagenic peroxisome proliferators, i.e. compounds used as hypolipidemic drugs and industrial plasticizers, are not sufficiently understood. To gain more information on the mechanism of their action, the chronic effects of two structurally diverse peroxisome proliferators on rat-liver DNA were investigated by the 32P-postlabeling assay. Male F-344 rats (1.5 month old) were fed ciprofibrate (0.025%) in the diet for 2, 5, 8, and 16 months or Wy-14643 (0.1%) for 18 months. Liver DNA from individual treated animals (3-4 per group) and age-matched controls was analyzed by the nuclease P1/bisphosphate version of the 32P-postlabeling assay. Three distinct types of exposure-related DNA alterations were observed: (i) A significant reduction of the age-dependent accumulation of I-compounds (putative indigenous DNA modifications) (type 1), (ii) adduct-like DNA derivatives induced by the treatments (type 2), and (iii) as yet structurally uncharacterized radiolabeled material occupying substantial areas of DNA adduct maps and accumulating in an exposure time-dependent manner (type 3). DNA from liver tumors generated by these agents displayed only traces of I-compounds, lacked all but one adduct-like derivatives, and had no type 3 alterations. Thus, in contrast to the non-mutagenicity of peroxisome proliferators in short-term assays, chronic administration of these compounds led to DNA alterations that were detectable by 32P-postlabeling assay. 相似文献
20.
Mariann Harangi Eva Remenyik E Ildikó Seres Zsuzsa Varga Evelin Katona Gy?rgy Paragh 《Mutation research》2002,513(1-2):17-25
In the present paper, we report data on the genotoxic properties of hydrogen peroxide in polymorphonuclear neutrophils (PMNLs) separated from normolipidemic and type II/a hyperlipidemic patients. In all, 15 hyperlipidemic patients (11 female, 4 male, mean age 54.6+/-10.25 years) were involved in the study, and 7 normolipidemic patients (5 female, 2 male, mean age 53.4+/-8.07 years) served as controls. Using the comet assay, there was a significant difference in the degree of DNA damage between the two groups. The visual score characteristic of the degree of DNA damage was 350.97+/-31.31 in the hyperlipidemic group, while it was 289.5+/-29.49 in the control group (P<0.001). In the hyperlipidemic patients, a positive correlation was found between the degree of DNA damage and the basic oxidation of PMNLs (r=0.517), and the superoxide anion production of the cells stimulated with phorbolmiristate acetate (PMA) (r=0.326) and formyl-Met-Leu-Phe (FMLP) (r=0.525) as well. There was a negative correlation between DNA damage and HDL-associated antioxidant paraoxonase (PON) activity (r=-0.469), and the PON/HDL ratio (r=-0.631). No correlation was found between the degree of DNA damage and the plasma concentration of nitric oxide (NO) (r=0.098) and thiobarbituric acid-reactive substances (TBARS) (r=0.061) in hyperlipidemic patients. Our results show that in hyperlipidemic patients there is an increase in lymphocyte DNA damage caused by oxidative stress when compared to normolipidemic individuals as demonstrated by comet assay. Decreased antioxidant capacity in hyperlipidemic patients may play a significant role in this process. 相似文献