首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relative contribution of N-glycoloyl-beta-D-neuraminic acid (Neu5Gc) to total sialic acids expressed in mouse and rat liver glycoconjugates was found to be 95% and 11%, respectively. This considerable difference in sialic acid composition made these two tissues suitable models for a comparative investigation into the regulation of Neu5Gc biosynthesis and utilization. An examination of the CMP-glycoside specificity of Golgi-associated sialyltransferases using CMP-N-acetyl-beta-D-neuraminic acid (CMP-Neu5Ac) and CMP-Neu5Gc revealed no significant tissue-dependent differences. The Golgi membrane CMP-sialic acid transport system from rat liver did, however, exhibit a slightly higher internalisation rate for CMP-Neu5Ac, though no preferential affinity for this sugar nucleotide over CMP-Neu5Gc was observed. In experiments, where Golgi membrane preparations were incubated with an equimolar mixture of labelled CMP-Neu5Ac and CMP-Neu5Gc, no significant tissue-dependent differences in [14C]sialic acid composition were observed, either in the luminal soluble sialic acid fraction or in the precipitable sialic acid fraction, results which are consistent with the above observations. From this experiment, evidence was also obtained for the presence of a Golgi-lumen-associated CMP--sialic acid hydrolase which exhibited no apparent specificity for either CMP-Neu5Ac or CMP-Neu5Gc. The specific activity of the CMP-Neu5Ac hydroxylase, the enzyme responsible for the biosynthesis of Neu5Gc, was found to be 28-fold greater in high-speed supernatants of mouse liver than of rat liver. No hydroxylase activity was detected in the Golgi membrane preparations. It is therefore proposed that the cytoplasmic ratio of CMP-Neu5Ac and CMP-Neu5Gc produced by the hydroxylase, remains largely unmodified after CMP-glycoside uptake into the Golgi apparatus and transfer on to growing glycoconjugate glycan chains. The close relationship between the total sialic acid composition and the sialic acid pattern in the CMP-glycoside pools of the tissues lends considerable weight to this hypothesis.  相似文献   

2.
Rough and smooth microsomes and Golgi membranes isolated from rat liver were treated with proteolytic enzymes under conditions which removed 30–40% of the surface proteins without seriously disrupting the membrane structure. This treatment also removed 40–60% of protein-bound mannose, galactose and glucosamine. When protease treatment was combined with neuraminidase treatment, 80% of the sialic acid was removed from intact rough microsomal and Golgi vesicles and about half of the sialic acid of smooth microsomes was solubilized. It appears that half, or probably more, of the membrane glycoproteins are associated with the cytoplasmic surface of these membranes.  相似文献   

3.
The interaction in vitro between rat peritoneal macrophages and homologous, sialidase-treated lymphocytes was investigated. Lymphocytes were isolated from blood, thymus, and spleen on a density gradient. Total sialic acids obtained by acid hydrolysis were 10 nmol/10(8) lymphocytes, composed of 29% N-acetyl-neuraminic acid and 71% N-glycoloylneuraminic acid. Sialidase treatment released maximally 33% of membrane sialic acids. Lymphocytes were bound to peritoneal macrophages to an extent which increased in parallel with the amount of sialic acids released, whereas binding of untreated lymphocytes was not significant. This interaction was inhibited by free galactose and substances containing terminal galactose residues. Asialoorosomucoid with its oligoantennary sugar chains proved to be a 10(5) times more potent inhibitor of the interaction than lactose. The addition of homologous serum had no influence on binding. Electron microscopy revealed that vital lymphocytes were tightly bound to macrophages and only damaged lymphocytes appeared to be phagocytozed. The experiments demonstrate that the interaction between rat peritoneal macrophages and sialidase-treated lymphocytes is mediated by a macrophage receptor specific for galactose. This sugar is demasked on the surface of lymphocytes after the removal of terminal sialic acids. The role of this mechanism in cell recognition, elimination and homing of lymphocytes is discussed.  相似文献   

4.
The Long-Evans Cinnamon (LEC) rat, an animal model of Wilson's disease, spontaneously develops hepatitis as the result of abnormal copper accumulation in liver. The findings of this study show that copper, hydrogen peroxide, and lipid peroxides accumulate to drastically high levels in LEC rat serum in acute hepatitis but not chronic hepatitis. The effect of these reactive oxygen species (ROS) on oligosaccharides of glycoproteins in the LEC rat serum was examined. Lectin blot and lectin ELISA analyses showed that sialic acid and galactose residues of serum glycoproteins including transferrin were decreased in acute hepatitis. Further analyses of oligosaccharide structures of transferrin demonstrated that di-sialylated and asialo-agalacto biantennary sugar chains, but not tri-sialylated sugar chain, exist on transferrin in the acute hepatitis rats. In addition, treatment of non-hepatitis rat serum with copper ions and hydrogen peroxide decreased tri-sialylated sugar chain of the normal transferrin and increased di-sialylated and asialo-agalacto biantennary sugar chains. This is the first evidence to show that ROS result in the cleavage of oligosaccharides of glycoproteins in vivo, and indicate this cleavage of oligosaccharides may contribute the development of acute hepatitis.  相似文献   

5.
The biosynthesis of the heavy chains of two membrane glycoproteins, identified as immunoglobulin M and histocompatibility antigens, has been studied in [35S]methionine pulse-chase experiments by one and two-dimensional gel electrophoresis. Terminal sugar addition results in marked shifts in gel mobility that are mainly due to sialic acid addition, since they are sensitive to neuraminidase. These shifts are prevented when the ionophore monensin is present during the chase incubation. We conclude that both membrane IgM2 and H2 heavy chains normally pass through the Golgi subsite defined by monensin and acquire terminal sialic acid distal to this site. Analysis of surface-iodinated control and monensin-treated cells indicates that, in the presence of monensin, newly synthesized, incompletely glycosylated IgM and H2 are not transported to the cell surface. Thus these membrane proteins appear to follow the same intracellular pathway as secretory proteins.  相似文献   

6.
Summary The lectin from the elderberry (Sambucus nigra L.) bark, shown to recognize the sequence neuraminic acid (2,6) galactose/N-acetylgalactosamine, was applied for detecting binding sites in Lowicryl K4M sections by light and electron microscopy. The lectin was used either directly complexed to colloidal gold or in a two-step cytochemical affinity technique. The lectin-gold complex proved to be superior and thus was extensively tested on rat liver, kidney and hepatoma cells as well as on sheep and bovine submandibular glands. Controls to establish specificity of lectin-gold binding included sugar and glycoprotein inhibition tests and enzymic removal of sialic acid. In agreement with biochemical data demonstrating the potentiating effect of sialic acid on the binding of the lectin to oligosaccharides, enzymic removal of sialic acid from liver sections resulted in abolition of lectin staining. However, in the submandibular glands, neuraminidase pretreatment of the sections had no effect on the subsequent lectin-gold binding. In rat kidney some structures became negative while others retained the lectin-gold staining due to binding to penultimate.N-acetylgalactosamine exposed after sialic acid removal. In line with this, spot blot analysis demonstrated that the lectin-gold complex reacted with both fetuin and asialofetuin. Taken together, these results suggest that, for cytochemical staining, the sialic acid and the galactose/N-acetylgalactosamine lectin combining subsites ofSambucus nigra L. lectin are equally reactive with cellular glycoconjugates and that neuraminidase predigestion of tissue sections is of utmost importance to ensure specificity of staining for the sequence neuraminic acid (2,6) galactose/N-acetylgalactosamine.  相似文献   

7.
The carbohydrate chains present in the tubular basement membrane of bovine kidney were studied. Digestion with collagenase followed with pronase resulted in a complete solubilization of the basement membrane. The different glycopeptides were purified by gel filtration and ion-exchange chromatography. Two kinds of carbohydrate chains could be characterized: oligosaccharides composed of glucosamine, mannose, galactose, fucose and sialic acid, and glucosylgalactose disaccharides. A very small portion of the oligosaccharide chains (ca. 4%) appeared to be free of sialic acid. The bulk of these chains contained sialic acid and fucose, although in small amounts. Only traces of galactosamine were found.  相似文献   

8.
Biosynthesis of glycolipids GA2, GA1, GM1b, and GD1c was studied in Golgi vesicles isolated from rat liver. Sequential addition of N-acetylgalactosamine, galactose and two sialic acid residues to lactosylceramide led to the endproduct GD1c. Activities of the corresponding glycosyltransferases were shown to be present in isolated Golgi vesicles and their respective kinetic data were determined. The products of each reaction were characterized by their mobility on thin-layer chromatography, by enzymic degradation to their respective precursors, and in case of GM1b by FAB mass spectrometry.  相似文献   

9.
UDP-galactose appears to be produced on one side of a membrane barrier, opposite the galactosyltransferases that use it as a sugar donor. The translocation of activated galactose across membranes was studied in rat submaxillary-gland microsomal vesicles and in rat liver Golgi vesicles. When these intact vesicles containing the acceptor, N-acetylglucosamine, were incubated in the presence of UDP-galactose and two inhibitors of galactosyltransferase activity, the product, N-acetyl-lactosamine, formed within the vesicles. Thus at least the galactose moiety of UDP-galactose crossed the membranes. When intact Golgi vesicles were incubated with UDP-galactose labelled in both the uridine and the galactose moieties, labelled N-acetyllactosamine was again produced in the vesicles, but less than stoichiometric amounts of the uridine label was found there. Calculation of internal and external concentrations of UMP, a major product released from the cleaved uridine moiety, showed that the vesicles were actually enriched in UMP. When free UMP was incubated with the vesicles, this enrichment did not occur. This result was direct evidence for facilitated transport of UDP-galactose into the Golgi for use by galactosyltransferase.  相似文献   

10.
Subcellular distribution and biosynthesis of rat liver gangliosides   总被引:6,自引:0,他引:6  
Gangliosides have generally been assumed to be localized primarily in the plasma membrane. Analysis of gangliosides from isolated subcellular membrane fractions of rat liver indicated that 76% of the total ganglioside sialic acid was present in the plasma membrane. Mitochondria and endoplasmic reticulum fractions, while containing only low levels of gangliosides on a protein basis, each contained approx. 10% of total ganglioside sialic acid. Gangliosides also were present in the Golgi apparatus and nuclear membrane fractions, and soluble gangliosides were in the supernatant. Individual gangliosides were non-homogeneously distributed and each membrane fraction was characterized by a unique ganglioside composition. Plasma membrane contained only 14 and 28% of the total GD1a and GD3, respectively, but 80-90% of the GM1, GD1b, GT1b and GQ1b. Endoplasmic reticulum, when corrected for plasma membrane contamination, contained only trace amounts of GM1, GD1b, GT1b and GQ1b, but 11 and 5% of the total GD1a and GD3, respectively. The ganglioside composition of highly purified endoplasmic reticulum was similar. Ganglioside biosynthetic enzymes were concentrated in the Golgi apparatus. However, low levels of these enzymes were present in the highly purified endoplasmic reticulum fractions. Pulse-chase experiments with [3H]galactose revealed that total gangliosides were labeled first in the Golgi apparatus, mitochondria and supernatant within 10 min. Labeled gangliosides were next observed at 30 min in the endoplasmic reticulum, plasma membrane and nuclear membrane fractions. Analysis of the individual gangliosides also revealed that GM3, GM1, GD1a and GD1b were labeled first in the Golgi apparatus at 10 min. These studies indicate that gangliosides synthesized in the Golgi apparatus may be transported not only to the plasma membrane, but to the endoplasmic reticulum and to other internal endomembranes as well.  相似文献   

11.
Endogenous acceptors for N-acetylglucosamine (GlcNAc), galactose (Gal) or sialic acid (NeuAc) transfer were labeled to high activities when purified hepatic Golgi fractions were incubated with the corresponding radiolabeled nucleotide sugar in the absence of detergent. The in vitro conditions which were optimal for the endogenous glycosylation of GlcNAc and Gal acceptors (Mn2+, ATP) also promoted fusion within a subset of Golgi membranes. Electron microscope radioautography revealed that the majority of NeuAc acceptors were associated with unfused Golgi membranes, whereas the majority of Gal acceptors were localized to fused membranes. GlcNAc acceptors were approximately equally distributed between fused and unfused membranes. Under conditions in which Golgi membrane fusion was absent (-Mn2+), only NeuAc transfer was active. The majority of endogenous NeuAc acceptors were consequently assigned to the more trans regions of the hepatic Golgi apparatus as concluded from a combination of radioautography (NeuAc transfer) and acid NADPase cytochemistry (reactive medial and trans Golgi saccules). The distribution of NeuAc and Gal transferases was assessed after Percoll gradient centrifugation of disrupted Golgi fractions. The median density of NeuAc transferase was lower than that of Gal transferase. The studies are indicative of distinct Golgi components harboring the majority of acceptors and enzymes for terminal glycosylation.  相似文献   

12.
Carbohydrate-containing structures in rat liver rough microsomes (RM) were localized and characterized using iodinated lectins of defined specificity. Binding of [125I]Con A increased six- to sevenfold in the presence of low DOC (0.04--0.05%) which opens the vesicles and allows the penetration of the lectins. On the other hand, binding of [125I]WGA and [125I]RCA increased only slightly when the microsomal vesicles were opened by DOC. Sites available in the intact microsomal fraction had an affinity for [125I]Con A 14 times higher than sites for lectin binding which were exposed by the detergent treatment. Lectin-binding sites in RM were also localized electron microscopically with lectins covalently bound to biotin, which, in turn, were visualized after their reaction with ferritin-avidin (F-Av) markers. Using this method, it was demonstrated that in untreated RM samples, binding sites for lectins are not present on the cytoplasmic face of the microsomal vesicles, even after removal of ribosomes by treatment with high salt buffer and puromycin, but are located on smooth membranes which contaminate the rough microsomal fraction. Combining this technique with procedures which render the interior of the microsomal vesicles accessible to lectins and remove luminal proteins, it was found that RM membranes contain binding sites for Con A and for Lens culinaris agglutinin (LCA) located exclusively on the cisternal face of the membrane. No sites for WGA, RCA, soybean (SBA) and Lotus tetragonobulus (LTA) agglutinins were detected on either the cytoplasmic or the luminal faces of the rough microsomes. These observations demonstrate that: (a) sugar moieties of microsomal glycoproteins are exposed only on the luminal surface of the membranes and (b) microsomal membrane glycoproteins have incomplete carbohydrate chains without the characteristic terminal trisaccharides N-acetylglucosamine comes from galactose comes from sialic acid or fucose present in most glycoproteins secreted by the liver. The orientation and composition of the carbohydrate chains in microsomal glycoproteins indicate that the passage of these glycoproteins through the Golgi apparatus, followed by their return to the endoplasmic reticulum, is not required for their biogenesis and insertion into the endoplasmic reticulum (ER) membrane.  相似文献   

13.
探讨肝癌模型鼠与正常小鼠肝组织B4GalT(β-1,4-半乳糖转移酶)家族mRNA表达差异以及对细胞膜相关糖链的影响.采用RT-PCR方法检测肝癌模型鼠和正常对照小鼠肝癌组织中B4GalT家族7个成员以及唾液酸α-2,3转移酶ST3GalⅢ、ST3GalⅣ、ST3GalⅥ、α-1,6-岩藻糖转移酶FUT8 mRNA表达差异,应用凝集素芯片检测细胞膜表面半乳糖、岩藻糖、唾液酸表达情况.结果显示:与正常对照组相比,肝癌模型鼠肝组织中B4GalT-1和B4GalT-3、ST3GalⅣ和ST3GalⅥ、FUT8呈现高表达,肝癌细胞膜半乳糖、岩藻糖、唾液酸类型糖链增加,提示B4GalT-1和B4GalT-3与肝癌细胞膜半乳糖链增加相关.由于细胞Galβ-1,4-GlcNAc糖表位在ST3GalⅢ、ST3GalⅣ或ST3GalⅥ催化下与唾液酸α-2,3连接生成s-lewis x抗原前体,本实验中B4GalT-1和B4GalT-3与ST3GalⅣ、ST3GalⅤ、FUT8 mRNA表达具有相关性,提示B4GalT-1和B4GalT-3可能与ST3GalⅣ、ST3GalⅥ以及FUT4协同作用,导致肝癌细胞膜半乳糖、岩藻糖、唾液酸类型糖链增加.  相似文献   

14.
Glycoproteins of the lysosomal membrane   总被引:51,自引:30,他引:21       下载免费PDF全文
Three glycoprotein antigens (120, 100, and 80 kD) were detected by mono- and/or polyclonal antibodies generated by immunization with highly purified rat liver lysosomal membranes. All of the antigens were judged to be integral membrane proteins based on the binding of Triton X-114. By immunofluorescence on normal rat kidney cells, a mouse monoclonal antibody to the 120-kD antigen co-stained with a polyclonal rabbit antibody that detected the 100- and 80-kD antigens as well as with antibodies to acid phosphatase, indicating that these antigens are preferentially localized in lysosomes. Few 120-kD-positive structures were found to be negative for acid phosphatase, suggesting that the antigen was not concentrated in organelles such as endosomes, which lack acid phosphatase. Immunoperoxidase cytochemistry also showed little reactivity in Golgi cisternae, coated vesicles, or on the plasma membrane. Digestion with endo-beta-N-acetylglucosaminidase H (Endo H) and endo-beta-N-acetylglucosaminidase F (Endo F) demonstrated that each of the antigens contained multiple N-linked oligosaccharide chains, most of which were of the complex (Endo H-resistant) type. The 120-kD protein was very heavily glycosylated, having at least 18 N-linked chains. It was also rich in sialic acid, since neuraminidase digestion increased the pI of the 120-kD protein from less than 4 to greater than 8. Taken together, these results strongly suggest that the glycoprotein components of the lysosomal membrane are synthesized in the rough endoplasmic reticulum and terminally glycosylated in the Golgi before delivery to lysosomes. We have provisionally designated these antigens lysosomal membrane glycoproteins lgp120, lgp100, lgp80.  相似文献   

15.
Interferon-gamma produced by the human myelomonocyte cell line HBL-38 contained galactose, mannose, fucose, N-acetylglucosamine, and N-acetylneuraminic acid as sugar components. Sugar chains were liberated from interferon-gamma by hydrazinolysis. Free amino groups of the sugar chains were acetylated and the reducing-end sugar residues were tagged with 2-aminopyridine under new reaction conditions in which no sialic acid residue was hydrolyzed. The pyridylamino (PA-) derivatives of the sugar chains thus obtained were purified by gel filtration and reversed-phase HPLC. Seven major PA-sugar chains were isolated and the structure of each purified PA-sugar chain was identified by stepwise exoglycosidase digestion and 500-mHz 1H-NMR spectroscopy. The results indicated that the structures of the major PA-sugar chains were of the biantennary type, to which 0 to 2 mol of fucose and 1 to 2 mol of N-acetylneuraminic acid were linked as shown below. (formula; see text)  相似文献   

16.
We have recently described the occurrence of integral membrane glycoproteins in rat liver smooth and rough endoplasmic reticulum with O-N-acetylglucosamine facing the cytosolic and luminal sides of the membrane (Abeijon, C., and Hirschberg, C. B. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 1010-1014). We now report that integral membrane glycoproteins with cytosolic facing O-N-acetylglucosamine also occur in membranes of rat liver Golgi apparatus. This was determined following incubation of vesicles from the Golgi apparatus, which were sealed and of the same membrane topographical orientation as in vivo, with UDP-[14C]galactose and saturating amounts of bovine milk galactosyltransferase. This enzyme does not enter the lumen of the vesicles and specifically catalyzes the addition of galactose, in a beta 1-4 linkage, to terminal N-acetylglucosamine. Under these conditions, galactose was transferred to a glycoprotein of molecular mass of 92 kDa. This protein was insoluble in sodium carbonate, pH 11.5, conditions under which integral membrane proteins remain membrane bound and was insensitive to treatment with peptide:N-glycosidase F. beta Elimination and chromatography showed that radiolabeled galactose was part of a disaccharide which was characterized as Gal beta 1-4GlcNAcitol. This glycoprotein is specific of the Golgi apparatus membrane. Intrinsic membrane glycoproteins with this unusual carbohydrate membrane orientation thus occur in the endoplasmic reticulum and Golgi apparatus of rat liver.  相似文献   

17.
Liver microsomal subfractions and Golgi membranes free from adsorbed and secretory proteins have a characteristic sugar composition. The ratio of mannose to galactose is largest in rough microsomes, smaller in smooth I microsomes, still smaller in smooth II microsomes, and smallest in Golgi membranes. There is about twice as much glucosamine in Golgi membranes and 3 times as much in smooth II microsomes as in the other microsomal subfractions. Golgi membranes are rich in sialic acid in comparison to rough microsomes and it is present at even higher levels in the two smooth microsomal subfractions. Increasing concentrations of deoxycholate preferentially remove protein-bound mannose and glucosamine, while releasing significantly less galactose. About half of the microsomal mannose and galactose can be liberated from the surface of intact microsomal vesicles by treatment with trypsin. When trypsin is added to permeable vesicles where the inside surface can be also attacked, an additional 20% of the total mannose but no additional galactose is liberated.  相似文献   

18.
Liver microsomal subfractions and Golgi membranes free from adsorbed and secretory proteins have a characteristic sugar composition. The ratio of mannose to galactose is largest in rough microsomes, smaller in smooth I microsomes, still smaller in smooth II microsomes, and smallest in Golgi membranes. There is about twice as much glucosamine in Golgi membranes and 3 times as much in smooth II microsomes as in the other microsomal subfractions. Golgi membranes are rich in sialic acid in comparison to rough microsomes and it is present at even higher levels in the two smooth microsomal subfractions. Increasing concentrations of deoxycholate preferentially remove protein-bound mannose and glucosamine, while releasing significantly less galactose. About half of the microsomal mannose and galactose can be liberated from the surface of intact microsomal vesicles by treatment with trypsin. When trypsin is added to permeable vesicles where the inside surface can be also attacked, an additional 20% of the total mannose but no additional galactose is liberated.  相似文献   

19.
Neuraminidase-treated rat lymphocytes adhere strongly to rat hepatocytes in vitro. Binding between cells is due to stereo-specific interactions between a mammalian hepatic membrane lectin and galactosyl residues which are exposed on the lymphocyte surface after removal of sialic acid residues. The hepatic galactose specific lectin may play a role in the trapping of recirculating desialylated lymphocytes in the liver.  相似文献   

20.
Golgi apparatus, isolated from rat liver, incorporate [14C]sialic acid from CMP[14C]sialic acid into endogenous glycolipid and glycoprotein acceptors. Incorporation of [14C]sialic acid into endogenous glycoprotein acceptors was stimulated an average of 3-fold by Triton X-100 at an optimal concentration of 0.05% and was inhibited at higher concentrations. Incorporation of [14C]sialic acid into endogenous glycolipid acceptors was not stimulated by detergent. The major glycolipid product was identified by thin-layer chromatography as the ganglioside Gd3. SDS-polyacrylamide gel electrophoresis of the glycoprotein products demonstrated incorporation of [14C]sialic acid into 6–7 major bands. Neuraminidase studies determined that approximately 60% of the [14C]sialic acid incorporated into endogenous acceptors in the absence of detergent had a luminal orientation. Furthermore, electron microscopy studies showed that the isolated Golgi apparatus fraction consisted of intact membrane cisternae. Our results demonstrate that sialylation of cisternal acceptors located on the inside of the membrane occurs in the absence of detergent. They are consistent with carrier-mediated transport as a mechanism to allow CMPsialic acid to traverse the Golgi apparatus membrane and to be used to glycosylate endogenous glycoprotein and glycolipid acceptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号